|
|
|
// Copyright 2018 The go-ethereum Authors
|
|
|
|
// This file is part of the go-ethereum library.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
|
|
// (at your option) any later version.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
// GNU Lesser General Public License for more details.
|
|
|
|
//
|
|
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
package pss
|
|
|
|
|
|
|
|
import (
|
|
|
|
"bytes"
|
|
|
|
"context"
|
|
|
|
"crypto/ecdsa"
|
|
|
|
"encoding/binary"
|
|
|
|
"encoding/hex"
|
|
|
|
"encoding/json"
|
|
|
|
"flag"
|
|
|
|
"fmt"
|
|
|
|
"io/ioutil"
|
|
|
|
"math/rand"
|
|
|
|
"os"
|
|
|
|
"strconv"
|
|
|
|
"strings"
|
|
|
|
"sync"
|
|
|
|
"testing"
|
|
|
|
"time"
|
|
|
|
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
|
|
"github.com/ethereum/go-ethereum/common/hexutil"
|
|
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
|
|
"github.com/ethereum/go-ethereum/log"
|
|
|
|
"github.com/ethereum/go-ethereum/metrics"
|
|
|
|
"github.com/ethereum/go-ethereum/metrics/influxdb"
|
|
|
|
"github.com/ethereum/go-ethereum/node"
|
|
|
|
"github.com/ethereum/go-ethereum/p2p"
|
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.
Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.
The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.
* p2p/discover: port to p2p/enode
This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:
- Table.Lookup is not available anymore. It used to take a public key
as argument because v4 protocol requires one. Its replacement is
LookupRandom.
- Table.Resolve takes *enode.Node instead of NodeID. This is also for
v4 protocol compatibility because nodes cannot be looked up by ID
alone.
- Types Node and NodeID are gone. Further commits in the series will be
fixes all over the the codebase to deal with those removals.
* p2p: port to p2p/enode and discovery changes
This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.
New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.
* p2p/simulations, p2p/testing: port to p2p/enode
No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:
- testing.ProtocolSession tracks complete nodes, not just their IDs.
- adapters.NodeConfig has a new method to create a complete node.
These changes were needed to make swarm tests work.
Note that the NodeID change makes the code incompatible with old
simulation snapshots.
* whisper/whisperv5, whisper/whisperv6: port to p2p/enode
This port was easy because whisper uses []byte for node IDs and
URL strings in the API.
* eth: port to p2p/enode
Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.
* les: port to p2p/enode
Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.
* node: port to p2p/enode
This change simply replaces discover.Node and discover.NodeID with their
new equivalents.
* swarm/network: port to p2p/enode
Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).
There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.
Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
6 years ago
|
|
|
"github.com/ethereum/go-ethereum/p2p/enode"
|
|
|
|
"github.com/ethereum/go-ethereum/p2p/protocols"
|
|
|
|
"github.com/ethereum/go-ethereum/p2p/simulations"
|
|
|
|
"github.com/ethereum/go-ethereum/p2p/simulations/adapters"
|
|
|
|
"github.com/ethereum/go-ethereum/rpc"
|
|
|
|
"github.com/ethereum/go-ethereum/swarm/network"
|
|
|
|
"github.com/ethereum/go-ethereum/swarm/state"
|
|
|
|
whisper "github.com/ethereum/go-ethereum/whisper/whisperv5"
|
|
|
|
)
|
|
|
|
|
|
|
|
var (
|
|
|
|
initOnce = sync.Once{}
|
|
|
|
debugdebugflag = flag.Bool("vv", false, "veryverbose")
|
|
|
|
debugflag = flag.Bool("v", false, "verbose")
|
|
|
|
longrunning = flag.Bool("longrunning", false, "do run long-running tests")
|
|
|
|
w *whisper.Whisper
|
|
|
|
wapi *whisper.PublicWhisperAPI
|
|
|
|
psslogmain log.Logger
|
|
|
|
pssprotocols map[string]*protoCtrl
|
|
|
|
useHandshake bool
|
|
|
|
)
|
|
|
|
|
|
|
|
func init() {
|
|
|
|
flag.Parse()
|
|
|
|
rand.Seed(time.Now().Unix())
|
|
|
|
|
|
|
|
adapters.RegisterServices(newServices(false))
|
|
|
|
initTest()
|
|
|
|
}
|
|
|
|
|
|
|
|
func initTest() {
|
|
|
|
initOnce.Do(
|
|
|
|
func() {
|
|
|
|
loglevel := log.LvlInfo
|
|
|
|
if *debugflag {
|
|
|
|
loglevel = log.LvlDebug
|
|
|
|
} else if *debugdebugflag {
|
|
|
|
loglevel = log.LvlTrace
|
|
|
|
}
|
|
|
|
|
|
|
|
psslogmain = log.New("psslog", "*")
|
|
|
|
hs := log.StreamHandler(os.Stderr, log.TerminalFormat(true))
|
|
|
|
hf := log.LvlFilterHandler(loglevel, hs)
|
|
|
|
h := log.CallerFileHandler(hf)
|
|
|
|
log.Root().SetHandler(h)
|
|
|
|
|
|
|
|
w = whisper.New(&whisper.DefaultConfig)
|
|
|
|
wapi = whisper.NewPublicWhisperAPI(w)
|
|
|
|
|
|
|
|
pssprotocols = make(map[string]*protoCtrl)
|
|
|
|
},
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
// test that topic conversion functions give predictable results
|
|
|
|
func TestTopic(t *testing.T) {
|
|
|
|
|
|
|
|
api := &API{}
|
|
|
|
|
|
|
|
topicstr := strings.Join([]string{PingProtocol.Name, strconv.Itoa(int(PingProtocol.Version))}, ":")
|
|
|
|
|
|
|
|
// bytestotopic is the authoritative topic conversion source
|
|
|
|
topicobj := BytesToTopic([]byte(topicstr))
|
|
|
|
|
|
|
|
// string to topic and bytes to topic must match
|
|
|
|
topicapiobj, _ := api.StringToTopic(topicstr)
|
|
|
|
if topicobj != topicapiobj {
|
|
|
|
t.Fatalf("bytes and string topic conversion mismatch; %s != %s", topicobj, topicapiobj)
|
|
|
|
}
|
|
|
|
|
|
|
|
// string representation of topichex
|
|
|
|
topichex := topicobj.String()
|
|
|
|
|
|
|
|
// protocoltopic wrapper on pingtopic should be same as topicstring
|
|
|
|
// check that it matches
|
|
|
|
pingtopichex := PingTopic.String()
|
|
|
|
if topichex != pingtopichex {
|
|
|
|
t.Fatalf("protocol topic conversion mismatch; %s != %s", topichex, pingtopichex)
|
|
|
|
}
|
|
|
|
|
|
|
|
// json marshal of topic
|
|
|
|
topicjsonout, err := topicobj.MarshalJSON()
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
if string(topicjsonout)[1:len(topicjsonout)-1] != topichex {
|
|
|
|
t.Fatalf("topic json marshal mismatch; %s != \"%s\"", topicjsonout, topichex)
|
|
|
|
}
|
|
|
|
|
|
|
|
// json unmarshal of topic
|
|
|
|
var topicjsonin Topic
|
|
|
|
topicjsonin.UnmarshalJSON(topicjsonout)
|
|
|
|
if topicjsonin != topicobj {
|
|
|
|
t.Fatalf("topic json unmarshal mismatch: %x != %x", topicjsonin, topicobj)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// test bit packing of message control flags
|
|
|
|
func TestMsgParams(t *testing.T) {
|
|
|
|
var ctrl byte
|
|
|
|
ctrl |= pssControlRaw
|
|
|
|
p := newMsgParamsFromBytes([]byte{ctrl})
|
|
|
|
m := newPssMsg(p)
|
|
|
|
if !m.isRaw() || m.isSym() {
|
|
|
|
t.Fatal("expected raw=true and sym=false")
|
|
|
|
}
|
|
|
|
ctrl |= pssControlSym
|
|
|
|
p = newMsgParamsFromBytes([]byte{ctrl})
|
|
|
|
m = newPssMsg(p)
|
|
|
|
if !m.isRaw() || !m.isSym() {
|
|
|
|
t.Fatal("expected raw=true and sym=true")
|
|
|
|
}
|
|
|
|
ctrl &= 0xff &^ pssControlRaw
|
|
|
|
p = newMsgParamsFromBytes([]byte{ctrl})
|
|
|
|
m = newPssMsg(p)
|
|
|
|
if m.isRaw() || !m.isSym() {
|
|
|
|
t.Fatal("expected raw=false and sym=true")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// test if we can insert into cache, match items with cache and cache expiry
|
|
|
|
func TestCache(t *testing.T) {
|
|
|
|
var err error
|
|
|
|
to, _ := hex.DecodeString("08090a0b0c0d0e0f1011121314150001020304050607161718191a1b1c1d1e1f")
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
|
|
|
|
defer cancel()
|
|
|
|
keys, err := wapi.NewKeyPair(ctx)
|
|
|
|
privkey, err := w.GetPrivateKey(keys)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
ps := newTestPss(privkey, nil, nil)
|
|
|
|
pp := NewPssParams().WithPrivateKey(privkey)
|
|
|
|
data := []byte("foo")
|
|
|
|
datatwo := []byte("bar")
|
|
|
|
datathree := []byte("baz")
|
|
|
|
wparams := &whisper.MessageParams{
|
|
|
|
TTL: defaultWhisperTTL,
|
|
|
|
Src: privkey,
|
|
|
|
Dst: &privkey.PublicKey,
|
|
|
|
Topic: whisper.TopicType(PingTopic),
|
|
|
|
WorkTime: defaultWhisperWorkTime,
|
|
|
|
PoW: defaultWhisperPoW,
|
|
|
|
Payload: data,
|
|
|
|
}
|
|
|
|
woutmsg, err := whisper.NewSentMessage(wparams)
|
|
|
|
env, err := woutmsg.Wrap(wparams)
|
|
|
|
msg := &PssMsg{
|
|
|
|
Payload: env,
|
|
|
|
To: to,
|
|
|
|
}
|
|
|
|
wparams.Payload = datatwo
|
|
|
|
woutmsg, err = whisper.NewSentMessage(wparams)
|
|
|
|
envtwo, err := woutmsg.Wrap(wparams)
|
|
|
|
msgtwo := &PssMsg{
|
|
|
|
Payload: envtwo,
|
|
|
|
To: to,
|
|
|
|
}
|
|
|
|
wparams.Payload = datathree
|
|
|
|
woutmsg, err = whisper.NewSentMessage(wparams)
|
|
|
|
envthree, err := woutmsg.Wrap(wparams)
|
|
|
|
msgthree := &PssMsg{
|
|
|
|
Payload: envthree,
|
|
|
|
To: to,
|
|
|
|
}
|
|
|
|
|
|
|
|
digest := ps.digest(msg)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("could not store cache msgone: %v", err)
|
|
|
|
}
|
|
|
|
digesttwo := ps.digest(msgtwo)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("could not store cache msgtwo: %v", err)
|
|
|
|
}
|
|
|
|
digestthree := ps.digest(msgthree)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("could not store cache msgthree: %v", err)
|
|
|
|
}
|
|
|
|
|
|
|
|
if digest == digesttwo {
|
|
|
|
t.Fatalf("different msgs return same hash: %d", digesttwo)
|
|
|
|
}
|
|
|
|
|
|
|
|
// check the cache
|
|
|
|
err = ps.addFwdCache(msg)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("write to pss expire cache failed: %v", err)
|
|
|
|
}
|
|
|
|
|
|
|
|
if !ps.checkFwdCache(msg) {
|
|
|
|
t.Fatalf("message %v should have EXPIRE record in cache but checkCache returned false", msg)
|
|
|
|
}
|
|
|
|
|
|
|
|
if ps.checkFwdCache(msgtwo) {
|
|
|
|
t.Fatalf("message %v should NOT have EXPIRE record in cache but checkCache returned true", msgtwo)
|
|
|
|
}
|
|
|
|
|
|
|
|
time.Sleep(pp.CacheTTL + 1*time.Second)
|
|
|
|
err = ps.addFwdCache(msgthree)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("write to pss expire cache failed: %v", err)
|
|
|
|
}
|
|
|
|
|
|
|
|
if ps.checkFwdCache(msg) {
|
|
|
|
t.Fatalf("message %v should have expired from cache but checkCache returned true", msg)
|
|
|
|
}
|
|
|
|
|
|
|
|
if _, ok := ps.fwdCache[digestthree]; !ok {
|
|
|
|
t.Fatalf("unexpired message should be in the cache: %v", digestthree)
|
|
|
|
}
|
|
|
|
|
|
|
|
if _, ok := ps.fwdCache[digesttwo]; ok {
|
|
|
|
t.Fatalf("expired message should have been cleared from the cache: %v", digesttwo)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// matching of address hints; whether a message could be or is for the node
|
|
|
|
func TestAddressMatch(t *testing.T) {
|
|
|
|
|
|
|
|
