|
|
|
// Copyright 2014 The go-ethereum Authors
|
|
|
|
// This file is part of the go-ethereum library.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
|
|
// (at your option) any later version.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
// GNU Lesser General Public License for more details.
|
|
|
|
//
|
|
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
// Package trie implements Merkle Patricia Tries.
|
|
|
|
package trie
|
|
|
|
|
|
|
|
import (
|
|
|
|
"bytes"
|
|
|
|
"errors"
|
|
|
|
"fmt"
|
|
|
|
"hash"
|
|
|
|
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
|
|
"github.com/ethereum/go-ethereum/crypto/sha3"
|
|
|
|
"github.com/ethereum/go-ethereum/logger"
|
|
|
|
"github.com/ethereum/go-ethereum/logger/glog"
|
|
|
|
"github.com/ethereum/go-ethereum/rlp"
|
|
|
|
)
|
|
|
|
|
|
|
|
const defaultCacheCapacity = 800
|
|
|
|
|
|
|
|
var (
|
|
|
|
// The global cache stores decoded trie nodes by hash as they get loaded.
|
|
|
|
globalCache = newARC(defaultCacheCapacity)
|
|
|
|
// This is the known root hash of an empty trie.
|
|
|
|
emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
|
|
|
|
)
|
|
|
|
|
|
|
|
var ErrMissingRoot = errors.New("missing root node")
|
|
|
|
|
|
|
|
// Database must be implemented by backing stores for the trie.
|
|
|
|
type Database interface {
|
|
|
|
DatabaseWriter
|
|
|
|
// Get returns the value for key from the database.
|
|
|
|
Get(key []byte) (value []byte, err error)
|
|
|
|
}
|
|
|
|
|
|
|
|
// DatabaseWriter wraps the Put method of a backing store for the trie.
|
|
|
|
type DatabaseWriter interface {
|
|
|
|
// Put stores the mapping key->value in the database.
|
|
|
|
// Implementations must not hold onto the value bytes, the trie
|
|
|
|
// will reuse the slice across calls to Put.
|
|
|
|
Put(key, value []byte) error
|
|
|
|
}
|
|
|
|
|
|
|
|
// Trie is a Merkle Patricia Trie.
|
|
|
|
// The zero value is an empty trie with no database.
|
|
|
|
// Use New to create a trie that sits on top of a database.
|
|
|
|
//
|
|
|
|
// Trie is not safe for concurrent use.
|
|
|
|
type Trie struct {
|
|
|
|
root node
|
|
|
|
db Database
|
|
|
|
*hasher
|
|
|
|
}
|
|
|
|
|
|
|
|
// New creates a trie with an existing root node from db.
|
|
|
|
//
|
|
|
|
// If root is the zero hash or the sha3 hash of an empty string, the
|
|
|
|
// trie is initially empty and does not require a database. Otherwise,
|
|
|
|
// New will panics if db is nil or root does not exist in the
|
|
|
|
// database. Accessing the trie loads nodes from db on demand.
|
|
|
|
func New(root common.Hash, db Database) (*Trie, error) {
|
|
|
|
trie := &Trie{db: db}
|
|
|
|
if (root != common.Hash{}) && root != emptyRoot {
|
|
|
|
if db == nil {
|
|
|
|
panic("trie.New: cannot use existing root without a database")
|
|
|
|
}
|
|
|
|
if v, _ := trie.db.Get(root[:]); len(v) == 0 {
|
|
|
|
return nil, ErrMissingRoot
|
|
|
|
}
|
|
|
|
trie.root = hashNode(root.Bytes())
|
|
|
|
}
|
|
|
|
return trie, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// Iterator returns an iterator over all mappings in the trie.
|
|
|
|
func (t *Trie) Iterator() *Iterator {
|
|
|
|
return NewIterator(t)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Get returns the value for key stored in the trie.
|
|
|
|
// The value bytes must not be modified by the caller.
