Official Go implementation of the Ethereum protocol
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
go-ethereum/miner/worker.go

794 lines
24 KiB

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
10 years ago
package miner
import (
"bytes"
10 years ago
"fmt"
"math/big"
"sync"
"sync/atomic"
"time"
10 years ago
mapset "github.com/deckarep/golang-set"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/consensus"
"github.com/ethereum/go-ethereum/consensus/misc"
10 years ago
"github.com/ethereum/go-ethereum/core"
10 years ago
"github.com/ethereum/go-ethereum/core/state"
10 years ago
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
10 years ago
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/params"
10 years ago
)
const (
// resultQueueSize is the size of channel listening to sealing result.
resultQueueSize = 10
// txChanSize is the size of channel listening to NewTxsEvent.
// The number is referenced from the size of tx pool.
txChanSize = 4096
// chainHeadChanSize is the size of channel listening to ChainHeadEvent.
chainHeadChanSize = 10
// chainSideChanSize is the size of channel listening to ChainSideEvent.
chainSideChanSize = 10
// miningLogAtDepth is the number of confirmations before logging successful mining.
miningLogAtDepth = 5
// blockRecommitInterval is the time interval to recreate the mining block with
// any newly arrived transactions.
blockRecommitInterval = 3 * time.Second
)
// environment is the worker's current environment and holds all of the current state information.
type environment struct {
signer types.Signer
state *state.StateDB // apply state changes here
ancestors mapset.Set // ancestor set (used for checking uncle parent validity)
family mapset.Set // family set (used for checking uncle invalidity)
uncles mapset.Set // uncle set
tcount int // tx count in cycle
gasPool *core.GasPool // available gas used to pack transactions
10 years ago
header *types.Header
txs []*types.Transaction
receipts []*types.Receipt
}
// task contains all information for consensus engine sealing and result submitting.
type task struct {
receipts []*types.Receipt
state *state.StateDB
block *types.Block
createdAt time.Time
}
const (
commitInterruptNone int32 = iota
commitInterruptNewHead
commitInterruptResubmit
)
type newWorkReq struct {
interrupt *int32
noempty bool
}
// worker is the main object which takes care of submitting new work to consensus engine
// and gathering the sealing result.
10 years ago
type worker struct {
config *params.ChainConfig
engine consensus.Engine
eth Backend
chain *core.BlockChain
// Subscriptions
mux *event.TypeMux
txsCh chan core.NewTxsEvent
txsSub event.Subscription
chainHeadCh chan core.ChainHeadEvent
chainHeadSub event.Subscription
chainSideCh chan core.ChainSideEvent
chainSideSub event.Subscription
// Channels
newWorkCh chan *newWorkReq
taskCh chan *task
resultCh chan *task
startCh chan struct{}
exitCh chan struct{}
10 years ago
current *environment // An environment for current running cycle.
possibleUncles map[common.Hash]*types.Block // A set of side blocks as the possible uncle blocks.
unconfirmed *unconfirmedBlocks // A set of locally mined blocks pending canonicalness confirmations.
mu sync.RWMutex // The lock used to protect the coinbase and extra fields
coinbase common.Address
extra []byte
10 years ago
snapshotMu sync.RWMutex // The lock used to protect the block snapshot and state snapshot
snapshotBlock *types.Block
snapshotState *state.StateDB
// atomic status counters
running int32 // The indicator whether the consensus engine is running or not.
// Test hooks
newTaskHook func(*task) // Method to call upon receiving a new sealing task
skipSealHook func(*task) bool // Method to decide whether skipping the sealing.