localaddr := network.RandomAddr().Over()
|
|
|
|
copy(localaddr[:8], []byte("deadbeef"))
|
|
|
|
remoteaddr := []byte("feedbeef")
|
|
|
|
kadparams := network.NewKadParams()
|
|
|
|
kad := network.NewKademlia(localaddr, kadparams)
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
|
|
|
|
defer cancel()
|
|
|
|
keys, err := wapi.NewKeyPair(ctx)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("Could not generate private key: %v", err)
|
|
|
|
}
|
|
|
|
privkey, err := w.GetPrivateKey(keys)
|
|
|
|
pssp := NewPssParams().WithPrivateKey(privkey)
|
|
|
|
ps, err := NewPss(kad, pssp)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err.Error())
|
|
|
|
}
|
|
|
|
|
|
|
|
pssmsg := &PssMsg{
|
|
|
|
To: remoteaddr,
|
|
|
|
Payload: &whisper.Envelope{},
|
|
|
|
}
|
|
|
|
|
|
|
|
// differ from first byte
|
|
|
|
if ps.isSelfRecipient(pssmsg) {
|
|
|
|
t.Fatalf("isSelfRecipient true but %x != %x", remoteaddr, localaddr)
|
|
|
|
}
|
|
|
|
if ps.isSelfPossibleRecipient(pssmsg) {
|
|
|
|
t.Fatalf("isSelfPossibleRecipient true but %x != %x", remoteaddr[:8], localaddr[:8])
|
|
|
|
}
|
|
|
|
|
|
|
|
// 8 first bytes same
|
|
|
|
copy(remoteaddr[:4], localaddr[:4])
|
|
|
|
if ps.isSelfRecipient(pssmsg) {
|
|
|
|
t.Fatalf("isSelfRecipient true but %x != %x", remoteaddr, localaddr)
|
|
|
|
}
|
|
|
|
if !ps.isSelfPossibleRecipient(pssmsg) {
|
|
|
|
t.Fatalf("isSelfPossibleRecipient false but %x == %x", remoteaddr[:8], localaddr[:8])
|
|
|
|
}
|
|
|
|
|
|
|
|
// all bytes same
|
|
|
|
pssmsg.To = localaddr
|
|
|
|
if !ps.isSelfRecipient(pssmsg) {
|
|
|
|
t.Fatalf("isSelfRecipient false but %x == %x", remoteaddr, localaddr)
|
|
|
|
}
|
|
|
|
if !ps.isSelfPossibleRecipient(pssmsg) {
|
|
|
|
t.Fatalf("isSelfPossibleRecipient false but %x == %x", remoteaddr[:8], localaddr[:8])
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
func TestHandlerConditions(t *testing.T) {
|
|
|
|
|
|
|
|
t.Skip("Disabled due to probable faulty logic for outbox expectations")
|
|
|
|
// setup
|
|
|
|
privkey, err := crypto.GenerateKey()
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err.Error())
|
|
|
|
}
|
|
|
|
|
|
|
|
addr := make([]byte, 32)
|
|
|
|
addr[0] = 0x01
|
|
|
|
ps := newTestPss(privkey, network.NewKademlia(addr, network.NewKadParams()), NewPssParams())
|
|
|
|
|
|
|
|
// message should pass
|
|
|
|
msg := &PssMsg{
|
|
|
|
To: addr,
|
|
|
|
Expire: uint32(time.Now().Add(time.Second * 60).Unix()),
|
|
|
|
Payload: &whisper.Envelope{
|
|
|
|
Topic: [4]byte{},
|
|
|
|
Data: []byte{0x66, 0x6f, 0x6f},
|
|
|
|
},
|
|
|
|
}
|
|
|
|
if err := ps.handlePssMsg(context.TODO(), msg); err != nil {
|
|
|
|
t.Fatal(err.Error())
|
|
|
|
}
|
|
|
|
tmr := time.NewTimer(time.Millisecond * 100)
|
|
|
|
var outmsg *PssMsg
|
|
|
|
select {
|
|
|
|
case outmsg = <-ps.outbox:
|
|
|
|
case <-tmr.C:
|
|
|
|
default:
|
|
|
|
}
|
|
|
|
if outmsg != nil {
|
|
|
|
t.Fatalf("expected outbox empty after full address on msg, but had message %s", msg)
|
|
|
|
}
|
|
|
|
|
|
|
|
// message should pass and queue due to partial length
|
|
|
|
msg.To = addr[0:1]
|
|
|
|
msg.Payload.Data = []byte{0x78, 0x79, 0x80, 0x80, 0x79}
|
|
|
|
if err := ps.handlePssMsg(context.TODO(), msg); err != nil {
|
|
|
|
t.Fatal(err.Error())
|
|
|
|
}
|
|
|
|
tmr.Reset(time.Millisecond * 100)
|
|
|
|
outmsg = nil
|
|
|
|
select {
|
|
|
|
case outmsg = <-ps.outbox:
|
|
|
|
case <-tmr.C:
|
|
|
|
}
|
|
|
|
if outmsg == nil {
|
|
|
|
t.Fatal("expected message in outbox on encrypt fail, but empty")
|
|
|
|
}
|
|
|
|
outmsg = nil
|
|
|
|
select {
|
|
|
|
case outmsg = <-ps.outbox:
|
|
|
|
default:
|
|
|
|
}
|
|
|
|
if outmsg != nil {
|
|
|
|
t.Fatalf("expected only one queued message but also had message %v", msg)
|
|
|
|
}
|
|
|
|
|
|
|
|
// full address mismatch should put message in queue
|
|
|
|
msg.To[0] = 0xff
|
|
|
|
if err := ps.handlePssMsg(context.TODO(), msg); err != nil {
|
|
|
|
t.Fatal(err.Error())
|
|
|
|
}
|
|
|
|
tmr.Reset(time.Millisecond * 10)
|
|
|
|
outmsg = nil
|
|
|
|
select {
|
|
|
|
case outmsg = <-ps.outbox:
|
|
|
|
case <-tmr.C:
|
|
|
|
}
|
|
|
|
if outmsg == nil {
|
|
|
|
t.Fatal("expected message in outbox on address mismatch, but empty")
|
|
|
|
}
|
|
|
|
outmsg = nil
|
|
|
|
select {
|
|
|
|
case outmsg = <-ps.outbox:
|
|
|
|
default:
|
|
|
|
}
|
|
|
|
if outmsg != nil {
|
|
|
|
t.Fatalf("expected only one queued message but also had message %v", msg)
|
|
|
|
}
|
|
|
|
|
|
|
|
// expired message should be dropped
|
|
|
|
msg.Expire = uint32(time.Now().Add(-time.Second).Unix())
|
|
|
|
if err := ps.handlePssMsg(context.TODO(), msg); err != nil {
|
|
|
|
t.Fatal(err.Error())
|
|
|
|
}
|
|
|
|
tmr.Reset(time.Millisecond * 10)
|
|
|
|
outmsg = nil
|
|
|
|
select {
|
|
|
|
case outmsg = <-ps.outbox:
|
|
|
|
case <-tmr.C:
|
|
|
|
default:
|
|
|
|
}
|
|
|
|
if outmsg != nil {
|
|
|
|
t.Fatalf("expected empty queue but have message %v", msg)
|
|
|
|
}
|
|
|
|
|
|
|
|
// invalid message should return error
|
|
|
|
fckedupmsg := &struct {
|
|
|
|
pssMsg *PssMsg
|
|
|
|
}{
|
|
|
|
pssMsg: &PssMsg{},
|
|
|
|
}
|
|
|
|
if err := ps.handlePssMsg(context.TODO(), fckedupmsg); err == nil {
|
|
|
|
t.Fatalf("expected error from processMsg but error nil")
|
|
|
|
}
|
|
|
|
|
|
|
|
// outbox full should return error
|
|
|
|
msg.Expire = uint32(time.Now().Add(time.Second * 60).Unix())
|
|
|
|
for i := 0; i < defaultOutboxCapacity; i++ {
|
|
|
|
ps.outbox <- msg
|
|
|
|
}
|
|
|
|
msg.Payload.Data = []byte{0x62, 0x61, 0x72}
|
|
|
|
err = ps.handlePssMsg(context.TODO(), msg)
|
|
|
|
if err == nil {
|
|
|
|
t.Fatal("expected error when mailbox full, but was nil")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// set and generate pubkeys and symkeys
|
|
|
|
func TestKeys(t *testing.T) {
|
|
|
|
// make our key and init pss with it
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
|
|
|
|
defer cancel()
|
|
|
|
ourkeys, err := wapi.NewKeyPair(ctx)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("create 'our' key fail")
|
|
|
|
}
|
|
|
|
ctx, cancel2 := context.WithTimeout(context.Background(), time.Second)
|
|
|
|
defer cancel2()
|
|
|
|
theirkeys, err := wapi.NewKeyPair(ctx)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("create 'their' key fail")
|
|
|
|
}
|
|
|
|
ourprivkey, err := w.GetPrivateKey(ourkeys)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("failed to retrieve 'our' private key")
|
|
|
|
}
|
|
|
|
theirprivkey, err := w.GetPrivateKey(theirkeys)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("failed to retrieve 'their' private key")
|
|
|
|
}
|
|
|
|
ps := newTestPss(ourprivkey, nil, nil)
|
|
|
|
|
|
|
|
// set up peer with mock address, mapped to mocked publicaddress and with mocked symkey
|
|
|
|
addr := make(PssAddress, 32)
|
|
|
|
copy(addr, network.RandomAddr().Over())
|
|
|
|
outkey := network.RandomAddr().Over()
|
|
|
|
topicobj := BytesToTopic([]byte("foo:42"))
|
|
|
|
ps.SetPeerPublicKey(&theirprivkey.PublicKey, topicobj, &addr)
|
|
|
|
outkeyid, err := ps.SetSymmetricKey(outkey, topicobj, &addr, false)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("failed to set 'our' outgoing symmetric key")
|
|
|
|
}
|
|
|
|
|
|
|
|
// make a symmetric key that we will send to peer for encrypting messages to us
|
|
|
|
inkeyid, err := ps.GenerateSymmetricKey(topicobj, &addr, true)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("failed to set 'our' incoming symmetric key")
|
|
|
|
}
|
|
|
|
|
|
|
|
// get the key back from whisper, check that it's still the same
|
|
|
|
outkeyback, err := ps.w.GetSymKey(outkeyid)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf(err.Error())
|
|
|
|
}
|
|
|
|
inkey, err := ps.w.GetSymKey(inkeyid)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf(err.Error())
|
|
|
|
}
|
|
|
|
if !bytes.Equal(outkeyback, outkey) {
|
|
|
|
t.Fatalf("passed outgoing symkey doesnt equal stored: %x / %x", outkey, outkeyback)
|
|
|
|
}
|
|
|
|
|
|
|
|
t.Logf("symout: %v", outkeyback)
|
|
|
|
t.Logf("symin: %v", inkey)
|
|
|
|
|
|
|
|
// check that the key is stored in the peerpool
|
|
|
|
psp := ps.symKeyPool[inkeyid][topicobj]
|
|
|
|
if psp.address != &addr {
|
|
|
|
t.Fatalf("inkey address does not match; %p != %p", psp.address, &addr)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func TestGetPublickeyEntries(t *testing.T) {
|
|
|
|
|
|
|
|
privkey, err := crypto.GenerateKey()
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
ps := newTestPss(privkey, nil, nil)
|
|
|
|
|
|
|
|
peeraddr := network.RandomAddr().Over()
|
|
|
|
topicaddr := make(map[Topic]PssAddress)
|
|
|
|
topicaddr[Topic{0x13}] = peeraddr
|
|
|
|
topicaddr[Topic{0x2a}] = peeraddr[:16]
|
|
|
|
topicaddr[Topic{0x02, 0x9a}] = []byte{}
|
|
|
|
|
|
|
|
remoteprivkey, err := crypto.GenerateKey()
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
remotepubkeybytes := crypto.FromECDSAPub(&remoteprivkey.PublicKey)
|
|
|
|
remotepubkeyhex := common.ToHex(remotepubkeybytes)
|
|
|
|
|
|
|
|
pssapi := NewAPI(ps)
|
|
|
|
|
|
|
|
for to, a := range topicaddr {
|
|
|
|
err = pssapi.SetPeerPublicKey(remotepubkeybytes, to, a)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
intopic, err := pssapi.GetPeerTopics(remotepubkeyhex)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
OUTER:
|
|
|
|
for _, tnew := range intopic {
|
|
|
|
for torig, addr := range topicaddr {
|
|
|
|
if bytes.Equal(torig[:], tnew[:]) {
|
|
|
|
inaddr, err := pssapi.GetPeerAddress(remotepubkeyhex, torig)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
if !bytes.Equal(addr, inaddr) {
|
|
|
|
t.Fatalf("Address mismatch for topic %x; got %x, expected %x", torig, inaddr, addr)
|
|
|
|
}
|
|
|
|
delete(topicaddr, torig)
|
|
|
|
continue OUTER
|
|
|
|
}
|
|
|
|
}
|
|
|
|
t.Fatalf("received topic %x did not match any existing topics", tnew)
|
|
|
|
}
|
|
|
|
|
|
|
|
if len(topicaddr) != 0 {
|
|
|
|
t.Fatalf("%d topics were not matched", len(topicaddr))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// forwarding should skip peers that do not have matching pss capabilities
|
|
|
|
func TestMismatch(t *testing.T) {
|
|
|
|
|
|
|
|
// create privkey for forwarder node
|
|
|
|
privkey, err := crypto.GenerateKey()
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
// initialize kad
|
|
|
|
baseaddr := network.RandomAddr()
|
|
|
|
kad := network.NewKademlia((baseaddr).Over(), network.NewKadParams())
|
|
|
|
rw := &p2p.MsgPipeRW{}
|
|
|
|
|
|
|
|
// one peer has a mismatching version of pss
|
|
|
|
wrongpssaddr := network.RandomAddr()
|
|
|
|
wrongpsscap := p2p.Cap{
|
|
|
|
Name: pssProtocolName,
|
|
|
|
Version: 0,
|
|
|
|
}
|
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.
Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.
The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.
* p2p/discover: port to p2p/enode
This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:
- Table.Lookup is not available anymore. It used to take a public key
as argument because v4 protocol requires one. Its replacement is
LookupRandom.
- Table.Resolve takes *enode.Node instead of NodeID. This is also for
v4 protocol compatibility because nodes cannot be looked up by ID
alone.
- Types Node and NodeID are gone. Further commits in the series will be
fixes all over the the codebase to deal with those removals.
* p2p: port to p2p/enode and discovery changes
This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.
New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.
* p2p/simulations, p2p/testing: port to p2p/enode
No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:
- testing.ProtocolSession tracks complete nodes, not just their IDs.
- adapters.NodeConfig has a new method to create a complete node.
These changes were needed to make swarm tests work.
Note that the NodeID change makes the code incompatible with old
simulation snapshots.
* whisper/whisperv5, whisper/whisperv6: port to p2p/enode
This port was easy because whisper uses []byte for node IDs and
URL strings in the API.
* eth: port to p2p/enode
Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.
* les: port to p2p/enode
Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.
* node: port to p2p/enode
This change simply replaces discover.Node and discover.NodeID with their
new equivalents.
* swarm/network: port to p2p/enode
Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).
There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.
Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
6 years ago
|
|
|
nid := enode.ID{0x01}
|
|
|
|
wrongpsspeer := network.NewPeer(&network.BzzPeer{
|
|
|
|
Peer: protocols.NewPeer(p2p.NewPeer(nid, common.ToHex(wrongpssaddr.Over()), []p2p.Cap{wrongpsscap}), rw, nil),
|
|
|
|
BzzAddr: &network.BzzAddr{OAddr: wrongpssaddr.Over(), UAddr: nil},
|
|
|
|
}, kad)
|
|
|
|
|
|
|
|
// one peer doesn't even have pss (boo!)
|
|
|
|
nopssaddr := network.RandomAddr()
|
|
|
|
nopsscap := p2p.Cap{
|
|
|
|
Name: "nopss",
|
|
|
|
Version: 1,
|
|
|
|
}
|
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.
Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.
The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.
* p2p/discover: port to p2p/enode
This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:
- Table.Lookup is not available anymore. It used to take a public key
as argument because v4 protocol requires one. Its replacement is
LookupRandom.
- Table.Resolve takes *enode.Node instead of NodeID. This is also for
v4 protocol compatibility because nodes cannot be looked up by ID
alone.
- Types Node and NodeID are gone. Further commits in the series will be
fixes all over the the codebase to deal with those removals.
* p2p: port to p2p/enode and discovery changes
This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.
New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.
* p2p/simulations, p2p/testing: port to p2p/enode
No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:
- testing.ProtocolSession tracks complete nodes, not just their IDs.
- adapters.NodeConfig has a new method to create a complete node.
These changes were needed to make swarm tests work.
Note that the NodeID change makes the code incompatible with old
simulation snapshots.
* whisper/whisperv5, whisper/whisperv6: port to p2p/enode
This port was easy because whisper uses []byte for node IDs and
URL strings in the API.
* eth: port to p2p/enode
Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.
* les: port to p2p/enode
Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.
* node: port to p2p/enode
This change simply replaces discover.Node and discover.NodeID with their
new equivalents.
* swarm/network: port to p2p/enode
Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).
There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.
Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
6 years ago
|
|
|
nid = enode.ID{0x02}
|
|
|
|
nopsspeer := network.NewPeer(&network.BzzPeer{
|
|
|
|
Peer: protocols.NewPeer(p2p.NewPeer(nid, common.ToHex(nopssaddr.Over()), []p2p.Cap{nopsscap}), rw, nil),
|
|
|
|
BzzAddr: &network.BzzAddr{OAddr: nopssaddr.Over(), UAddr: nil},
|
|
|
|
}, kad)
|
|
|
|
|
|
|
|
// add peers to kademlia and activate them
|
|
|
|
// it's safe so don't check errors
|
|
|
|
kad.Register(wrongpsspeer.BzzAddr)
|
|
|
|
kad.On(wrongpsspeer)
|
|
|
|
kad.Register(nopsspeer.BzzAddr)
|
|
|
|
kad.On(nopsspeer)
|
|
|
|
|
|
|
|
// create pss
|
|
|
|
pssmsg := &PssMsg{
|
|
|
|
To: []byte{},
|
|
|
|
Expire: uint32(time.Now().Add(time.Second).Unix()),
|
|
|
|
Payload: &whisper.Envelope{},
|
|
|
|
}
|
|
|
|
ps := newTestPss(privkey, kad, nil)
|
|
|
|
|
|
|
|
// run the forward
|
|
|
|
// it is enough that it completes; trying to send to incapable peers would create segfault
|
|
|
|
ps.forward(pssmsg)
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
func TestSendRaw(t *testing.T) {
|
|
|
|
t.Run("32", testSendRaw)
|
|
|
|
t.Run("8", testSendRaw)
|
|
|
|
t.Run("0", testSendRaw)
|
|
|
|
}
|
|
|
|
|
|
|
|
func testSendRaw(t *testing.T) {
|
|
|
|
|
|
|
|
var addrsize int64
|
|
|
|
var err error
|
|
|
|
|
|
|
|
paramstring := strings.Split(t.Name(), "/")
|
|
|
|
|
|
|
|
addrsize, _ = strconv.ParseInt(paramstring[1], 10, 0)
|
|
|
|
log.Info("raw send test", "addrsize", addrsize)
|
|
|
|
|
|
|
|
clients, err := setupNetwork(2, true)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
topic := "0xdeadbeef"
|
|
|
|
|
|
|
|
var loaddrhex string
|
|
|
|
err = clients[0].Call(&loaddrhex, "pss_baseAddr")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("rpc get node 1 baseaddr fail: %v", err)
|
|
|
|
}
|
|
|
|
loaddrhex = loaddrhex[:2+(addrsize*2)]
|
|
|
|
var roaddrhex string
|
|
|
|
err = clients[1].Call(&roaddrhex, "pss_baseAddr")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("rpc get node 2 baseaddr fail: %v", err)
|
|
|
|
}
|
|
|
|
roaddrhex = roaddrhex[:2+(addrsize*2)]
|
|
|
|
|
|
|
|
time.Sleep(time.Millisecond * 500)
|
|
|
|
|
|
|
|
// at this point we've verified that symkeys are saved and match on each peer
|
|
|
|
// now try sending symmetrically encrypted message, both directions
|
|
|
|
lmsgC := make(chan APIMsg)
|
|
|
|
lctx, lcancel := context.WithTimeout(context.Background(), time.Second*10)
|
|
|
|
defer lcancel()
|
|
|
|
lsub, err := clients[0].Subscribe(lctx, "pss", lmsgC, "receive", topic)
|
|
|
|
log.Trace("lsub", "id", lsub)
|
|
|
|
defer lsub.Unsubscribe()
|
|
|
|
rmsgC := make(chan APIMsg)
|
|
|
|
rctx, rcancel := context.WithTimeout(context.Background(), time.Second*10)
|
|
|
|
defer rcancel()
|
|
|
|
rsub, err := clients[1].Subscribe(rctx, "pss", rmsgC, "receive", topic)
|
|
|
|
log.Trace("rsub", "id", rsub)
|
|
|
|
defer rsub.Unsubscribe()
|
|
|
|
|
|
|
|
// send and verify delivery
|
|
|
|
lmsg := []byte("plugh")
|
|
|
|
err = clients[1].Call(nil, "pss_sendRaw", loaddrhex, topic, lmsg)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
select {
|
|
|
|
case recvmsg := <-lmsgC:
|
|
|
|
if !bytes.Equal(recvmsg.Msg, lmsg) {
|
|
|
|
t.Fatalf("node 1 received payload mismatch: expected %v, got %v", lmsg, recvmsg)
|
|
|
|
}
|
|
|
|
case cerr := <-lctx.Done():
|
|
|
|
t.Fatalf("test message (left) timed out: %v", cerr)
|
|
|
|
}
|
|
|
|
rmsg := []byte("xyzzy")
|
|
|
|
err = clients[0].Call(nil, "pss_sendRaw", roaddrhex, topic, rmsg)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
select {
|
|
|
|
case recvmsg := <-rmsgC:
|
|
|
|
if !bytes.Equal(recvmsg.Msg, rmsg) {
|
|
|
|
t.Fatalf("node 2 received payload mismatch: expected %x, got %v", rmsg, recvmsg.Msg)
|
|
|
|
}
|
|
|
|
case cerr := <-rctx.Done():
|
|
|
|
t.Fatalf("test message (right) timed out: %v", cerr)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// send symmetrically encrypted message between two directly connected peers
|
|
|
|
func TestSendSym(t *testing.T) {
|
|
|
|
t.Run("32", testSendSym)
|
|
|
|
t.Run("8", testSendSym)
|
|
|
|
t.Run("0", testSendSym)
|
|
|
|
}
|
|
|
|
|
|
|
|
func testSendSym(t *testing.T) {
|
|
|
|
|
|
|
|
// address hint size
|
|
|
|
var addrsize int64
|
|
|
|
var err error
|
|
|
|
paramstring := strings.Split(t.Name(), "/")
|
|
|
|
addrsize, _ = strconv.ParseInt(paramstring[1], 10, 0)
|
|
|
|
log.Info("sym send test", "addrsize", addrsize)
|
|
|
|
|
|
|
|
clients, err := setupNetwork(2, false)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
var topic string
|
|
|
|
err = clients[0].Call(&topic, "pss_stringToTopic", "foo:42")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
var loaddrhex string
|
|
|
|
err = clients[0].Call(&loaddrhex, "pss_baseAddr")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("rpc get node 1 baseaddr fail: %v", err)
|
|
|
|
}
|
|
|
|
loaddrhex = loaddrhex[:2+(addrsize*2)]
|
|
|
|
var roaddrhex string
|
|
|
|
err = clients[1].Call(&roaddrhex, "pss_baseAddr")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("rpc get node 2 baseaddr fail: %v", err)
|
|
|
|
}
|
|
|
|
roaddrhex = roaddrhex[:2+(addrsize*2)]
|
|
|
|
|
|
|
|
// retrieve public key from pss instance
|
|
|
|
// set this public key reciprocally
|
|
|
|
var lpubkeyhex string
|
|
|