|
|
|
|
func (t *Trie) Get(key []byte) []byte {
|
|
|
|
key = compactHexDecode(key)
|
|
|
|
tn := t.root
|
|
|
|
for len(key) > 0 {
|
|
|
|
switch n := tn.(type) {
|
|
|
|
case shortNode:
|
|
|
|
if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
tn = n.Val
|
|
|
|
key = key[len(n.Key):]
|
|
|
|
case fullNode:
|
|
|
|
tn = n[key[0]]
|
|
|
|
key = key[1:]
|
|
|
|
case nil:
|
|
|
|
return nil
|
|
|
|
case hashNode:
|
|
|
|
tn = t.resolveHash(n)
|
|
|
|
default:
|
|
|
|
panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return tn.(valueNode)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Update associates key with value in the trie. Subsequent calls to
|
|
|
|
// Get will return value. If value has length zero, any existing value
|
|
|
|
// is deleted from the trie and calls to Get will return nil.
|
|
|
|
//
|
|
|
|
// The value bytes must not be modified by the caller while they are
|
|
|
|
// stored in the trie.
|
|
|
|
func (t *Trie) Update(key, value []byte) {
|
|
|
|
k := compactHexDecode(key)
|
|
|
|
if len(value) != 0 {
|
|
|
|
t.root = t.insert(t.root, k, valueNode(value))
|
|
|
|
} else {
|
|
|
|
t.root = t.delete(t.root, k)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func (t *Trie) insert(n node, key []byte, value node) node {
|
|
|
|
if len(key) == 0 {
|
|
|
|
return value
|
|
|
|
}
|
|
|
|
switch n := n.(type) {
|
|
|
|
case shortNode:
|
|
|
|
matchlen := prefixLen(key, n.Key)
|
|
|
|
// If the whole key matches, keep this short node as is
|
|
|
|
// and only update the value.
|
|
|
|
if matchlen == len(n.Key) {
|
|
|
|
return shortNode{n.Key, t.insert(n.Val, key[matchlen:], value)}
|
|
|
|
}
|
|
|
|
// Otherwise branch out at the index where they differ.
|
|
|
|
var branch fullNode
|
|
|
|
branch[n.Key[matchlen]] = t.insert(nil, n.Key[matchlen+1:], n.Val)
|
|
|
|
branch[key[matchlen]] = t.insert(nil, key[matchlen+1:], value)
|
|
|
|
// Replace this shortNode with the branch if it occurs at index 0.
|
|
|
|
if matchlen == 0 {
|
|
|
|
return branch
|
|
|
|
}
|
|
|
|
// Otherwise, replace it with a short node leading up to the branch.
|
|
|
|
return shortNode{key[:matchlen], branch}
|
|
|
|
|
|
|
|
case fullNode:
|
|
|
|
n[key[0]] = t.insert(n[key[0]], key[1:], value)
|
|
|
|
return n
|
|
|
|
|
|
|
|
case nil:
|
|
|
|
return shortNode{key, value}
|
|
|
|
|
|
|
|
case hashNode:
|
|
|
|
// We've hit a part of the trie that isn't loaded yet. Load
|
|
|
|
// the node and insert into it. This leaves all child nodes on
|
|
|
|
// the path to the value in the trie.
|
|
|
|
//
|
|
|
|
// TODO: track whether insertion changed the value and keep
|
|
|
|
// n as a hash node if it didn't.
|
|
|
|
return t.insert(t.resolveHash(n), key, value)
|
|
|
|
|
|
|
|
default:
|
|
|
|
panic(fmt.Sprintf("%T: invalid node: %v", n, n))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Delete removes any existing value for key from the trie.
|
|
|
|
func (t *Trie) Delete(key []byte) {
|
|
|
|
k := compactHexDecode(key)
|
|
|
|
t.root = t.delete(t.root, k)
|
|
|
|
}
|
|
|
|
|
|
|
|
// delete returns the new root of the trie with key deleted.