fullTaskHook func() // Method to call before pushing the full sealing task
10 years ago
}
func newWorker(config *params.ChainConfig, engine consensus.Engine, eth Backend, mux *event.TypeMux) *worker {
worker := &worker{
config: config,
engine: engine,
eth: eth,
mux: mux,
chain: eth.BlockChain(),
possibleUncles: make(map[common.Hash]*types.Block),
unconfirmed: newUnconfirmedBlocks(eth.BlockChain(), miningLogAtDepth),
txsCh: make(chan core.NewTxsEvent, txChanSize),
chainHeadCh: make(chan core.ChainHeadEvent, chainHeadChanSize),
chainSideCh: make(chan core.ChainSideEvent, chainSideChanSize),
newWorkCh: make(chan *newWorkReq),
taskCh: make(chan *task),
resultCh: make(chan *task, resultQueueSize),
exitCh: make(chan struct{}),
startCh: make(chan struct{}, 1),
}
// Subscribe NewTxsEvent for tx pool
worker.txsSub = eth.TxPool().SubscribeNewTxsEvent(worker.txsCh)
// Subscribe events for blockchain
worker.chainHeadSub = eth.BlockChain().SubscribeChainHeadEvent(worker.chainHeadCh)
worker.chainSideSub = eth.BlockChain().SubscribeChainSideEvent(worker.chainSideCh)
go worker.mainLoop()
go worker.newWorkLoop()
go worker.resultLoop()
go worker.taskLoop()
// Submit first work to initialize pending state.
worker.startCh <- struct{}{}
return worker
}
// setEtherbase sets the etherbase used to initialize the block coinbase field.
func (w *worker) setEtherbase(addr common.Address) {
w.mu.Lock()
defer w.mu.Unlock()
w.coinbase = addr
}
// setExtra sets the content used to initialize the block extra field.
func (w *worker) setExtra(extra []byte) {
w.mu.Lock()
defer w.mu.Unlock()
w.extra = extra
}
// pending returns the pending state and corresponding block.
func (w *worker) pending() (*types.Block, *state.StateDB) {
// return a snapshot to avoid contention on currentMu mutex
w.snapshotMu.RLock()
defer w.snapshotMu.RUnlock()
if w.snapshotState == nil {
return nil, nil
}
return w.snapshotBlock, w.snapshotState.Copy()
}
// pendingBlock returns pending block.
func (w *worker) pendingBlock() *types.Block {
// return a snapshot to avoid contention on currentMu mutex
w.snapshotMu.RLock()
defer w.snapshotMu.RUnlock()
return w.snapshotBlock
}
// start sets the running status as 1 and triggers new work submitting.
func (w *worker) start() {
atomic.StoreInt32(&w.running, 1)
w.startCh <- struct{}{}
}
// stop sets the running status as 0.
func (w *worker) stop() {
atomic.StoreInt32(&w.running, 0)
}
// isRunning returns an indicator whether worker is running or not.
func (w *worker) isRunning() bool {
return atomic.LoadInt32(&w.running) == 1
}
// close terminates all background threads maintained by the worker and cleans up buffered channels.
// Note the worker does not support being closed multiple times.
func (w *worker) close() {
close(w.exitCh)
// Clean up buffered channels
for empty := false; !empty; {
select {
case <-w.resultCh:
default:
empty = true
}
}
10 years ago
}
// newWorkLoop is a standalone goroutine to submit new mining work upon received events.
func (w *worker) newWorkLoop() {
var interrupt *int32
timer := time.NewTimer(0)
<-timer.C // discard the initial tick
// recommit aborts in-flight transaction execution with given signal and resubmits a new one.
recommit := func(noempty bool, s int32) {
if interrupt != nil {
atomic.StoreInt32(interrupt, s)
}
interrupt = new(int32)
w.newWorkCh <- &newWorkReq{interrupt: interrupt, noempty: noempty}
timer.Reset(blockRecommitInterval)
}
for {
select {
case <-w.startCh:
recommit(false, commitInterruptNewHead)
case <-w.chainHeadCh:
recommit(false, commitInterruptNewHead)
case <-timer.C:
// If mining is running resubmit a new work cycle periodically to pull in
// higher priced transactions. Disable this overhead for pending blocks.
if w.isRunning() && (w.config.Clique == nil || w.config.Clique.Period > 0) {
recommit(true, commitInterruptResubmit)
}
case <-w.exitCh:
return
}
}
}
// mainLoop is a standalone goroutine to regenerate the sealing task based on the received event.
