consensus/ethash: implement faster difficulty calculators (#21976)

This PR adds re-written difficulty calculators, which are based on uint256. It also adds a fuzzer + oss-fuzz integration for the new fuzzer. It does differential fuzzing between the new and old calculators.

Note: this PR does not actually enable the new calculators.
revert-23120-drop-eth-65
Martin Holst Swende 4 years ago committed by GitHub
parent 88c696240d
commit efe6dd2904
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 5
      consensus/ethash/consensus.go
  2. 102
      consensus/ethash/consensus_test.go
  3. 193
      consensus/ethash/difficulty.go
  4. 1
      oss-fuzz.sh
  5. 23
      tests/fuzzers/difficulty/debug/main.go
  6. 145
      tests/fuzzers/difficulty/difficulty-fuzz.go

@ -485,6 +485,11 @@ func calcDifficultyFrontier(time uint64, parent *types.Header) *big.Int {
return diff
}
// Exported for fuzzing
var FrontierDifficultyCalulator = calcDifficultyFrontier
var HomesteadDifficultyCalulator = calcDifficultyHomestead
var DynamicDifficultyCalculator = makeDifficultyCalculator
// VerifySeal implements consensus.Engine, checking whether the given block satisfies
// the PoW difficulty requirements.
func (ethash *Ethash) VerifySeal(chain consensus.ChainHeaderReader, header *types.Header) error {

@ -17,12 +17,15 @@
package ethash
import (
"encoding/binary"
"encoding/json"
"math/big"
"math/rand"
"os"
"path/filepath"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/params"
@ -84,3 +87,102 @@ func TestCalcDifficulty(t *testing.T) {
}
}
}
func randSlice(min, max uint32) []byte {
var b = make([]byte, 4)
rand.Read(b)
a := binary.LittleEndian.Uint32(b)
size := min + a%(max-min)
out := make([]byte, size)
rand.Read(out)
return out
}
func TestDifficultyCalculators(t *testing.T) {
rand.Seed(2)
for i := 0; i < 5000; i++ {
// 1 to 300 seconds diff
var timeDelta = uint64(1 + rand.Uint32()%3000)
diffBig := big.NewInt(0).SetBytes(randSlice(2, 10))
if diffBig.Cmp(params.MinimumDifficulty) < 0 {
diffBig.Set(params.MinimumDifficulty)
}
//rand.Read(difficulty)
header := &types.Header{
Difficulty: diffBig,
Number: new(big.Int).SetUint64(rand.Uint64() % 50_000_000),
Time: rand.Uint64() - timeDelta,
}
if rand.Uint32()&1 == 0 {
header.UncleHash = types.EmptyUncleHash
}
bombDelay := new(big.Int).SetUint64(rand.Uint64() % 50_000_000)
for i, pair := range []struct {
bigFn func(time uint64, parent *types.Header) *big.Int
u256Fn func(time uint64, parent *types.Header) *big.Int
}{
{FrontierDifficultyCalulator, CalcDifficultyFrontierU256},
{HomesteadDifficultyCalulator, CalcDifficultyHomesteadU256},
{DynamicDifficultyCalculator(bombDelay), MakeDifficultyCalculatorU256(bombDelay)},
} {
time := header.Time + timeDelta
want := pair.bigFn(time, header)
have := pair.u256Fn(time, header)
if want.BitLen() > 256 {
continue
}
if want.Cmp(have) != 0 {
t.Fatalf("pair %d: want %x have %x\nparent.Number: %x\np.Time: %x\nc.Time: %x\nBombdelay: %v\n", i, want, have,
header.Number, header.Time, time, bombDelay)
}
}
}
}
func BenchmarkDifficultyCalculator(b *testing.B) {
x1 := makeDifficultyCalculator(big.NewInt(1000000))
x2 := MakeDifficultyCalculatorU256(big.NewInt(1000000))
h := &types.Header{
ParentHash: common.Hash{},
UncleHash: types.EmptyUncleHash,
Difficulty: big.NewInt(0xffffff),
Number: big.NewInt(500000),
Time: 1000000,
}
b.Run("big-frontier", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
calcDifficultyFrontier(1000014, h)
}
})
b.Run("u256-frontier", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
CalcDifficultyFrontierU256(1000014, h)
}
})
b.Run("big-homestead", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
calcDifficultyHomestead(1000014, h)
}
})
b.Run("u256-homestead", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
CalcDifficultyHomesteadU256(1000014, h)
}
})
b.Run("big-generic", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
x1(1000014, h)
}
})
b.Run("u256-generic", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
x2(1000014, h)
}
})
}

