forked from mirror/go-ethereum
parent
d227f6184e
commit
4e52adb84a
@ -0,0 +1,174 @@ |
||||
package p2p |
||||
|
||||
import ( |
||||
"bytes" |
||||
"crypto/ecdsa" |
||||
"crypto/rand" |
||||
"fmt" |
||||
"io" |
||||
|
||||
"github.com/ethereum/go-ethereum/crypto" |
||||
"github.com/obscuren/ecies" |
||||
"github.com/obscuren/secp256k1-go" |
||||
) |
||||
|
||||
var ( |
||||
skLen int = 32 // ecies.MaxSharedKeyLength(pubKey) / 2
|
||||
sigLen int = 32 // elliptic S256
|
||||
pubKeyLen int = 32 // ECDSA
|
||||
msgLen int = sigLen + 1 + pubKeyLen + skLen // 97
|
||||
) |
||||
|
||||
//, aesSecret, macSecret, egressMac, ingress
|
||||
type secretRW struct { |
||||
aesSecret, macSecret, egressMac, ingressMac []byte |
||||
} |
||||
|
||||
type cryptoId struct { |
||||
prvKey *ecdsa.PrivateKey |
||||
pubKey *ecdsa.PublicKey |
||||
pubKeyR io.ReaderAt |
||||
} |
||||
|
||||
func newCryptoId(id ClientIdentity) (self *cryptoId, err error) { |
||||
// will be at server init
|
||||
var prvKeyDER []byte = id.PrivKey() |
||||
if prvKeyDER == nil { |
||||
err = fmt.Errorf("no private key for client") |
||||
return |
||||
} |
||||
// initialise ecies private key via importing DER encoded keys (known via our own clientIdentity)
|
||||
var prvKey = crypto.ToECDSA(prvKeyDER) |
||||
if prvKey == nil { |
||||
err = fmt.Errorf("invalid private key for client") |
||||
return |
||||
} |
||||
self = &cryptoId{ |
||||
prvKey: prvKey, |
||||
// initialise public key from the imported private key
|
||||
pubKey: &prvKey.PublicKey, |
||||
// to be created at server init shared between peers and sessions
|
||||
// for reuse, call wth ReadAt, no reset seek needed
|
||||
} |
||||
self.pubKeyR = bytes.NewReader(id.Pubkey()) |
||||
return |
||||
} |
||||
|
||||
//
|
||||
func (self *cryptoId) setupAuth(remotePubKeyDER, sessionToken []byte) (auth []byte, nonce []byte, sharedKnowledge []byte, err error) { |
||||
// session init, common to both parties
|
||||
var remotePubKey = crypto.ToECDSAPub(remotePubKeyDER) |
||||
if remotePubKey == nil { |
||||
err = fmt.Errorf("invalid remote public key") |
||||
return |
||||
} |
||||
var sharedSecret []byte |
||||
// generate shared key from prv and remote pubkey
|
||||
sharedSecret, err = ecies.ImportECDSA(self.prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), skLen, skLen) |
||||
if err != nil { |
||||
return |
||||
} |
||||
// check previous session token
|
||||
if sessionToken == nil { |
||||
err = fmt.Errorf("no session token for peer") |
||||
return |
||||
} |
||||
// allocate msgLen long message
|
||||
var msg []byte = make([]byte, msgLen) |
||||
// generate skLen long nonce at the end
|
||||
nonce = msg[msgLen-skLen:] |
||||
if _, err = rand.Read(nonce); err != nil { |
||||
return |
||||
} |
||||
// create known message
|
||||
// should use
|
||||
// cipher.xorBytes from crypto/cipher/xor.go for fast xor
|
||||
sharedKnowledge = Xor(sharedSecret, sessionToken) |
||||
var signedMsg = Xor(sharedKnowledge, nonce) |
||||
|
||||
// generate random keypair to use for signing
|
||||
var ecdsaRandomPrvKey *ecdsa.PrivateKey |
||||
if ecdsaRandomPrvKey, err = crypto.GenerateKey(); err != nil { |
||||
return |
||||
} |
||||
// var ecdsaRandomPubKey *ecdsa.PublicKey
|
||||
// ecdsaRandomPubKey= &ecdsaRandomPrvKey.PublicKey
|
||||
|
||||
// message known to both parties ecdh-shared-secret^nonce^token
|
||||
var signature []byte |
||||