func (w *worker) mainLoop() {
defer w.txsSub.Unsubscribe()
defer w.chainHeadSub.Unsubscribe()
defer w.chainSideSub.Unsubscribe()
for {
select {
case req := <-w.newWorkCh:
w.commitNewWork(req.interrupt, req.noempty)
case ev := <-w.chainSideCh:
if _, exist := w.possibleUncles[ev.Block.Hash()]; exist {
continue
}
// Add side block to possible uncle block set.
w.possibleUncles[ev.Block.Hash()] = ev.Block
// If our mining block contains less than 2 uncle blocks,
// add the new uncle block if valid and regenerate a mining block.
if w.isRunning() && w.current != nil && w.current.uncles.Cardinality() < 2 {
start := time.Now()
if err := w.commitUncle(w.current, ev.Block.Header()); err == nil {
var uncles []*types.Header
w.current.uncles.Each(func(item interface{}) bool {
hash, ok := item.(common.Hash)
if !ok {
return false
}
uncle, exist := w.possibleUncles[hash]
if !exist {
return false
}
uncles = append(uncles, uncle.Header())
return true
})
w.commit(uncles, nil, true, start)
}
}
case ev := <-w.txsCh:
// Apply transactions to the pending state if we're not mining.
//
// Note all transactions received may not be continuous with transactions
// already included in the current mining block. These transactions will
// be automatically eliminated.
if !w.isRunning() && w.current != nil {
w.mu.RLock()
coinbase := w.coinbase
w.mu.RUnlock()
txs := make(map[common.Address]types.Transactions)
for _, tx := range ev.Txs {
acc, _ := types.Sender(w.current.signer, tx)
txs[acc] = append(txs[acc], tx)
}
txset := types.NewTransactionsByPriceAndNonce(w.current.signer, txs)
w.commitTransactions(txset, coinbase, nil)
w.updateSnapshot()
} else {
// If we're mining, but nothing is being processed, wake on new transactions
if w.config.Clique != nil && w.config.Clique.Period == 0 {
w.commitNewWork(nil, false)
}
10 years ago
}
// System stopped
case <-w.exitCh:
return
case <-w.txsSub.Err():
return
case <-w.chainHeadSub.Err():
return
case <-w.chainSideSub.Err():
return
10 years ago
}
}
}
// seal pushes a sealing task to consensus engine and submits the result.
func (w *worker) seal(t *task, stop <-chan struct{}) {
var (
err error
res *task
)
if w.skipSealHook != nil && w.skipSealHook(t) {
return
}
if t.block, err = w.engine.Seal(w.chain, t.block, stop); t.block != nil {
log.Info("Successfully sealed new block", "number", t.block.Number(), "hash", t.block.Hash(),
"elapsed", common.PrettyDuration(time.Since(t.createdAt)))
res = t
} else {
if err != nil {
log.Warn("Block sealing failed", "err", err)
}
res = nil
}
select {
case w.resultCh <- res:
case <-w.exitCh:
}
}
// taskLoop is a standalone goroutine to fetch sealing task from the generator and
// push them to consensus engine.
func (w *worker) taskLoop() {
var stopCh chan struct{}
// interrupt aborts the in-flight sealing task.
interrupt := func() {
if stopCh != nil {
close(stopCh)
stopCh = nil
}
}
for {
select {
case task := <-w.taskCh:
if w.newTaskHook != nil {
w.newTaskHook(task)
}
interrupt()
stopCh = make(chan struct{})
go w.seal(task, stopCh)
case <-w.exitCh:
interrupt()
return
}
}
}
// resultLoop is a standalone goroutine to handle sealing result submitting
// and flush relative data to the database.
func (w *worker) resultLoop() {
for {
select {
case result := <-w.resultCh:
if result == nil {
continue
}
block := result.block
// Update the block hash in all logs since it is now available and not when the
// receipt/log of individual transactions were created.
for _, r := range result.receipts {
for _, l := range r.Logs {
l.BlockHash = block.Hash()
}
}
for _, log := range result.state.Logs() {
log.BlockHash = block.Hash()
}
// Commit block and state to database.