|
err = clients[0].Call(&lpubkeyhex, "pss_getPublicKey")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("rpc get node 1 pubkey fail: %v", err)
|
|
|
|
}
|
|
|
|
var rpubkeyhex string
|
|
|
|
err = clients[1].Call(&rpubkeyhex, "pss_getPublicKey")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("rpc get node 2 pubkey fail: %v", err)
|
|
|
|
}
|
|
|
|
|
|
|
|
time.Sleep(time.Millisecond * 500)
|
|
|
|
|
|
|
|
// at this point we've verified that symkeys are saved and match on each peer
|
|
|
|
// now try sending symmetrically encrypted message, both directions
|
|
|
|
lmsgC := make(chan APIMsg)
|
|
|
|
lctx, lcancel := context.WithTimeout(context.Background(), time.Second*10)
|
|
|
|
defer lcancel()
|
|
|
|
lsub, err := clients[0].Subscribe(lctx, "pss", lmsgC, "receive", topic)
|
|
|
|
log.Trace("lsub", "id", lsub)
|
|
|
|
defer lsub.Unsubscribe()
|
|
|
|
rmsgC := make(chan APIMsg)
|
|
|
|
rctx, rcancel := context.WithTimeout(context.Background(), time.Second*10)
|
|
|
|
defer rcancel()
|
|
|
|
rsub, err := clients[1].Subscribe(rctx, "pss", rmsgC, "receive", topic)
|
|
|
|
log.Trace("rsub", "id", rsub)
|
|
|
|
defer rsub.Unsubscribe()
|
|
|
|
|
|
|
|
lrecvkey := network.RandomAddr().Over()
|
|
|
|
rrecvkey := network.RandomAddr().Over()
|
|
|
|
|
|
|
|
var lkeyids [2]string
|
|
|
|
var rkeyids [2]string
|
|
|
|
|
|
|
|
// manually set reciprocal symkeys
|
|
|
|
err = clients[0].Call(&lkeyids, "psstest_setSymKeys", rpubkeyhex, lrecvkey, rrecvkey, defaultSymKeySendLimit, topic, roaddrhex)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
err = clients[1].Call(&rkeyids, "psstest_setSymKeys", lpubkeyhex, rrecvkey, lrecvkey, defaultSymKeySendLimit, topic, loaddrhex)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
// send and verify delivery
|
|
|
|
lmsg := []byte("plugh")
|
|
|
|
err = clients[1].Call(nil, "pss_sendSym", rkeyids[1], topic, hexutil.Encode(lmsg))
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
select {
|
|
|
|
case recvmsg := <-lmsgC:
|
|
|
|
if !bytes.Equal(recvmsg.Msg, lmsg) {
|
|
|
|
t.Fatalf("node 1 received payload mismatch: expected %v, got %v", lmsg, recvmsg)
|
|
|
|
}
|
|
|
|
case cerr := <-lctx.Done():
|
|
|
|
t.Fatalf("test message timed out: %v", cerr)
|
|
|
|
}
|
|
|
|
rmsg := []byte("xyzzy")
|
|
|
|
err = clients[0].Call(nil, "pss_sendSym", lkeyids[1], topic, hexutil.Encode(rmsg))
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
select {
|
|
|
|
case recvmsg := <-rmsgC:
|
|
|
|
if !bytes.Equal(recvmsg.Msg, rmsg) {
|
|
|
|
t.Fatalf("node 2 received payload mismatch: expected %x, got %v", rmsg, recvmsg.Msg)
|
|
|
|
}
|
|
|
|
case cerr := <-rctx.Done():
|
|
|
|
t.Fatalf("test message timed out: %v", cerr)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// send asymmetrically encrypted message between two directly connected peers
|
|
|
|
func TestSendAsym(t *testing.T) {
|
|
|
|
t.Run("32", testSendAsym)
|
|
|
|
t.Run("8", testSendAsym)
|
|
|
|
t.Run("0", testSendAsym)
|
|
|
|
}
|
|
|
|
|
|
|
|
func testSendAsym(t *testing.T) {
|
|
|
|
|
|
|
|
// address hint size
|
|
|
|
var addrsize int64
|
|
|
|
var err error
|
|
|
|
paramstring := strings.Split(t.Name(), "/")
|
|
|
|
addrsize, _ = strconv.ParseInt(paramstring[1], 10, 0)
|
|
|
|
log.Info("asym send test", "addrsize", addrsize)
|
|
|
|
|
|
|
|
clients, err := setupNetwork(2, false)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
var topic string
|
|
|
|
err = clients[0].Call(&topic, "pss_stringToTopic", "foo:42")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
time.Sleep(time.Millisecond * 250)
|
|
|
|
|
|
|
|
var loaddrhex string
|
|
|
|
err = clients[0].Call(&loaddrhex, "pss_baseAddr")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("rpc get node 1 baseaddr fail: %v", err)
|
|
|
|
}
|
|
|
|
loaddrhex = loaddrhex[:2+(addrsize*2)]
|
|
|
|
var roaddrhex string
|
|
|
|
err = clients[1].Call(&roaddrhex, "pss_baseAddr")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("rpc get node 2 baseaddr fail: %v", err)
|
|
|
|
}
|
|
|
|
roaddrhex = roaddrhex[:2+(addrsize*2)]
|
|
|
|
|
|
|
|
// retrieve public key from pss instance
|
|
|
|
// set this public key reciprocally
|
|
|
|
var lpubkey string
|
|
|
|
err = clients[0].Call(&lpubkey, "pss_getPublicKey")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("rpc get node 1 pubkey fail: %v", err)
|
|
|
|
}
|
|
|
|
var rpubkey string
|
|
|
|
err = clients[1].Call(&rpubkey, "pss_getPublicKey")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("rpc get node 2 pubkey fail: %v", err)
|
|
|
|
}
|
|
|
|
|
|
|
|
time.Sleep(time.Millisecond * 500) // replace with hive healthy code
|
|
|
|
|
|
|
|
lmsgC := make(chan APIMsg)
|
|
|
|
lctx, lcancel := context.WithTimeout(context.Background(), time.Second*10)
|
|
|
|
defer lcancel()
|
|
|
|
lsub, err := clients[0].Subscribe(lctx, "pss", lmsgC, "receive", topic)
|
|
|
|
log.Trace("lsub", "id", lsub)
|
|
|
|
defer lsub.Unsubscribe()
|
|
|
|
rmsgC := make(chan APIMsg)
|
|
|
|
rctx, rcancel := context.WithTimeout(context.Background(), time.Second*10)
|
|
|
|
defer rcancel()
|
|
|
|
rsub, err := clients[1].Subscribe(rctx, "pss", rmsgC, "receive", topic)
|
|
|
|
log.Trace("rsub", "id", rsub)
|
|
|
|
defer rsub.Unsubscribe()
|
|
|
|
|
|
|
|
// store reciprocal public keys
|
|
|
|
err = clients[0].Call(nil, "pss_setPeerPublicKey", rpubkey, topic, roaddrhex)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
err = clients[1].Call(nil, "pss_setPeerPublicKey", lpubkey, topic, loaddrhex)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
// send and verify delivery
|
|
|
|
rmsg := []byte("xyzzy")
|
|
|
|
err = clients[0].Call(nil, "pss_sendAsym", rpubkey, topic, hexutil.Encode(rmsg))
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
select {
|
|
|
|
case recvmsg := <-rmsgC:
|
|
|
|
if !bytes.Equal(recvmsg.Msg, rmsg) {
|
|
|
|
t.Fatalf("node 2 received payload mismatch: expected %v, got %v", rmsg, recvmsg.Msg)
|
|
|
|
}
|
|
|
|
case cerr := <-rctx.Done():
|
|
|
|
t.Fatalf("test message timed out: %v", cerr)
|
|
|
|
}
|
|
|
|
lmsg := []byte("plugh")
|
|
|
|
err = clients[1].Call(nil, "pss_sendAsym", lpubkey, topic, hexutil.Encode(lmsg))
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
select {
|
|
|
|
case recvmsg := <-lmsgC:
|
|
|
|
if !bytes.Equal(recvmsg.Msg, lmsg) {
|
|
|
|
t.Fatalf("node 1 received payload mismatch: expected %v, got %v", lmsg, recvmsg.Msg)
|
|
|
|
}
|
|
|
|
case cerr := <-lctx.Done():
|
|
|
|
t.Fatalf("test message timed out: %v", cerr)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
type Job struct {
|
|
|
|
Msg []byte
|
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.
Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.
The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.
* p2p/discover: port to p2p/enode
This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:
- Table.Lookup is not available anymore. It used to take a public key
as argument because v4 protocol requires one. Its replacement is
LookupRandom.
- Table.Resolve takes *enode.Node instead of NodeID. This is also for
v4 protocol compatibility because nodes cannot be looked up by ID
alone.
- Types Node and NodeID are gone. Further commits in the series will be
fixes all over the the codebase to deal with those removals.
* p2p: port to p2p/enode and discovery changes
This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.
New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.
* p2p/simulations, p2p/testing: port to p2p/enode
No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:
- testing.ProtocolSession tracks complete nodes, not just their IDs.
- adapters.NodeConfig has a new method to create a complete node.
These changes were needed to make swarm tests work.
Note that the NodeID change makes the code incompatible with old
simulation snapshots.
* whisper/whisperv5, whisper/whisperv6: port to p2p/enode
This port was easy because whisper uses []byte for node IDs and
URL strings in the API.
* eth: port to p2p/enode
Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.
* les: port to p2p/enode
Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.
* node: port to p2p/enode
This change simply replaces discover.Node and discover.NodeID with their
new equivalents.
* swarm/network: port to p2p/enode
Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).
There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.
Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
6 years ago
|
|
|
SendNode enode.ID
|
|
|
|
RecvNode enode.ID
|
|
|
|
}
|
|
|
|
|
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.
Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.
The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.
* p2p/discover: port to p2p/enode
This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:
- Table.Lookup is not available anymore. It used to take a public key
as argument because v4 protocol requires one. Its replacement is
LookupRandom.
- Table.Resolve takes *enode.Node instead of NodeID. This is also for
v4 protocol compatibility because nodes cannot be looked up by ID
alone.
- Types Node and NodeID are gone. Further commits in the series will be
fixes all over the the codebase to deal with those removals.
* p2p: port to p2p/enode and discovery changes
This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.
New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.