@ -0,0 +1,193 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package ethash
import (
"math/big"
"github.com/ethereum/go-ethereum/core/types"
"github.com/holiman/uint256"
)
const (
// frontierDurationLimit is for Frontier:
// The decision boundary on the blocktime duration used to determine
// whether difficulty should go up or down.
frontierDurationLimit = 13
// minimumDifficulty The minimum that the difficulty may ever be.
minimumDifficulty = 131072
// expDiffPeriod is the exponential difficulty period
expDiffPeriodUint = 100000
// difficultyBoundDivisorBitShift is the bound divisor of the difficulty (2048),
// This constant is the right-shifts to use for the division.
difficultyBoundDivisor = 11
)
// CalcDifficultyFrontierU256 is the difficulty adjustment algorithm. It returns the
// difficulty that a new block should have when created at time given the parent
// block's time and difficulty. The calculation uses the Frontier rules.
func CalcDifficultyFrontierU256(time uint64, parent *types.Header) *big.Int {
/*
Algorithm
block_diff = pdiff + pdiff / 2048 * (1 if time - ptime < 13 else -1) + int(2^((num // 100000) - 2))
Where:
- pdiff = parent.difficulty
- ptime = parent.time
- time = block.timestamp
- num = block.number
*/
pDiff := uint256.NewInt()
pDiff.SetFromBig(parent.Difficulty) // pDiff: pdiff
adjust := pDiff.Clone()
adjust.Rsh(adjust, difficultyBoundDivisor) // adjust: pDiff / 2048
if time-parent.Time < frontierDurationLimit {
pDiff.Add(pDiff, adjust)
} else {
pDiff.Sub(pDiff, adjust)
}
if pDiff.LtUint64(minimumDifficulty) {
pDiff.SetUint64(minimumDifficulty)
}
// 'pdiff' now contains:
// pdiff + pdiff / 2048 * (1 if time - ptime < 13 else -1)
if periodCount := (parent.Number.Uint64() + 1) / expDiffPeriodUint; periodCount > 1 {
// diff = diff + 2^(periodCount - 2)
expDiff := adjust.SetOne()
expDiff.Lsh(expDiff, uint(periodCount-2)) // expdiff: 2 ^ (periodCount -2)
pDiff.Add(pDiff, expDiff)
}
return pDiff.ToBig()
}
// CalcDifficultyHomesteadU256 is the difficulty adjustment algorithm. It returns
// the difficulty that a new block should have when created at time given the
// parent block's time and difficulty. The calculation uses the Homestead rules.
func CalcDifficultyHomesteadU256(time uint64, parent *types.Header) *big.Int {
/*
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.md
Algorithm:
block_diff = pdiff + pdiff / 2048 * max(1 - (time - ptime) / 10, -99) + 2 ^ int((num / 100000) - 2))
Our modification, to use unsigned ints:
block_diff = pdiff - pdiff / 2048 * max((time - ptime) / 10 - 1, 99) + 2 ^ int((num / 100000) - 2))
Where:
- pdiff = parent.difficulty
- ptime = parent.time
- time = block.timestamp
- num = block.number
*/
pDiff := uint256.NewInt()
pDiff.SetFromBig(parent.Difficulty) // pDiff: pdiff
adjust := pDiff.Clone()
adjust.Rsh(adjust, difficultyBoundDivisor) // adjust: pDiff / 2048
x := (time - parent.Time) / 10 // (time - ptime) / 10)
var neg = true
if x == 0 {
x = 1