stat, err := w.chain.WriteBlockWithState(block, result.receipts, result.state)
if err != nil {
log.Error("Failed writing block to chain", "err", err)
continue
}
// Broadcast the block and announce chain insertion event
w.mux.Post(core.NewMinedBlockEvent{Block: block})
var (
events []interface{}
logs = result.state.Logs()
)
switch stat {
case core.CanonStatTy:
events = append(events, core.ChainEvent{Block: block, Hash: block.Hash(), Logs: logs})
events = append(events, core.ChainHeadEvent{Block: block})
case core.SideStatTy:
events = append(events, core.ChainSideEvent{Block: block})
}
w.chain.PostChainEvents(events, logs)
// Insert the block into the set of pending ones to resultLoop for confirmations
w.unconfirmed.Insert(block.NumberU64(), block.Hash())
case <-w.exitCh:
return
}
10 years ago
}
}
// makeCurrent creates a new environment for the current cycle.
func (w *worker) makeCurrent(parent *types.Block, header *types.Header) error {
state, err := w.chain.StateAt(parent.Root())
if err != nil {
return err
}
env := &environment{
signer: types.NewEIP155Signer(w.config.ChainID),
state: state,
ancestors: mapset.NewSet(),
family: mapset.NewSet(),
uncles: mapset.NewSet(),
header: header,
}
// when 08 is processed ancestors contain 07 (quick block)
for _, ancestor := range w.chain.GetBlocksFromHash(parent.Hash(), 7) {
for _, uncle := range ancestor.Uncles() {
env.family.Add(uncle.Hash())
}
env.family.Add(ancestor.Hash())
env.ancestors.Add(ancestor.Hash())
}
// Keep track of transactions which return errors so they can be removed
env.tcount = 0
w.current = env
return nil
}
// commitUncle adds the given block to uncle block set, returns error if failed to add.
func (w *worker) commitUncle(env *environment, uncle *types.Header) error {
hash := uncle.Hash()
if env.uncles.Contains(hash) {
return fmt.Errorf("uncle not unique")
}
if !env.ancestors.Contains(uncle.ParentHash) {
return fmt.Errorf("uncle's parent unknown (%x)", uncle.ParentHash[0:4])
}
if env.family.Contains(hash) {
return fmt.Errorf("uncle already in family (%x)", hash)
}
env.uncles.Add(uncle.Hash())
return nil
}
// updateSnapshot updates pending snapshot block and state.
// Note this function assumes the current variable is thread safe.
func (w *worker) updateSnapshot() {
w.snapshotMu.Lock()
defer w.snapshotMu.Unlock()
var uncles []*types.Header
w.current.uncles.Each(func(item interface{}) bool {
hash, ok := item.(common.Hash)
if !ok {
return false
}
uncle, exist := w.possibleUncles[hash]
if !exist {
return false
}
uncles = append(uncles, uncle.Header())
return true
})
w.snapshotBlock = types.NewBlock(
w.current.header,
w.current.txs,
uncles,
w.current.receipts,
)
w.snapshotState = w.current.state.Copy()
}
func (w *worker) commitTransaction(tx *types.Transaction, coinbase common.Address) ([]*types.Log, error) {
snap := w.current.state.Snapshot()
receipt, _, err := core.ApplyTransaction(w.config, w.chain, &coinbase, w.current.gasPool, w.current.state, w.current.header, tx, &w.current.header.GasUsed, vm.Config{})
if err != nil {
w.current.state.RevertToSnapshot(snap)
return nil, err
}
w.current.txs = append(w.current.txs, tx)
w.current.receipts = append(w.current.receipts, receipt)
return receipt.Logs, nil
}
func (w *worker) commitTransactions(txs *types.TransactionsByPriceAndNonce, coinbase common.Address, interrupt *int32) bool {
// Short circuit if current is nil
if w.current == nil {
return true
}
if w.current.gasPool == nil {
w.current.gasPool = new(core.GasPool).AddGas(w.current.header.GasLimit)
}
var coalescedLogs []*types.Log
for {
// In the following three cases, we will interrupt the execution of the transaction.
// (1) new head block event arrival, the interrupt signal is 1
// (2) worker start or restart, the interrupt signal is 1
// (3) worker recreate the mining block with any newly arrived transactions, the interrupt signal is 2.
// For the first two cases, the semi-finished work will be discarded.