* p2p/simulations, p2p/testing: port to p2p/enode
No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:
- testing.ProtocolSession tracks complete nodes, not just their IDs.
- adapters.NodeConfig has a new method to create a complete node.
These changes were needed to make swarm tests work.
Note that the NodeID change makes the code incompatible with old
simulation snapshots.
* whisper/whisperv5, whisper/whisperv6: port to p2p/enode
This port was easy because whisper uses []byte for node IDs and
URL strings in the API.
* eth: port to p2p/enode
Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.
* les: port to p2p/enode
Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.
* node: port to p2p/enode
This change simply replaces discover.Node and discover.NodeID with their
new equivalents.
* swarm/network: port to p2p/enode
Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).
There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.
Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
6 years ago
|
|
|
func worker(id int, jobs <-chan Job, rpcs map[enode.ID]*rpc.Client, pubkeys map[enode.ID]string, topic string) {
|
|
|
|
for j := range jobs {
|
|
|
|
rpcs[j.SendNode].Call(nil, "pss_sendAsym", pubkeys[j.RecvNode], topic, hexutil.Encode(j.Msg))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func TestNetwork(t *testing.T) {
|
|
|
|
t.Run("16/1000/4/sim", testNetwork)
|
|
|
|
}
|
|
|
|
|
|
|
|
// params in run name:
|
|
|
|
// nodes/msgs/addrbytes/adaptertype
|
|
|
|
// if adaptertype is exec uses execadapter, simadapter otherwise
|
|
|
|
func TestNetwork2000(t *testing.T) {
|
|
|
|
//enableMetrics()
|
|
|
|
|
|
|
|
if !*longrunning {
|
|
|
|
t.Skip("run with --longrunning flag to run extensive network tests")
|
|
|
|
}
|
|
|
|
t.Run("3/2000/4/sim", testNetwork)
|
|
|
|
t.Run("4/2000/4/sim", testNetwork)
|
|
|
|
t.Run("8/2000/4/sim", testNetwork)
|
|
|
|
t.Run("16/2000/4/sim", testNetwork)
|
|
|
|
}
|
|
|
|
|
|
|
|
func TestNetwork5000(t *testing.T) {
|
|
|
|
//enableMetrics()
|
|
|
|
|
|
|
|
if !*longrunning {
|
|
|
|
t.Skip("run with --longrunning flag to run extensive network tests")
|
|
|
|
}
|
|
|
|
t.Run("3/5000/4/sim", testNetwork)
|
|
|
|
t.Run("4/5000/4/sim", testNetwork)
|
|
|
|
t.Run("8/5000/4/sim", testNetwork)
|
|
|
|
t.Run("16/5000/4/sim", testNetwork)
|
|
|
|
}
|
|
|
|
|
|
|
|
func TestNetwork10000(t *testing.T) {
|
|
|
|
//enableMetrics()
|
|
|
|
|
|
|
|
if !*longrunning {
|
|
|
|
t.Skip("run with --longrunning flag to run extensive network tests")
|
|
|
|
}
|
|
|
|
t.Run("3/10000/4/sim", testNetwork)
|
|
|
|
t.Run("4/10000/4/sim", testNetwork)
|
|
|
|
t.Run("8/10000/4/sim", testNetwork)
|
|
|
|
}
|
|
|
|
|
|
|
|
func testNetwork(t *testing.T) {
|
|
|
|
type msgnotifyC struct {
|
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.
Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.
The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.
* p2p/discover: port to p2p/enode
This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:
- Table.Lookup is not available anymore. It used to take a public key
as argument because v4 protocol requires one. Its replacement is
LookupRandom.
- Table.Resolve takes *enode.Node instead of NodeID. This is also for
v4 protocol compatibility because nodes cannot be looked up by ID
alone.
- Types Node and NodeID are gone. Further commits in the series will be
fixes all over the the codebase to deal with those removals.
* p2p: port to p2p/enode and discovery changes
This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.
New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.
* p2p/simulations, p2p/testing: port to p2p/enode
No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:
- testing.ProtocolSession tracks complete nodes, not just their IDs.
- adapters.NodeConfig has a new method to create a complete node.
These changes were needed to make swarm tests work.
Note that the NodeID change makes the code incompatible with old
simulation snapshots.
* whisper/whisperv5, whisper/whisperv6: port to p2p/enode
This port was easy because whisper uses []byte for node IDs and
URL strings in the API.
* eth: port to p2p/enode
Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.
* les: port to p2p/enode
Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.
* node: port to p2p/enode
This change simply replaces discover.Node and discover.NodeID with their
new equivalents.
* swarm/network: port to p2p/enode
Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).
There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.
Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
6 years ago
|
|
|
id enode.ID
|
|
|
|
msgIdx int
|
|
|
|
}
|
|
|
|
|
|
|
|
paramstring := strings.Split(t.Name(), "/")
|
|
|
|
nodecount, _ := strconv.ParseInt(paramstring[1], 10, 0)
|
|
|
|
msgcount, _ := strconv.ParseInt(paramstring[2], 10, 0)
|
|
|
|
addrsize, _ := strconv.ParseInt(paramstring[3], 10, 0)
|
|
|
|
adapter := paramstring[4]
|
|
|
|
|
|
|
|
log.Info("network test", "nodecount", nodecount, "msgcount", msgcount, "addrhintsize", addrsize)
|
|
|
|
|
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.
Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.
The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.
* p2p/discover: port to p2p/enode
This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:
- Table.Lookup is not available anymore. It used to take a public key
as argument because v4 protocol requires one. Its replacement is
LookupRandom.
- Table.Resolve takes *enode.Node instead of NodeID. This is also for
v4 protocol compatibility because nodes cannot be looked up by ID
alone.
- Types Node and NodeID are gone. Further commits in the series will be
fixes all over the the codebase to deal with those removals.
* p2p: port to p2p/enode and discovery changes
This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.
New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.
* p2p/simulations, p2p/testing: port to p2p/enode
No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:
- testing.ProtocolSession tracks complete nodes, not just their IDs.
- adapters.NodeConfig has a new method to create a complete node.
These changes were needed to make swarm tests work.
Note that the NodeID change makes the code incompatible with old
simulation snapshots.
* whisper/whisperv5, whisper/whisperv6: port to p2p/enode
This port was easy because whisper uses []byte for node IDs and
URL strings in the API.
* eth: port to p2p/enode
Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.
* les: port to p2p/enode
Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.
* node: port to p2p/enode
This change simply replaces discover.Node and discover.NodeID with their
new equivalents.
* swarm/network: port to p2p/enode
Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).
There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.
Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
6 years ago
|
|
|
nodes := make([]enode.ID, nodecount)
|
|
|
|
bzzaddrs := make(map[enode.ID]string, nodecount)
|
|
|
|
rpcs := make(map[enode.ID]*rpc.Client, nodecount)
|
|
|
|
pubkeys := make(map[enode.ID]string, nodecount)
|
|
|
|
|
|
|
|
sentmsgs := make([][]byte, msgcount)
|
|
|
|
recvmsgs := make([]bool, msgcount)
|
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.
Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.
The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.
* p2p/discover: port to p2p/enode
This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:
- Table.Lookup is not available anymore. It used to take a public key
as argument because v4 protocol requires one. Its replacement is
LookupRandom.
- Table.Resolve takes *enode.Node instead of NodeID. This is also for
v4 protocol compatibility because nodes cannot be looked up by ID
alone.
- Types Node and NodeID are gone. Further commits in the series will be
fixes all over the the codebase to deal with those removals.
* p2p: port to p2p/enode and discovery changes
This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.
New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.
* p2p/simulations, p2p/testing: port to p2p/enode
No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:
- testing.ProtocolSession tracks complete nodes, not just their IDs.
- adapters.NodeConfig has a new method to create a complete node.
These changes were needed to make swarm tests work.
Note that the NodeID change makes the code incompatible with old
simulation snapshots.
* whisper/whisperv5, whisper/whisperv6: port to p2p/enode
This port was easy because whisper uses []byte for node IDs and
URL strings in the API.
* eth: port to p2p/enode
Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.
* les: port to p2p/enode
Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.
* node: port to p2p/enode
This change simply replaces discover.Node and discover.NodeID with their
new equivalents.
* swarm/network: port to p2p/enode
Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).
There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.
Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
6 years ago
|
|
|
nodemsgcount := make(map[enode.ID]int, nodecount)
|
|
|
|
|
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.
Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.
The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.
* p2p/discover: port to p2p/enode
This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:
- Table.Lookup is not available anymore. It used to take a public key
as argument because v4 protocol requires one. Its replacement is
LookupRandom.
- Table.Resolve takes *enode.Node instead of NodeID. This is also for
v4 protocol compatibility because nodes cannot be looked up by ID
alone.
- Types Node and NodeID are gone. Further commits in the series will be
fixes all over the the codebase to deal with those removals.
* p2p: port to p2p/enode and discovery changes
This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.
New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.
* p2p/simulations, p2p/testing: port to p2p/enode
No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:
- testing.ProtocolSession tracks complete nodes, not just their IDs.
- adapters.NodeConfig has a new method to create a complete node.
These changes were needed to make swarm tests work.
Note that the NodeID change makes the code incompatible with old
simulation snapshots.
* whisper/whisperv5, whisper/whisperv6: port to p2p/enode
This port was easy because whisper uses []byte for node IDs and
URL strings in the API.
* eth: port to p2p/enode
Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.
* les: port to p2p/enode
Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.
* node: port to p2p/enode
This change simply replaces discover.Node and discover.NodeID with their
new equivalents.
* swarm/network: port to p2p/enode
Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).
There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.
Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
6 years ago
|
|
|
trigger := make(chan enode.ID)
|
|
|
|
|
|
|
|
var a adapters.NodeAdapter
|
|
|
|
if adapter == "exec" {
|
|
|
|
dirname, err := ioutil.TempDir(".", "")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
a = adapters.NewExecAdapter(dirname)
|
|
|
|
} else if adapter == "tcp" {
|
|
|
|
a = adapters.NewTCPAdapter(newServices(false))
|
|
|
|
} else if adapter == "sim" {
|
|
|
|
a = adapters.NewSimAdapter(newServices(false))
|
|
|
|
}
|
|
|
|
net := simulations.NewNetwork(a, &simulations.NetworkConfig{
|
|
|
|
ID: "0",
|
|
|
|
})
|
|
|
|
defer net.Shutdown()
|
|
|
|
|
|
|
|
f, err := os.Open(fmt.Sprintf("testdata/snapshot_%d.json", nodecount))
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
jsonbyte, err := ioutil.ReadAll(f)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
var snap simulations.Snapshot
|
|
|
|
err = json.Unmarshal(jsonbyte, &snap)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
err = net.Load(&snap)
|
|
|
|
if err != nil {
|
|
|
|
//TODO: Fix p2p simulation framework to not crash when loading 32-nodes
|
|
|
|
//t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
time.Sleep(1 * time.Second)
|
|
|
|
|
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.
Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.
The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.
* p2p/discover: port to p2p/enode
This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:
- Table.Lookup is not available anymore. It used to take a public key
as argument because v4 protocol requires one. Its replacement is
LookupRandom.
- Table.Resolve takes *enode.Node instead of NodeID. This is also for
v4 protocol compatibility because nodes cannot be looked up by ID
alone.
- Types Node and NodeID are gone. Further commits in the series will be
fixes all over the the codebase to deal with those removals.
* p2p: port to p2p/enode and discovery changes
This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.
New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.
* p2p/simulations, p2p/testing: port to p2p/enode
No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:
- testing.ProtocolSession tracks complete nodes, not just their IDs.
- adapters.NodeConfig has a new method to create a complete node.
These changes were needed to make swarm tests work.
Note that the NodeID change makes the code incompatible with old
simulation snapshots.
* whisper/whisperv5, whisper/whisperv6: port to p2p/enode
This port was easy because whisper uses []byte for node IDs and
URL strings in the API.
* eth: port to p2p/enode
Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.
* les: port to p2p/enode
Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.