|
|
|
|
// It reduces the trie to minimal form by simplifying
|
|
|
|
// nodes on the way up after deleting recursively.
|
|
|
|
func (t *Trie) delete(n node, key []byte) node {
|
|
|
|
switch n := n.(type) {
|
|
|
|
case shortNode:
|
|
|
|
matchlen := prefixLen(key, n.Key)
|
|
|
|
if matchlen < len(n.Key) {
|
|
|
|
return n // don't replace n on mismatch
|
|
|
|
}
|
|
|
|
if matchlen == len(key) {
|
|
|
|
return nil // remove n entirely for whole matches
|
|
|
|
}
|
|
|
|
// The key is longer than n.Key. Remove the remaining suffix
|
|
|
|
// from the subtrie. Child can never be nil here since the
|
|
|
|
// subtrie must contain at least two other values with keys
|
|
|
|
// longer than n.Key.
|
|
|
|
child := t.delete(n.Val, key[len(n.Key):])
|
|
|
|
switch child := child.(type) {
|
|
|
|
case shortNode:
|
|
|
|
// Deleting from the subtrie reduced it to another
|
|
|
|
// short node. Merge the nodes to avoid creating a
|
|
|
|
// shortNode{..., shortNode{...}}. Use concat (which
|
|
|
|
// always creates a new slice) instead of append to
|
|
|
|
// avoid modifying n.Key since it might be shared with
|
|
|
|
// other nodes.
|
|
|
|
return shortNode{concat(n.Key, child.Key...), child.Val}
|
|
|
|
default:
|
|
|
|
return shortNode{n.Key, child}
|
|
|
|
}
|
|
|
|
|
|
|
|
case fullNode:
|
|
|
|
n[key[0]] = t.delete(n[key[0]], key[1:])
|
|
|
|
// Check how many non-nil entries are left after deleting and
|
|
|
|
// reduce the full node to a short node if only one entry is
|
|
|
|
// left. Since n must've contained at least two children
|
|
|
|
// before deletion (otherwise it would not be a full node) n
|
|
|
|
// can never be reduced to nil.
|
|
|
|
//
|
|
|
|
// When the loop is done, pos contains the index of the single
|
|
|
|
// value that is left in n or -2 if n contains at least two
|
|
|
|
// values.
|
|
|
|
pos := -1
|
|
|
|
for i, cld := range n {
|
|
|
|
if cld != nil {
|
|
|
|
if pos == -1 {
|
|
|
|
pos = i
|
|
|
|
} else {
|
|
|
|
pos = -2
|
|
|
|
break
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if pos >= 0 {
|
|
|
|
if pos != 16 {
|
|
|
|
// If the remaining entry is a short node, it replaces
|
|
|
|
// n and its key gets the missing nibble tacked to the
|
|
|
|
// front. This avoids creating an invalid
|
|
|
|
// shortNode{..., shortNode{...}}. Since the entry
|
|
|
|
// might not be loaded yet, resolve it just for this
|
|
|
|
// check.
|
|
|
|
cnode := t.resolve(n[pos])
|
|
|
|
if cnode, ok := cnode.(shortNode); ok {
|
|
|
|
k := append([]byte{byte(pos)}, cnode.Key...)
|
|
|
|
return shortNode{k, cnode.Val}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Otherwise, n is replaced by a one-nibble short node
|
|
|
|
// containing the child.
|
|
|
|
return shortNode{[]byte{byte(pos)}, n[pos]}
|
|
|
|
}
|
|
|
|
// n still contains at least two values and cannot be reduced.
|
|
|
|
return n
|
|
|
|
|
|
|
|
case nil:
|
|
|
|
return nil
|
|
|
|
|
|
|
|
case hashNode:
|
|
|
|
// We've hit a part of the trie that isn't loaded yet. Load
|
|
|
|
// the node and delete from it. This leaves all child nodes on
|
|
|
|
// the path to the value in the trie.