// For the third case, the semi-finished work will be submitted to the consensus engine.
// TODO(rjl493456442) give feedback to newWorkLoop to adjust resubmit interval if it is too short.
if interrupt != nil && atomic.LoadInt32(interrupt) != commitInterruptNone {
return atomic.LoadInt32(interrupt) == commitInterruptNewHead
}
// If we don't have enough gas for any further transactions then we're done
if w.current.gasPool.Gas() < params.TxGas {
log.Trace("Not enough gas for further transactions", "have", w.current.gasPool, "want", params.TxGas)
break
}
// Retrieve the next transaction and abort if all done
tx := txs.Peek()
if tx == nil {
break
}
// Error may be ignored here. The error has already been checked
// during transaction acceptance is the transaction pool.
//
// We use the eip155 signer regardless of the current hf.
from, _ := types.Sender(w.current.signer, tx)
// Check whether the tx is replay protected. If we're not in the EIP155 hf
// phase, start ignoring the sender until we do.
if tx.Protected() && !w.config.IsEIP155(w.current.header.Number) {
log.Trace("Ignoring reply protected transaction", "hash", tx.Hash(), "eip155", w.config.EIP155Block)
txs.Pop()
continue
}
// Start executing the transaction
w.current.state.Prepare(tx.Hash(), common.Hash{}, w.current.tcount)
logs, err := w.commitTransaction(tx, coinbase)
switch err {
case core.ErrGasLimitReached:
// Pop the current out-of-gas transaction without shifting in the next from the account
log.Trace("Gas limit exceeded for current block", "sender", from)
txs.Pop()
case core.ErrNonceTooLow:
// New head notification data race between the transaction pool and miner, shift
log.Trace("Skipping transaction with low nonce", "sender", from, "nonce", tx.Nonce())
txs.Shift()
case core.ErrNonceTooHigh:
// Reorg notification data race between the transaction pool and miner, skip account =
log.Trace("Skipping account with hight nonce", "sender", from, "nonce", tx.Nonce())
txs.Pop()
case nil:
// Everything ok, collect the logs and shift in the next transaction from the same account
coalescedLogs = append(coalescedLogs, logs...)
w.current.tcount++
txs.Shift()
default:
// Strange error, discard the transaction and get the next in line (note, the
// nonce-too-high clause will prevent us from executing in vain).
log.Debug("Transaction failed, account skipped", "hash", tx.Hash(), "err", err)
txs.Shift()
}
}
if !w.isRunning() && len(coalescedLogs) > 0 {
// We don't push the pendingLogsEvent while we are mining. The reason is that
// when we are mining, the worker will regenerate a mining block every 3 seconds.
// In order to avoid pushing the repeated pendingLog, we disable the pending log pushing.
// make a copy, the state caches the logs and these logs get "upgraded" from pending to mined
// logs by filling in the block hash when the block was mined by the local miner. This can
// cause a race condition if a log was "upgraded" before the PendingLogsEvent is processed.
cpy := make([]*types.Log, len(coalescedLogs))
for i, l := range coalescedLogs {
cpy[i] = new(types.Log)
*cpy[i] = *l
}
go w.mux.Post(core.PendingLogsEvent{Logs: cpy})
}
return false
}
// commitNewWork generates several new sealing tasks based on the parent block.