* node: port to p2p/enode
This change simply replaces discover.Node and discover.NodeID with their
new equivalents.
* swarm/network: port to p2p/enode
Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).
There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.
Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
6 years ago
|
|
|
triggerChecks := func(trigger chan enode.ID, id enode.ID, rpcclient *rpc.Client, topic string) error {
|
|
|
|
msgC := make(chan APIMsg)
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)
|
|
|
|
defer cancel()
|
|
|
|
sub, err := rpcclient.Subscribe(ctx, "pss", msgC, "receive", topic)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
go func() {
|
|
|
|
defer sub.Unsubscribe()
|
|
|
|
for {
|
|
|
|
select {
|
|
|
|
case recvmsg := <-msgC:
|
|
|
|
idx, _ := binary.Uvarint(recvmsg.Msg)
|
|
|
|
if !recvmsgs[idx] {
|
|
|
|
log.Debug("msg recv", "idx", idx, "id", id)
|
|
|
|
recvmsgs[idx] = true
|
|
|
|
trigger <- id
|
|
|
|
}
|
|
|
|
case <-sub.Err():
|
|
|
|
return
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}()
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
var topic string
|
|
|
|
for i, nod := range net.GetNodes() {
|
|
|
|
nodes[i] = nod.ID()
|
|
|
|
rpcs[nodes[i]], err = nod.Client()
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
if topic == "" {
|
|
|
|
err = rpcs[nodes[i]].Call(&topic, "pss_stringToTopic", "foo:42")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
var pubkey string
|
|
|
|
err = rpcs[nodes[i]].Call(&pubkey, "pss_getPublicKey")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
pubkeys[nod.ID()] = pubkey
|
|
|
|
var addrhex string
|
|
|
|
err = rpcs[nodes[i]].Call(&addrhex, "pss_baseAddr")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
bzzaddrs[nodes[i]] = addrhex
|
|
|
|
err = triggerChecks(trigger, nodes[i], rpcs[nodes[i]], topic)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
time.Sleep(1 * time.Second)
|
|
|
|
|
|
|
|
// setup workers
|
|
|
|
jobs := make(chan Job, 10)
|
|
|
|
for w := 1; w <= 10; w++ {
|
|
|
|
go worker(w, jobs, rpcs, pubkeys, topic)
|
|
|
|
}
|
|
|
|
|
|
|
|
time.Sleep(1 * time.Second)
|
|
|
|
|
|
|
|
for i := 0; i < int(msgcount); i++ {
|
|
|
|
sendnodeidx := rand.Intn(int(nodecount))
|
|
|
|
recvnodeidx := rand.Intn(int(nodecount - 1))
|
|
|
|
if recvnodeidx >= sendnodeidx {
|
|
|
|
recvnodeidx++
|
|
|
|
}
|
|
|
|
nodemsgcount[nodes[recvnodeidx]]++
|
|
|
|
sentmsgs[i] = make([]byte, 8)
|
|
|
|
c := binary.PutUvarint(sentmsgs[i], uint64(i))
|
|
|
|
if c == 0 {
|
|
|
|
t.Fatal("0 byte message")
|
|
|
|
}
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
err = rpcs[nodes[sendnodeidx]].Call(nil, "pss_setPeerPublicKey", pubkeys[nodes[recvnodeidx]], topic, bzzaddrs[nodes[recvnodeidx]])
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
jobs <- Job{
|
|
|
|
Msg: sentmsgs[i],
|
|
|
|
SendNode: nodes[sendnodeidx],
|
|
|
|
RecvNode: nodes[recvnodeidx],
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
finalmsgcount := 0
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), 120*time.Second)
|
|
|
|
defer cancel()
|
|
|
|
outer:
|
|
|
|
for i := 0; i < int(msgcount); i++ {
|
|
|
|
select {
|
|
|
|
case id := <-trigger:
|
|
|
|
nodemsgcount[id]--
|
|
|
|
finalmsgcount++
|
|
|
|
case <-ctx.Done():
|
|
|
|
log.Warn("timeout")
|
|
|
|
break outer
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for i, msg := range recvmsgs {
|
|
|
|
if !msg {
|
|
|
|
log.Debug("missing message", "idx", i)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
t.Logf("%d of %d messages received", finalmsgcount, msgcount)
|
|
|
|
|
|
|
|
if finalmsgcount != int(msgcount) {
|
|
|
|
t.Fatalf("%d messages were not received", int(msgcount)-finalmsgcount)
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// check that in a network of a -> b -> c -> a
|
|
|
|
// a doesn't receive a sent message twice
|
|
|
|
func TestDeduplication(t *testing.T) {
|
|
|
|
var err error
|
|
|
|
|
|
|
|
clients, err := setupNetwork(3, false)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
var addrsize = 32
|
|
|
|
var loaddrhex string
|
|
|
|
err = clients[0].Call(&loaddrhex, "pss_baseAddr")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("rpc get node 1 baseaddr fail: %v", err)
|
|
|
|
}
|
|
|
|
loaddrhex = loaddrhex[:2+(addrsize*2)]
|
|
|
|
var roaddrhex string
|
|
|
|
err = clients[1].Call(&roaddrhex, "pss_baseAddr")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("rpc get node 2 baseaddr fail: %v", err)
|
|
|
|
}
|
|
|
|
roaddrhex = roaddrhex[:2+(addrsize*2)]
|
|
|
|
var xoaddrhex string
|
|
|
|
err = clients[2].Call(&xoaddrhex, "pss_baseAddr")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("rpc get node 3 baseaddr fail: %v", err)
|
|
|
|
}
|
|
|
|
xoaddrhex = xoaddrhex[:2+(addrsize*2)]
|
|
|
|
|
|
|
|
log.Info("peer", "l", loaddrhex, "r", roaddrhex, "x", xoaddrhex)
|
|
|
|
|
|
|
|
var topic string
|
|
|
|
err = clients[0].Call(&topic, "pss_stringToTopic", "foo:42")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
time.Sleep(time.Millisecond * 250)
|
|
|
|
|
|
|
|
// retrieve public key from pss instance
|
|
|
|
// set this public key reciprocally
|
|
|
|
var rpubkey string
|
|
|
|
err = clients[1].Call(&rpubkey, "pss_getPublicKey")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("rpc get receivenode pubkey fail: %v", err)
|
|
|
|
}
|
|
|
|
|
|
|
|
time.Sleep(time.Millisecond * 500) // replace with hive healthy code
|
|
|
|
|
|
|
|
rmsgC := make(chan APIMsg)
|
|
|
|
rctx, cancel := context.WithTimeout(context.Background(), time.Second*1)
|
|
|
|
defer cancel()
|
|
|
|
rsub, err := clients[1].Subscribe(rctx, "pss", rmsgC, "receive", topic)
|
|
|
|
log.Trace("rsub", "id", rsub)
|
|
|
|
defer rsub.Unsubscribe()
|
|
|
|
|
|
|
|
// store public key for recipient
|
|
|
|
// zero-length address means forward to all
|
|
|
|
// we have just two peers, they will be in proxbin, and will both receive
|
|
|
|
err = clients[0].Call(nil, "pss_setPeerPublicKey", rpubkey, topic, "0x")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
// send and verify delivery
|
|
|
|
rmsg := []byte("xyzzy")
|
|
|
|
err = clients[0].Call(nil, "pss_sendAsym", rpubkey, topic, hexutil.Encode(rmsg))
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
var receivedok bool
|
|
|
|
OUTER:
|
|
|
|
for {
|
|
|
|
select {
|
|
|
|
case <-rmsgC:
|
|
|
|
if receivedok {
|
|
|
|
t.Fatalf("duplicate message received")
|
|
|
|
}
|
|
|
|
receivedok = true
|
|
|
|
case <-rctx.Done():
|
|
|
|
break OUTER
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if !receivedok {
|
|
|
|
t.Fatalf("message did not arrive")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// symmetric send performance with varying message sizes
|
|
|
|
func BenchmarkSymkeySend(b *testing.B) {
|
|
|
|
b.Run(fmt.Sprintf("%d", 256), benchmarkSymKeySend)
|
|
|
|
b.Run(fmt.Sprintf("%d", 1024), benchmarkSymKeySend)
|
|
|
|
b.Run(fmt.Sprintf("%d", 1024*1024), benchmarkSymKeySend)
|
|
|
|
b.Run(fmt.Sprintf("%d", 1024*1024*10), benchmarkSymKeySend)
|
|
|
|
b.Run(fmt.Sprintf("%d", 1024*1024*100), benchmarkSymKeySend)
|
|
|
|
}
|
|
|
|
|
|
|
|
func benchmarkSymKeySend(b *testing.B) {
|
|
|
|
msgsizestring := strings.Split(b.Name(), "/")
|
|
|
|
if len(msgsizestring) != 2 {
|
|
|
|
b.Fatalf("benchmark called without msgsize param")
|
|
|
|
}
|
|
|
|
msgsize, err := strconv.ParseInt(msgsizestring[1], 10, 0)
|
|
|
|
if err != nil {
|
|
|
|
b.Fatalf("benchmark called with invalid msgsize param '%s': %v", msgsizestring[1], err)
|
|
|
|
}
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
|
|
|
|
defer cancel()
|
|
|
|
keys, err := wapi.NewKeyPair(ctx)
|
|
|
|
privkey, err := w.GetPrivateKey(keys)
|
|
|
|
ps := newTestPss(privkey, nil, nil)
|
|
|
|
msg := make([]byte, msgsize)
|
|
|
|
rand.Read(msg)
|
|
|
|
topic := BytesToTopic([]byte("foo"))
|
|
|
|
to := make(PssAddress, 32)
|
|
|
|
copy(to[:], network.RandomAddr().Over())
|
|
|
|
symkeyid, err := ps.GenerateSymmetricKey(topic, &to, true)
|
|
|
|
if err != nil {
|
|
|
|
b.Fatalf("could not generate symkey: %v", err)
|
|
|
|
}
|
|
|
|
symkey, err := ps.w.GetSymKey(symkeyid)
|
|
|
|
if err != nil {
|
|
|
|
b.Fatalf("could not retrieve symkey: %v", err)
|
|
|
|
}
|
|
|
|
ps.SetSymmetricKey(symkey, topic, &to, false)
|
|
|
|
|
|
|
|
b.ResetTimer()
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
|
ps.SendSym(symkeyid, topic, msg)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// asymmetric send performance with varying message sizes
|
|
|
|
func BenchmarkAsymkeySend(b *testing.B) {
|
|
|
|
b.Run(fmt.Sprintf("%d", 256), benchmarkAsymKeySend)
|
|
|
|
b.Run(fmt.Sprintf("%d", 1024), benchmarkAsymKeySend)
|
|
|
|
b.Run(fmt.Sprintf("%d", 1024*1024), benchmarkAsymKeySend)
|
|
|
|
b.Run(fmt.Sprintf("%d", 1024*1024*10), benchmarkAsymKeySend)
|
|
|
|
b.Run(fmt.Sprintf("%d", 1024*1024*100), benchmarkAsymKeySend)
|
|
|
|
}
|
|
|
|
|
|
|
|
func benchmarkAsymKeySend(b *testing.B) {
|
|
|
|
msgsizestring := strings.Split(b.Name(), "/")
|
|
|
|
if len(msgsizestring) != 2 {
|
|
|
|
b.Fatalf("benchmark called without msgsize param")
|
|
|
|
}
|
|
|
|
msgsize, err := strconv.ParseInt(msgsizestring[1], 10, 0)
|
|
|
|
if err != nil {
|
|
|
|
b.Fatalf("benchmark called with invalid msgsize param '%s': %v", msgsizestring[1], err)
|
|
|
|
}
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
|
|
|
|
defer cancel()
|
|
|
|
keys, err := wapi.NewKeyPair(ctx)
|
|
|
|
privkey, err := w.GetPrivateKey(keys)