neg = false
} else if x >= 100 {
x = 99
} else {
x = x - 1
}
z := new(uint256.Int).SetUint64(x)
adjust.Mul(adjust, z) // adjust: (pdiff / 2048) * max((time - ptime) / 10 - 1, 99)
if neg {
pDiff.Sub(pDiff, adjust) // pdiff - pdiff / 2048 * max((time - ptime) / 10 - 1, 99)
} else {
pDiff.Add(pDiff, adjust) // pdiff + pdiff / 2048 * max((time - ptime) / 10 - 1, 99)
}
if pDiff.LtUint64(minimumDifficulty) {
pDiff.SetUint64(minimumDifficulty)
}
// for the exponential factor, a.k.a "the bomb"
// diff = diff + 2^(periodCount - 2)
if periodCount := (1 + parent.Number.Uint64()) / expDiffPeriodUint; periodCount > 1 {
expFactor := adjust.Lsh(adjust.SetOne(), uint(periodCount-2))
pDiff.Add(pDiff, expFactor)
}
return pDiff.ToBig()
}
// MakeDifficultyCalculatorU256 creates a difficultyCalculator with the given bomb-delay.
// the difficulty is calculated with Byzantium rules, which differs from Homestead in
// how uncles affect the calculation
func MakeDifficultyCalculatorU256(bombDelay *big.Int) func(time uint64, parent *types.Header) *big.Int {
// Note, the calculations below looks at the parent number, which is 1 below
// the block number. Thus we remove one from the delay given
bombDelayFromParent := bombDelay.Uint64() - 1
return func(time uint64, parent *types.Header) *big.Int {
/*
https://github.com/ethereum/EIPs/issues/100
pDiff = parent.difficulty
BLOCK_DIFF_FACTOR = 9
a = pDiff + (pDiff // BLOCK_DIFF_FACTOR) * adj_factor
b = min(parent.difficulty, MIN_DIFF)
child_diff = max(a,b )
*/
x := (time - parent.Time) / 9 // (block_timestamp - parent_timestamp) // 9
c := uint64(1) // if parent.unclehash == emptyUncleHashHash
if parent.UncleHash != types.EmptyUncleHash {
c = 2
}
xNeg := x >= c
if xNeg {
// x is now _negative_ adjustment factor
x = x - c // - ( (t-p)/p -( 2 or 1) )
} else {
x = c - x // (2 or 1) - (t-p)/9
}
if x > 99 {
x = 99 // max(x, 99)
}
// parent_diff + (parent_diff / 2048 * max((2 if len(parent.uncles) else 1) - ((timestamp - parent.timestamp) // 9), -99))
y := new(uint256.Int)
y.SetFromBig(parent.Difficulty) // y: p_diff
pDiff := y.Clone() // pdiff: p_diff
z := new(uint256.Int).SetUint64(x) //z : +-adj_factor (either pos or negative)
y.Rsh(y, difficultyBoundDivisor) // y: p__diff / 2048
z.Mul(y, z) // z: (p_diff / 2048 ) * (+- adj_factor)
if xNeg {
y.Sub(pDiff, z) // y: parent_diff + parent_diff/2048 * adjustment_factor
} else {
y.Add(pDiff, z) // y: parent_diff + parent_diff/2048 * adjustment_factor
}
// minimum difficulty can ever be (before exponential factor)
if y.LtUint64(minimumDifficulty) {
y.SetUint64(minimumDifficulty)
}
// calculate a fake block number for the ice-age delay
// Specification: https://eips.ethereum.org/EIPS/eip-1234
var pNum = parent.Number.Uint64()
if pNum >= bombDelayFromParent {
if fakeBlockNumber := pNum - bombDelayFromParent; fakeBlockNumber >= 2*expDiffPeriodUint {
z.SetOne()
z.Lsh(z, uint(fakeBlockNumber/expDiffPeriodUint-2))
y.Add(z, y)
}
}
return y.ToBig()
}
}