func (w *worker) commitNewWork(interrupt *int32, noempty bool) {
w.mu.RLock()
defer w.mu.RUnlock()
tstart := time.Now()
parent := w.chain.CurrentBlock()
tstamp := tstart.Unix()
if parent.Time().Cmp(new(big.Int).SetInt64(tstamp)) >= 0 {
tstamp = parent.Time().Int64() + 1
}
// this will ensure we're not going off too far in the future
if now := time.Now().Unix(); tstamp > now+1 {
wait := time.Duration(tstamp-now) * time.Second
log.Info("Mining too far in the future", "wait", common.PrettyDuration(wait))
time.Sleep(wait)
}
num := parent.Number()
header := &types.Header{
ParentHash: parent.Hash(),
Number: num.Add(num, common.Big1),
GasLimit: core.CalcGasLimit(parent),
Extra: w.extra,
Time: big.NewInt(tstamp),
}
// Only set the coinbase if our consensus engine is running (avoid spurious block rewards)
if w.isRunning() {
if w.coinbase == (common.Address{}) {
log.Error("Refusing to mine without etherbase")
return
}
header.Coinbase = w.coinbase
}
if err := w.engine.Prepare(w.chain, header); err != nil {
log.Error("Failed to prepare header for mining", "err", err)
return
}
// If we are care about TheDAO hard-fork check whether to override the extra-data or not
if daoBlock := w.config.DAOForkBlock; daoBlock != nil {
// Check whether the block is among the fork extra-override range
limit := new(big.Int).Add(daoBlock, params.DAOForkExtraRange)
if header.Number.Cmp(daoBlock) >= 0 && header.Number.Cmp(limit) < 0 {
// Depending whether we support or oppose the fork, override differently
if w.config.DAOForkSupport {
header.Extra = common.CopyBytes(params.DAOForkBlockExtra)
} else if bytes.Equal(header.Extra, params.DAOForkBlockExtra) {
header.Extra = []byte{} // If miner opposes, don't let it use the reserved extra-data
}
}
}
// Could potentially happen if starting to mine in an odd state.
err := w.makeCurrent(parent, header)
if err != nil {
log.Error("Failed to create mining context", "err", err)
return
}
// Create the current work task and check any fork transitions needed
env := w.current
if w.config.DAOForkSupport && w.config.DAOForkBlock != nil && w.config.DAOForkBlock.Cmp(header.Number) == 0 {
misc.ApplyDAOHardFork(env.state)
}
// compute uncles for the new block.
10 years ago
var (
uncles []*types.Header
badUncles []common.Hash
)
for hash, uncle := range w.possibleUncles {
if len(uncles) == 2 {
break
}
if err := w.commitUncle(env, uncle.Header()); err != nil {
log.Trace("Bad uncle found and will be removed", "hash", hash)
log.Trace(fmt.Sprint(uncle))
10 years ago
badUncles = append(badUncles, hash)
} else {
log.Debug("Committing new uncle to block", "hash", hash)
uncles = append(uncles, uncle.Header())
}
}
10 years ago
for _, hash := range badUncles {
delete(w.possibleUncles, hash)
10 years ago
}
if !noempty {
// Create an empty block based on temporary copied state for sealing in advance without waiting block
// execution finished.
w.commit(uncles, nil, false, tstart)
}
// Fill the block with all available pending transactions.
pending, err := w.eth.TxPool().Pending()
if err != nil {
log.Error("Failed to fetch pending transactions", "err", err)
return
}
// Short circuit if there is no available pending transactions
if len(pending) == 0 {
w.updateSnapshot()
return
}
txs := types.NewTransactionsByPriceAndNonce(w.current.signer, pending)
if w.commitTransactions(txs, w.coinbase, interrupt) {
return
}
w.commit(uncles, w.fullTaskHook, true, tstart)
}
// commit runs any post-transaction state modifications, assembles the final block
// and commits new work if consensus engine is running.
func (w *worker) commit(uncles []*types.Header, interval func(), update bool, start time.Time) error {
// Deep copy receipts here to avoid interaction between different tasks.
receipts := make([]*types.Receipt, len(w.current.receipts))
for i, l := range w.current.receipts {
receipts[i] = new(types.Receipt)
*receipts[i] = *l
}
s := w.current.state.Copy()
block, err := w.engine.Finalize(w.chain, w.current.header, s, w.current.txs, uncles, w.current.receipts)
if err != nil {
return err
}
if w.isRunning() {
if interval != nil {
interval()
}
select {
case w.taskCh <- &task{receipts: receipts, state: s, block: block, createdAt: time.Now()}:
w.unconfirmed.Shift(block.NumberU64() - 1)
log.Info("Commit new mining work", "number", block.Number(), "txs", w.current.tcount, "uncles", len(uncles),
"elapsed", common.PrettyDuration(time.Since(start)))
case <-w.exitCh:
log.Info("Worker has exited")
}
10 years ago
}
if update {
w.updateSnapshot()
}
return nil
10 years ago
}