|
|
|
|
ps := newTestPss(privkey, nil, nil)
|
|
|
|
msg := make([]byte, msgsize)
|
|
|
|
rand.Read(msg)
|
|
|
|
topic := BytesToTopic([]byte("foo"))
|
|
|
|
to := make(PssAddress, 32)
|
|
|
|
copy(to[:], network.RandomAddr().Over())
|
|
|
|
ps.SetPeerPublicKey(&privkey.PublicKey, topic, &to)
|
|
|
|
b.ResetTimer()
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
|
ps.SendAsym(common.ToHex(crypto.FromECDSAPub(&privkey.PublicKey)), topic, msg)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
func BenchmarkSymkeyBruteforceChangeaddr(b *testing.B) {
|
|
|
|
for i := 100; i < 100000; i = i * 10 {
|
|
|
|
for j := 32; j < 10000; j = j * 8 {
|
|
|
|
b.Run(fmt.Sprintf("%d/%d", i, j), benchmarkSymkeyBruteforceChangeaddr)
|
|
|
|
}
|
|
|
|
//b.Run(fmt.Sprintf("%d", i), benchmarkSymkeyBruteforceChangeaddr)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// decrypt performance using symkey cache, worst case
|
|
|
|
// (decrypt key always last in cache)
|
|
|
|
func benchmarkSymkeyBruteforceChangeaddr(b *testing.B) {
|
|
|
|
keycountstring := strings.Split(b.Name(), "/")
|
|
|
|
cachesize := int64(0)
|
|
|
|
var ps *Pss
|
|
|
|
if len(keycountstring) < 2 {
|
|
|
|
b.Fatalf("benchmark called without count param")
|
|
|
|
}
|
|
|
|
keycount, err := strconv.ParseInt(keycountstring[1], 10, 0)
|
|
|
|
if err != nil {
|
|
|
|
b.Fatalf("benchmark called with invalid count param '%s': %v", keycountstring[1], err)
|
|
|
|
}
|
|
|
|
if len(keycountstring) == 3 {
|
|
|
|
cachesize, err = strconv.ParseInt(keycountstring[2], 10, 0)
|
|
|
|
if err != nil {
|
|
|
|
b.Fatalf("benchmark called with invalid cachesize '%s': %v", keycountstring[2], err)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pssmsgs := make([]*PssMsg, 0, keycount)
|
|
|
|
var keyid string
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
|
|
|
|
defer cancel()
|
|
|
|
keys, err := wapi.NewKeyPair(ctx)
|
|
|
|
privkey, err := w.GetPrivateKey(keys)
|
|
|
|
if cachesize > 0 {
|
|
|
|
ps = newTestPss(privkey, nil, &PssParams{SymKeyCacheCapacity: int(cachesize)})
|
|
|
|
} else {
|
|
|
|
ps = newTestPss(privkey, nil, nil)
|
|
|
|
}
|
|
|
|
topic := BytesToTopic([]byte("foo"))
|
|
|
|
for i := 0; i < int(keycount); i++ {
|
|
|
|
to := make(PssAddress, 32)
|
|
|
|
copy(to[:], network.RandomAddr().Over())
|
|
|
|
keyid, err = ps.GenerateSymmetricKey(topic, &to, true)
|
|
|
|
if err != nil {
|
|
|
|
b.Fatalf("cant generate symkey #%d: %v", i, err)
|
|
|
|
}
|
|
|
|
symkey, err := ps.w.GetSymKey(keyid)
|
|
|
|
if err != nil {
|
|
|
|
b.Fatalf("could not retrieve symkey %s: %v", keyid, err)
|
|
|
|
}
|
|
|
|
wparams := &whisper.MessageParams{
|
|
|
|
TTL: defaultWhisperTTL,
|
|
|
|
KeySym: symkey,
|
|
|
|
Topic: whisper.TopicType(topic),
|
|
|
|
WorkTime: defaultWhisperWorkTime,
|
|
|
|
PoW: defaultWhisperPoW,
|
|
|
|
Payload: []byte("xyzzy"),
|
|
|
|
Padding: []byte("1234567890abcdef"),
|
|
|
|
}
|
|
|
|
woutmsg, err := whisper.NewSentMessage(wparams)
|
|
|
|
if err != nil {
|
|
|
|
b.Fatalf("could not create whisper message: %v", err)
|
|
|
|
}
|
|
|
|
env, err := woutmsg.Wrap(wparams)
|
|
|
|
if err != nil {
|
|
|
|
b.Fatalf("could not generate whisper envelope: %v", err)
|
|
|
|
}
|
|
|
|
ps.Register(&topic, func(msg []byte, p *p2p.Peer, asymmetric bool, keyid string) error {
|
|
|
|
return nil
|
|
|
|
})
|
|
|
|
pssmsgs = append(pssmsgs, &PssMsg{
|
|
|
|
To: to,
|
|
|
|
Payload: env,
|
|
|
|
})
|
|
|
|
}
|
|
|
|
b.ResetTimer()
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
|
if err := ps.process(pssmsgs[len(pssmsgs)-(i%len(pssmsgs))-1]); err != nil {
|
|
|
|
b.Fatalf("pss processing failed: %v", err)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func BenchmarkSymkeyBruteforceSameaddr(b *testing.B) {
|
|
|
|
for i := 100; i < 100000; i = i * 10 {
|
|
|
|
for j := 32; j < 10000; j = j * 8 {
|
|
|
|
b.Run(fmt.Sprintf("%d/%d", i, j), benchmarkSymkeyBruteforceSameaddr)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// decrypt performance using symkey cache, best case
|
|
|
|
// (decrypt key always first in cache)
|
|
|
|
func benchmarkSymkeyBruteforceSameaddr(b *testing.B) {
|
|
|
|
var keyid string
|
|
|
|
var ps *Pss
|
|
|
|
cachesize := int64(0)
|
|
|
|
keycountstring := strings.Split(b.Name(), "/")
|
|
|
|
if len(keycountstring) < 2 {
|
|
|
|
b.Fatalf("benchmark called without count param")
|
|
|
|
}
|
|
|
|
keycount, err := strconv.ParseInt(keycountstring[1], 10, 0)
|
|
|
|
if err != nil {
|
|
|
|
b.Fatalf("benchmark called with invalid count param '%s': %v", keycountstring[1], err)
|
|
|
|
}
|
|
|
|
if len(keycountstring) == 3 {
|
|
|
|
cachesize, err = strconv.ParseInt(keycountstring[2], 10, 0)
|
|
|
|
if err != nil {
|
|
|
|
b.Fatalf("benchmark called with invalid cachesize '%s': %v", keycountstring[2], err)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
addr := make([]PssAddress, keycount)
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
|
|
|
|
defer cancel()
|
|
|
|
keys, err := wapi.NewKeyPair(ctx)
|
|
|
|
privkey, err := w.GetPrivateKey(keys)
|
|
|
|
if cachesize > 0 {
|
|
|
|
ps = newTestPss(privkey, nil, &PssParams{SymKeyCacheCapacity: int(cachesize)})
|
|
|
|
} else {
|
|
|
|
ps = newTestPss(privkey, nil, nil)
|
|
|
|
}
|
|
|
|
topic := BytesToTopic([]byte("foo"))
|
|
|
|
for i := 0; i < int(keycount); i++ {
|
|
|
|
copy(addr[i], network.RandomAddr().Over())
|
|
|
|
keyid, err = ps.GenerateSymmetricKey(topic, &addr[i], true)
|
|
|
|
if err != nil {
|
|
|
|
b.Fatalf("cant generate symkey #%d: %v", i, err)
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
symkey, err := ps.w.GetSymKey(keyid)
|
|
|
|
if err != nil {
|
|
|
|
b.Fatalf("could not retrieve symkey %s: %v", keyid, err)
|
|
|
|
}
|
|
|
|
wparams := &whisper.MessageParams{
|
|
|
|
TTL: defaultWhisperTTL,
|
|
|
|
KeySym: symkey,
|
|
|
|
Topic: whisper.TopicType(topic),
|
|
|
|
WorkTime: defaultWhisperWorkTime,
|
|
|
|
PoW: defaultWhisperPoW,
|
|
|
|
Payload: []byte("xyzzy"),
|
|
|
|
Padding: []byte("1234567890abcdef"),
|
|
|
|
}
|
|
|
|
woutmsg, err := whisper.NewSentMessage(wparams)
|
|
|
|
if err != nil {
|
|
|
|
b.Fatalf("could not create whisper message: %v", err)
|
|
|
|
}
|
|
|
|
env, err := woutmsg.Wrap(wparams)
|
|
|
|
if err != nil {
|
|
|
|
b.Fatalf("could not generate whisper envelope: %v", err)
|
|
|
|
}
|
|
|
|
ps.Register(&topic, func(msg []byte, p *p2p.Peer, asymmetric bool, keyid string) error {
|
|
|
|
return nil
|
|
|
|
})
|
|
|
|
pssmsg := &PssMsg{
|
|
|
|
To: addr[len(addr)-1][:],
|
|
|
|
Payload: env,
|
|
|
|
}
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
|
if err := ps.process(pssmsg); err != nil {
|
|
|
|
b.Fatalf("pss processing failed: %v", err)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// setup simulated network with bzz/discovery and pss services.
|
|
|
|
// connects nodes in a circle
|
|
|
|
// if allowRaw is set, omission of builtin pss encryption is enabled (see PssParams)
|
|
|
|
func setupNetwork(numnodes int, allowRaw bool) (clients []*rpc.Client, err error) {
|
|
|
|
nodes := make([]*simulations.Node, numnodes)
|
|
|
|
clients = make([]*rpc.Client, numnodes)
|
|
|
|
if numnodes < 2 {
|
|
|
|
return nil, fmt.Errorf("Minimum two nodes in network")
|
|
|
|
}
|
|
|
|
adapter := adapters.NewSimAdapter(newServices(allowRaw))
|
|
|
|
net := simulations.NewNetwork(adapter, &simulations.NetworkConfig{
|
|
|
|
ID: "0",
|
|
|
|
DefaultService: "bzz",
|
|
|
|
})
|
|
|
|
for i := 0; i < numnodes; i++ {
|
|
|
|
nodeconf := adapters.RandomNodeConfig()
|
|
|
|
nodeconf.Services = []string{"bzz", pssProtocolName}
|
|
|
|
nodes[i], err = net.NewNodeWithConfig(nodeconf)
|
|
|
|
if err != nil {
|
|
|
|
return nil, fmt.Errorf("error creating node 1: %v", err)
|
|
|
|
}
|
|
|
|
err = net.Start(nodes[i].ID())
|
|
|
|
if err != nil {
|
|
|
|
return nil, fmt.Errorf("error starting node 1: %v", err)
|
|
|
|
}
|
|
|
|
if i > 0 {
|
|
|
|
err = net.Connect(nodes[i].ID(), nodes[i-1].ID())
|
|
|
|
if err != nil {
|
|
|
|
return nil, fmt.Errorf("error connecting nodes: %v", err)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
clients[i], err = nodes[i].Client()
|
|
|
|
if err != nil {
|
|
|
|
return nil, fmt.Errorf("create node 1 rpc client fail: %v", err)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if numnodes > 2 {
|
|
|
|
err = net.Connect(nodes[0].ID(), nodes[len(nodes)-1].ID())
|
|
|
|
if err != nil {
|
|
|
|
return nil, fmt.Errorf("error connecting first and last nodes")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return clients, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func newServices(allowRaw bool) adapters.Services {
|
|
|
|
stateStore := state.NewInmemoryStore()
|
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.
Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.
The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.
* p2p/discover: port to p2p/enode
This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:
- Table.Lookup is not available anymore. It used to take a public key
as argument because v4 protocol requires one. Its replacement is
LookupRandom.
- Table.Resolve takes *enode.Node instead of NodeID. This is also for
v4 protocol compatibility because nodes cannot be looked up by ID
alone.
- Types Node and NodeID are gone. Further commits in the series will be
fixes all over the the codebase to deal with those removals.
* p2p: port to p2p/enode and discovery changes
This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.