|
|
|
|
//
|
|
|
|
// TODO: track whether deletion actually hit a key and keep
|
|
|
|
// n as a hash node if it didn't.
|
|
|
|
return t.delete(t.resolveHash(n), key)
|
|
|
|
|
|
|
|
default:
|
|
|
|
panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func concat(s1 []byte, s2 ...byte) []byte {
|
|
|
|
r := make([]byte, len(s1)+len(s2))
|
|
|
|
copy(r, s1)
|
|
|
|
copy(r[len(s1):], s2)
|
|
|
|
return r
|
|
|
|
}
|
|
|
|
|
|
|
|
func (t *Trie) resolve(n node) node {
|
|
|
|
if n, ok := n.(hashNode); ok {
|
|
|
|
return t.resolveHash(n)
|
|
|
|
}
|
|
|
|
return n
|
|
|
|
}
|
|
|
|
|
|
|
|
func (t *Trie) resolveHash(n hashNode) node {
|
|
|
|
if v, ok := globalCache.Get(n); ok {
|
|
|
|
return v
|
|
|
|
}
|
|
|
|
enc, err := t.db.Get(n)
|
|
|
|
if err != nil || enc == nil {
|
|
|
|
// TODO: This needs to be improved to properly distinguish errors.
|
|
|
|
// Disk I/O errors shouldn't produce nil (and cause a
|
|
|
|
// consensus failure or weird crash), but it is unclear how
|
|
|
|
// they could be handled because the entire stack above the trie isn't
|
|
|
|
// prepared to cope with missing state nodes.
|
|
|
|
if glog.V(logger.Error) {
|
|
|
|
glog.Errorf("Dangling hash node ref %x: %v", n, err)
|
|
|
|
}
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
dec := mustDecodeNode(n, enc)
|
|
|
|
if dec != nil {
|
|
|
|
globalCache.Put(n, dec)
|
|
|
|
}
|
|
|
|
return dec
|
|
|
|
}
|
|
|
|
|
|
|
|
// Root returns the root hash of the trie.
|
|
|
|
// Deprecated: use Hash instead.
|
|
|
|
func (t *Trie) Root() []byte { return t.Hash().Bytes() }
|
|
|
|
|
|
|
|
// Hash returns the root hash of the trie. It does not write to the
|
|
|
|
// database and can be used even if the trie doesn't have one.
|
|
|
|
func (t *Trie) Hash() common.Hash {
|
|
|
|
root, _ := t.hashRoot(nil)
|
|
|
|
return common.BytesToHash(root.(hashNode))
|
|
|
|
}
|
|
|
|
|
|
|
|
// Commit writes all nodes to the trie's database.
|
|
|
|
// Nodes are stored with their sha3 hash as the key.
|
|
|
|
//
|
|
|
|
// Committing flushes nodes from memory.
|
|
|
|
// Subsequent Get calls will load nodes from the database.
|
|
|
|
func (t *Trie) Commit() (root common.Hash, err error) {
|
|
|
|
if t.db == nil {
|
|
|
|
panic("Commit called on trie with nil database")
|
|
|
|
}
|
|
|
|
return t.CommitTo(t.db)
|
|
|
|
}
|
|
|
|
|
|
|
|
// CommitTo writes all nodes to the given database.
|
|
|
|
// Nodes are stored with their sha3 hash as the key.
|
|
|
|
//
|
|
|
|
// Committing flushes nodes from memory. Subsequent Get calls will
|
|
|
|
// load nodes from the trie's database. Calling code must ensure that
|
|
|
|
// the changes made to db are written back to the trie's attached
|
|
|
|
// database before using the trie.