@ -57,6 +57,7 @@ compile_fuzzer tests/fuzzers/txfetcher Fuzz fuzzTxfetcher
compile_fuzzer tests/fuzzers/rlp Fuzz fuzzRlp
compile_fuzzer tests/fuzzers/trie Fuzz fuzzTrie
compile_fuzzer tests/fuzzers/stacktrie Fuzz fuzzStackTrie
compile_fuzzer tests/fuzzers/difficulty Fuzz fuzzDifficulty
compile_fuzzer tests/fuzzers/bls12381 FuzzG1Add fuzz_g1_add
compile_fuzzer tests/fuzzers/bls12381 FuzzG1Mul fuzz_g1_mul

@ -0,0 +1,23 @@
package main
import (
"fmt"
"io/ioutil"
"os"
"github.com/ethereum/go-ethereum/tests/fuzzers/difficulty"
)
func main() {
if len(os.Args) != 2 {
fmt.Fprintf(os.Stderr, "Usage: debug <file>")
os.Exit(1)
}
crasher := os.Args[1]
data, err := ioutil.ReadFile(crasher)
if err != nil {
fmt.Fprintf(os.Stderr, "error loading crasher %v: %v", crasher, err)
os.Exit(1)
}
difficulty.Fuzz(data)
}

@ -0,0 +1,145 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package difficulty
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"math/big"
"github.com/ethereum/go-ethereum/consensus/ethash"
"github.com/ethereum/go-ethereum/core/types"
)
type fuzzer struct {
input io.Reader
exhausted bool
debugging bool
}
func (f *fuzzer) read(size int) []byte {
out := make([]byte, size)
if _, err := f.input.Read(out); err != nil {
f.exhausted = true
}
return out
}
func (f *fuzzer) readSlice(min, max int) []byte {
var a uint16
binary.Read(f.input, binary.LittleEndian, &a)
size := min + int(a)%(max-min)
out := make([]byte, size)
if _, err := f.input.Read(out); err != nil {
f.exhausted = true
}
return out
}
func (f *fuzzer) readUint64(min, max uint64) uint64 {
if min == max {
return min
}
var a uint64
if err := binary.Read(f.input, binary.LittleEndian, &a); err != nil {
f.exhausted = true
}
a = min + a%(max-min)
return a
}
func (f *fuzzer) readBool() bool {
return f.read(1)[0]&0x1 == 0
}
// The function must return
// 1 if the fuzzer should increase priority of the
// given input during subsequent fuzzing (for example, the input is lexically
// correct and was parsed successfully);
// -1 if the input must not be added to corpus even if gives new coverage; and
// 0 otherwise
// other values are reserved for future use.
func Fuzz(data []byte) int {
f := fuzzer{
input: bytes.NewReader(data),
exhausted: false,
}
return f.fuzz()
}
var minDifficulty = big.NewInt(0x2000)
type calculator func(time uint64, parent *types.Header) *big.Int
func (f *fuzzer) fuzz() int {
// A parent header
header := &types.Header{}
if f.readBool() {
header.UncleHash = types.EmptyUncleHash
}
// Difficulty can range between 0x2000 (2 bytes) and up to 32 bytes
{
diff := new(big.Int).SetBytes(f.readSlice(2, 32))
if diff.Cmp(minDifficulty) < 0 {
diff.Set(minDifficulty)
}
header.Difficulty = diff
}
// Number can range between 0 and up to 32 bytes (but not so that the child exceeds it)
{
// However, if we use astronomic numbers, then the bomb exp karatsuba calculation
// in the legacy methods)
// times out, so we limit it to fit within reasonable bounds
number := new(big.Int).SetBytes(f.readSlice(0, 4)) // 4 bytes: 32 bits: block num max 4 billion
header.Number = number
}
// Both parent and child time must fit within uint64
var time uint64
{
childTime := f.readUint64(1, 0xFFFFFFFFFFFFFFFF)
//fmt.Printf("childTime: %x\n",childTime)
delta := f.readUint64(1, childTime)
//fmt.Printf("delta: %v\n", delta)
pTime := childTime - delta
header.Time = pTime
time = childTime
}
// Bomb delay will never exceed uint64
bombDelay := new(big.Int).SetUint64(f.readUint64(1, 0xFFFFFFFFFFFFFFFe))
if f.exhausted {
return 0
}
for i, pair := range []struct {
bigFn calculator
u256Fn calculator
}{
{ethash.FrontierDifficultyCalulator, ethash.CalcDifficultyFrontierU256},
{ethash.HomesteadDifficultyCalulator, ethash.CalcDifficultyHomesteadU256},
{ethash.DynamicDifficultyCalculator(bombDelay), ethash.MakeDifficultyCalculatorU256(bombDelay)},
} {
want := pair.bigFn(time, header)
have := pair.u256Fn(time, header)
if want.Cmp(have) != 0 {
panic(fmt.Sprintf("pair %d: want %x have %x\nparent.Number: %x\np.Time: %x\nc.Time: %x\nBombdelay: %v\n", i, want, have,
header.Number, header.Time, time, bombDelay))
}
}
return 1
}
Loading…
Cancel
Save