New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.
* p2p/simulations, p2p/testing: port to p2p/enode
No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:
- testing.ProtocolSession tracks complete nodes, not just their IDs.
- adapters.NodeConfig has a new method to create a complete node.
These changes were needed to make swarm tests work.
Note that the NodeID change makes the code incompatible with old
simulation snapshots.
* whisper/whisperv5, whisper/whisperv6: port to p2p/enode
This port was easy because whisper uses []byte for node IDs and
URL strings in the API.
* eth: port to p2p/enode
Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.
* les: port to p2p/enode
Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.
* node: port to p2p/enode
This change simply replaces discover.Node and discover.NodeID with their
new equivalents.
* swarm/network: port to p2p/enode
Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).
There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.
Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
6 years ago
|
|
|
kademlias := make(map[enode.ID]*network.Kademlia)
|
|
|
|
kademlia := func(id enode.ID) *network.Kademlia {
|
|
|
|
if k, ok := kademlias[id]; ok {
|
|
|
|
return k
|
|
|
|
}
|
|
|
|
params := network.NewKadParams()
|
|
|
|
params.MinProxBinSize = 2
|
|
|
|
params.MaxBinSize = 3
|
|
|
|
params.MinBinSize = 1
|
|
|
|
params.MaxRetries = 1000
|
|
|
|
params.RetryExponent = 2
|
|
|
|
params.RetryInterval = 1000000
|
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.
Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.
The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.
* p2p/discover: port to p2p/enode
This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:
- Table.Lookup is not available anymore. It used to take a public key
as argument because v4 protocol requires one. Its replacement is
LookupRandom.
- Table.Resolve takes *enode.Node instead of NodeID. This is also for
v4 protocol compatibility because nodes cannot be looked up by ID
alone.
- Types Node and NodeID are gone. Further commits in the series will be
fixes all over the the codebase to deal with those removals.
* p2p: port to p2p/enode and discovery changes
This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.
New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.
* p2p/simulations, p2p/testing: port to p2p/enode
No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:
- testing.ProtocolSession tracks complete nodes, not just their IDs.
- adapters.NodeConfig has a new method to create a complete node.
These changes were needed to make swarm tests work.
Note that the NodeID change makes the code incompatible with old
simulation snapshots.
* whisper/whisperv5, whisper/whisperv6: port to p2p/enode
This port was easy because whisper uses []byte for node IDs and
URL strings in the API.
* eth: port to p2p/enode
Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.
* les: port to p2p/enode
Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.
* node: port to p2p/enode
This change simply replaces discover.Node and discover.NodeID with their
new equivalents.
* swarm/network: port to p2p/enode
Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).
There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.
Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
6 years ago
|
|
|
kademlias[id] = network.NewKademlia(id[:], params)
|
|
|
|
return kademlias[id]
|
|
|
|
}
|
|
|
|
return adapters.Services{
|
|
|
|
pssProtocolName: func(ctx *adapters.ServiceContext) (node.Service, error) {
|
|
|
|
// execadapter does not exec init()
|
|
|
|
initTest()
|
|
|
|
|
|
|
|
ctxlocal, cancel := context.WithTimeout(context.Background(), time.Second)
|
|
|
|
defer cancel()
|
|
|
|
keys, err := wapi.NewKeyPair(ctxlocal)
|
|
|
|
privkey, err := w.GetPrivateKey(keys)
|
|
|
|
pssp := NewPssParams().WithPrivateKey(privkey)
|
|
|
|
pssp.AllowRaw = allowRaw
|
|
|
|
pskad := kademlia(ctx.Config.ID)
|
|
|
|
ps, err := NewPss(pskad, pssp)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
|
|
|
|
ping := &Ping{
|
|
|
|
OutC: make(chan bool),
|
|
|
|
Pong: true,
|
|
|
|
}
|
|
|
|
p2pp := NewPingProtocol(ping)
|
|
|
|
pp, err := RegisterProtocol(ps, &PingTopic, PingProtocol, p2pp, &ProtocolParams{Asymmetric: true})
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
if useHandshake {
|
|
|
|
SetHandshakeController(ps, NewHandshakeParams())
|
|
|
|
}
|
|
|
|
ps.Register(&PingTopic, pp.Handle)
|
|
|
|
ps.addAPI(rpc.API{
|
|
|
|
Namespace: "psstest",
|
|
|
|
Version: "0.3",
|
|
|
|
Service: NewAPITest(ps),
|
|
|
|
Public: false,
|
|
|
|
})
|
|
|
|
if err != nil {
|
|
|
|
log.Error("Couldnt register pss protocol", "err", err)
|
|
|
|
os.Exit(1)
|
|
|
|
}
|
|
|
|
pssprotocols[ctx.Config.ID.String()] = &protoCtrl{
|
|
|
|
C: ping.OutC,
|
|
|
|
protocol: pp,
|
|
|
|
run: p2pp.Run,
|
|
|
|
}
|
|
|
|
return ps, nil
|
|
|
|
},
|
|
|
|
"bzz": func(ctx *adapters.ServiceContext) (node.Service, error) {
|
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.
Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.
The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.
* p2p/discover: port to p2p/enode
This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:
- Table.Lookup is not available anymore. It used to take a public key
as argument because v4 protocol requires one. Its replacement is
LookupRandom.
- Table.Resolve takes *enode.Node instead of NodeID. This is also for
v4 protocol compatibility because nodes cannot be looked up by ID
alone.
- Types Node and NodeID are gone. Further commits in the series will be
fixes all over the the codebase to deal with those removals.
* p2p: port to p2p/enode and discovery changes
This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.
New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.
* p2p/simulations, p2p/testing: port to p2p/enode
No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:
- testing.ProtocolSession tracks complete nodes, not just their IDs.
- adapters.NodeConfig has a new method to create a complete node.
These changes were needed to make swarm tests work.
Note that the NodeID change makes the code incompatible with old
simulation snapshots.
* whisper/whisperv5, whisper/whisperv6: port to p2p/enode
This port was easy because whisper uses []byte for node IDs and
URL strings in the API.
* eth: port to p2p/enode
Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.
* les: port to p2p/enode
Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.
* node: port to p2p/enode
This change simply replaces discover.Node and discover.NodeID with their
new equivalents.
* swarm/network: port to p2p/enode
Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).
There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.
Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
6 years ago
|
|
|
addr := network.NewAddr(ctx.Config.Node())
|
|
|
|
hp := network.NewHiveParams()
|
|
|
|
hp.Discovery = false
|
|
|
|
config := &network.BzzConfig{
|
|
|
|
OverlayAddr: addr.Over(),
|
|
|
|
UnderlayAddr: addr.Under(),
|
|
|
|
HiveParams: hp,
|
|
|
|
}
|
|
|
|
return network.NewBzz(config, kademlia(ctx.Config.ID), stateStore, nil, nil), nil
|
|
|
|
},
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func newTestPss(privkey *ecdsa.PrivateKey, kad *network.Kademlia, ppextra *PssParams) *Pss {
|
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.
Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.
The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.
* p2p/discover: port to p2p/enode
This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:
- Table.Lookup is not available anymore. It used to take a public key
as argument because v4 protocol requires one. Its replacement is
LookupRandom.
- Table.Resolve takes *enode.Node instead of NodeID. This is also for
v4 protocol compatibility because nodes cannot be looked up by ID
alone.
- Types Node and NodeID are gone. Further commits in the series will be
fixes all over the the codebase to deal with those removals.
* p2p: port to p2p/enode and discovery changes
This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.
New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.
* p2p/simulations, p2p/testing: port to p2p/enode
No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:
- testing.ProtocolSession tracks complete nodes, not just their IDs.
- adapters.NodeConfig has a new method to create a complete node.
These changes were needed to make swarm tests work.
Note that the NodeID change makes the code incompatible with old
simulation snapshots.
* whisper/whisperv5, whisper/whisperv6: port to p2p/enode
This port was easy because whisper uses []byte for node IDs and
URL strings in the API.
* eth: port to p2p/enode
Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.
* les: port to p2p/enode
Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.
* node: port to p2p/enode
This change simply replaces discover.Node and discover.NodeID with their
new equivalents.
* swarm/network: port to p2p/enode
Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).
There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.
Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
6 years ago
|
|
|
nid := enode.PubkeyToIDV4(&privkey.PublicKey)
|
|
|
|
// set up routing if kademlia is not passed to us
|
|
|
|
if kad == nil {
|
|
|
|
kp := network.NewKadParams()
|
|
|
|
kp.MinProxBinSize = 3
|
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.
Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.
The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.
* p2p/discover: port to p2p/enode
This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:
- Table.Lookup is not available anymore. It used to take a public key
as argument because v4 protocol requires one. Its replacement is
LookupRandom.
- Table.Resolve takes *enode.Node instead of NodeID. This is also for
v4 protocol compatibility because nodes cannot be looked up by ID
alone.
- Types Node and NodeID are gone. Further commits in the series will be
fixes all over the the codebase to deal with those removals.
* p2p: port to p2p/enode and discovery changes
This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.
New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.
* p2p/simulations, p2p/testing: port to p2p/enode
No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:
- testing.ProtocolSession tracks complete nodes, not just their IDs.
- adapters.NodeConfig has a new method to create a complete node.
These changes were needed to make swarm tests work.
Note that the NodeID change makes the code incompatible with old
simulation snapshots.
* whisper/whisperv5, whisper/whisperv6: port to p2p/enode
This port was easy because whisper uses []byte for node IDs and
URL strings in the API.
* eth: port to p2p/enode
Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.
* les: port to p2p/enode
Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.
* node: port to p2p/enode
This change simply replaces discover.Node and discover.NodeID with their
new equivalents.
* swarm/network: port to p2p/enode
Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).
There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.
Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
6 years ago
|
|
|
kad = network.NewKademlia(nid[:], kp)
|
|
|
|
}
|
|
|
|
|
|
|
|
// create pss
|
|
|
|
pp := NewPssParams().WithPrivateKey(privkey)
|
|
|
|
if ppextra != nil {
|
|
|
|
pp.SymKeyCacheCapacity = ppextra.SymKeyCacheCapacity
|
|
|
|
}
|
|
|
|
ps, err := NewPss(kad, pp)
|
|
|
|
if err != nil {
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
ps.Start(nil)
|
|
|
|
|
|
|
|
return ps
|
|
|
|
}
|
|
|
|
|
|
|
|
// API calls for test/development use
|
|
|
|
type APITest struct {
|
|
|
|
*Pss
|
|
|
|
}
|
|
|
|
|
|
|
|
func NewAPITest(ps *Pss) *APITest {
|
|
|
|
return &APITest{Pss: ps}
|
|
|
|
}
|
|
|
|
|
|
|
|
func (apitest *APITest) SetSymKeys(pubkeyid string, recvsymkey []byte, sendsymkey []byte, limit uint16, topic Topic, to PssAddress) ([2]string, error) {
|
|
|
|
recvsymkeyid, err := apitest.SetSymmetricKey(recvsymkey, topic, &to, true)
|
|
|
|
if err != nil {
|
|
|
|
return [2]string{}, err
|
|
|
|
}
|
|
|
|
sendsymkeyid, err := apitest.SetSymmetricKey(sendsymkey, topic, &to, false)
|
|
|
|
if err != nil {
|
|
|
|
return [2]string{}, err
|
|
|
|
}
|
|
|
|
return [2]string{recvsymkeyid, sendsymkeyid}, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func (apitest *APITest) Clean() (int, error) {
|
|
|
|
return apitest.Pss.cleanKeys(), nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// enableMetrics is starting InfluxDB reporter so that we collect stats when running tests locally
|
|
|
|
func enableMetrics() {
|
|
|
|
metrics.Enabled = true
|
|
|
|
go influxdb.InfluxDBWithTags(metrics.DefaultRegistry, 1*time.Second, "http://localhost:8086", "metrics", "admin", "admin", "swarm.", map[string]string{
|
|
|
|
"host": "test",
|
|
|
|
})
|
|
|
|
}
|