// signature = sign(ecdhe-random, ecdh-shared-secret^nonce^token)
|
||||
// uses secp256k1.Sign
|
||||
if signature, err = crypto.Sign(signedMsg, ecdsaRandomPrvKey); err != nil { |
||||
return |
||||
} |
||||
// msg = signature || 0x80 || pubk || nonce
|
||||
copy(msg, signature) |
||||
msg[sigLen] = 0x80 |
||||
self.pubKeyR.ReadAt(msg[sigLen+1:], int64(pubKeyLen)) // gives pubKeyLen, io.EOF (since we dont read onto the nonce)
|
||||
|
||||
// auth = eciesEncrypt(remote-pubk, msg)
|
||||
if auth, err = crypto.Encrypt(remotePubKey, msg); err != nil { |
||||
return |
||||
} |
||||
return |
||||
} |
||||
|
||||
func (self *cryptoId) verifyAuth(auth, nonce, sharedKnowledge []byte) (sessionToken []byte, rw *secretRW, err error) { |
||||
var msg []byte |
||||
// they prove that msg is meant for me,
|
||||
// I prove I possess private key if i can read it
|
||||
if msg, err = crypto.Decrypt(self.prvKey, auth); err != nil { |
||||
return |
||||
} |
||||
|
||||
var remoteNonce []byte = msg[msgLen-skLen:] |
||||
// I prove that i possess prv key (to derive shared secret, and read nonce off encrypted msg) and that I posessed the earlier one , our shared history
|
||||
// they prove they possess their private key to derive the same shared secret, plus the same shared history (previous session token)
|
||||
var signedMsg = Xor(sharedKnowledge, remoteNonce) |
||||
var remoteRandomPubKeyDER []byte |
||||
if remoteRandomPubKeyDER, err = secp256k1.RecoverPubkey(signedMsg, msg[:32]); err != nil { |
||||
return |
||||
} |
||||
var remoteRandomPubKey = crypto.ToECDSAPub(remoteRandomPubKeyDER) |
||||
if remoteRandomPubKey == nil { |
||||
err = fmt.Errorf("invalid remote public key") |
||||
return |
||||
} |
||||
// 3) Now we can trust ecdhe-random-pubk to derive keys
|
||||
//ecdhe-shared-secret = ecdh.agree(ecdhe-random, remote-ecdhe-random-pubk)
|
||||
var dhSharedSecret []byte |
||||
dhSharedSecret, err = ecies.ImportECDSA(self.prvKey).GenerateShared(ecies.ImportECDSAPublic(remoteRandomPubKey), skLen, skLen) |
||||
if err != nil { |
||||
return |
||||
} |
||||
// shared-secret = crypto.Sha3(ecdhe-shared-secret || crypto.Sha3(nonce || initiator-nonce))
|
||||
var sharedSecret []byte = crypto.Sha3(append(dhSharedSecret, crypto.Sha3(append(nonce, remoteNonce...))...)) |
||||
// token = crypto.Sha3(shared-secret)
|
||||
sessionToken = crypto.Sha3(sharedSecret) |
||||
// aes-secret = crypto.Sha3(ecdhe-shared-secret || shared-secret)
|
||||
var aesSecret = crypto.Sha3(append(dhSharedSecret, sharedSecret...)) |
||||
// # destroy shared-secret
|
||||
// mac-secret = crypto.Sha3(ecdhe-shared-secret || aes-secret)
|
||||
var macSecret = crypto.Sha3(append(dhSharedSecret, aesSecret...)) |
||||
// # destroy ecdhe-shared-secret
|
||||
// egress-mac = crypto.Sha3(mac-secret^nonce || auth)
|
||||
var egressMac = crypto.Sha3(append(Xor(macSecret, nonce), auth...)) |
||||
// # destroy nonce
|
||||
// ingress-mac = crypto.Sha3(mac-secret^initiator-nonce || auth),
|
||||
var ingressMac = crypto.Sha3(append(Xor(macSecret, remoteNonce), auth...)) |
||||
// # destroy remote-nonce
|
||||
rw = &secretRW{ |
||||
aesSecret: aesSecret, |
||||
macSecret: macSecret, |
||||
egressMac: egressMac, |
||||
ingressMac: ingressMac, |
||||
} |
||||
return |
||||
} |
||||
|
||||
func Xor(one, other []byte) (xor []byte) { |
||||
for i := 0; i < len(one); i++ { |
||||
xor[i] = one[i] ^ other[i] |
||||
} |
||||
return |
||||
} |
Loading…
Reference in new issue