|
|
|
|
func (t *Trie) CommitTo(db DatabaseWriter) (root common.Hash, err error) {
|
|
|
|
n, err := t.hashRoot(db)
|
|
|
|
if err != nil {
|
|
|
|
return (common.Hash{}), err
|
|
|
|
}
|
|
|
|
t.root = n
|
|
|
|
return common.BytesToHash(n.(hashNode)), nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func (t *Trie) hashRoot(db DatabaseWriter) (node, error) {
|
|
|
|
if t.root == nil {
|
|
|
|
return hashNode(emptyRoot.Bytes()), nil
|
|
|
|
}
|
|
|
|
if t.hasher == nil {
|
|
|
|
t.hasher = newHasher()
|
|
|
|
}
|
|
|
|
return t.hasher.hash(t.root, db, true)
|
|
|
|
}
|
|
|
|
|
|
|
|
type hasher struct {
|
|
|
|
tmp *bytes.Buffer
|
|
|
|
sha hash.Hash
|
|
|
|
}
|
|
|
|
|
|
|
|
func newHasher() *hasher {
|
|
|
|
return &hasher{tmp: new(bytes.Buffer), sha: sha3.NewKeccak256()}
|
|
|
|
}
|
|
|
|
|
|
|
|
func (h *hasher) hash(n node, db DatabaseWriter, force bool) (node, error) {
|
|
|
|
hashed, err := h.replaceChildren(n, db)
|
|
|
|
if err != nil {
|
|
|
|
return hashNode{}, err
|
|
|
|
}
|
|
|
|
if n, err = h.store(hashed, db, force); err != nil {
|
|
|
|
return hashNode{}, err
|
|
|
|
}
|
|
|
|
return n, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// hashChildren replaces child nodes of n with their hashes if the encoded
|
|
|
|
// size of the child is larger than a hash.
|
|
|
|
func (h *hasher) replaceChildren(n node, db DatabaseWriter) (node, error) {
|
|
|
|
var err error
|
|
|
|
switch n := n.(type) {
|
|
|
|
case shortNode:
|
|
|
|
n.Key = compactEncode(n.Key)
|
|
|
|
if _, ok := n.Val.(valueNode); !ok {
|
|
|
|
if n.Val, err = h.hash(n.Val, db, false); err != nil {
|
|
|
|
return n, err
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if n.Val == nil {
|
|
|
|
// Ensure that nil children are encoded as empty strings.
|
|
|
|
n.Val = valueNode(nil)
|
|
|
|
}
|
|
|
|
return n, nil
|
|
|
|
case fullNode:
|
|
|
|
for i := 0; i < 16; i++ {
|
|
|
|
if n[i] != nil {
|
|
|
|
if n[i], err = h.hash(n[i], db, false); err != nil {
|
|
|
|
return n, err
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Ensure that nil children are encoded as empty strings.
|
|
|
|
n[i] = valueNode(nil)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if n[16] == nil {
|
|
|
|
n[16] = valueNode(nil)
|
|
|
|
}
|
|
|
|
return n, nil
|
|
|
|
default:
|
|
|
|
return n, nil
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func (h *hasher) store(n node, db DatabaseWriter, force bool) (node, error) {
|
|
|
|
// Don't store hashes or empty nodes.
|
|
|
|
if _, isHash := n.(hashNode); n == nil || isHash {
|
|
|
|
return n, nil
|
|
|
|
}
|
|
|
|
h.tmp.Reset()
|
|
|
|
if err := rlp.Encode(h.tmp, n); err != nil {
|
|
|
|
panic("encode error: " + err.Error())
|
|
|
|
}
|
|
|
|
if h.tmp.Len() < 32 && !force {
|
|
|
|
// Nodes smaller than 32 bytes are stored inside their parent.
|
|
|
|
return n, nil
|
|
|
|
}
|
|
|
|
// Larger nodes are replaced by their hash and stored in the database.
|
|
|
|
h.sha.Reset()
|
|
|
|
h.sha.Write(h.tmp.Bytes())
|
|
|
|
key := hashNode(h.sha.Sum(nil))
|
|
|
|
if db != nil {
|
|
|
|
err := db.Put(key, h.tmp.Bytes())
|
|
|
|
return key, err
|
|
|
|
}
|
|
|
|
return key, nil
|
|
|
|
}
|