// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package abi import ( "encoding/json" "fmt" "io" "math/big" "reflect" "strings" "github.com/ethereum/go-ethereum/common" ) // The ABI holds information about a contract's context and available // invokable methods. It will allow you to type check function calls and // packs data accordingly. type ABI struct { Constructor Method Methods map[string]Method Events map[string]Event } // JSON returns a parsed ABI interface and error if it failed. func JSON(reader io.Reader) (ABI, error) { dec := json.NewDecoder(reader) var abi ABI if err := dec.Decode(&abi); err != nil { return ABI{}, err } return abi, nil } // Pack the given method name to conform the ABI. Method call's data // will consist of method_id, args0, arg1, ... argN. Method id consists // of 4 bytes and arguments are all 32 bytes. // Method ids are created from the first 4 bytes of the hash of the // methods string signature. (signature = baz(uint32,string32)) func (abi ABI) Pack(name string, args ...interface{}) ([]byte, error) { // Fetch the ABI of the requested method var method Method if name == "" { method = abi.Constructor } else { m, exist := abi.Methods[name] if !exist { return nil, fmt.Errorf("method '%s' not found", name) } method = m } arguments, err := method.pack(method, args...) if err != nil { return nil, err } // Pack up the method ID too if not a constructor and return if name == "" { return arguments, nil } return append(method.Id(), arguments...), nil } // toGoSliceType prses the input and casts it to the proper slice defined by the ABI // argument in T. func toGoSlice(i int, t Argument, output []byte) (interface{}, error) { index := i * 32 // The slice must, at very least be large enough for the index+32 which is exactly the size required // for the [offset in output, size of offset]. if index+32 > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go slice: insufficient size output %d require %d", len(output), index+32) } elem := t.Type.Elem // first we need to create a slice of the type var refSlice reflect.Value switch elem.T { case IntTy, UintTy, BoolTy: // int, uint, bool can all be of type big int. refSlice = reflect.ValueOf([]*big.Int(nil)) case AddressTy: // address must be of slice Address refSlice = reflect.ValueOf([]common.Address(nil)) case HashTy: // hash must be of slice hash refSlice = reflect.ValueOf([]common.Hash(nil)) case FixedBytesTy: refSlice = reflect.ValueOf([]byte(nil)) default: // no other types are supported return nil, fmt.Errorf("abi: unsupported slice type %v", elem.T) } // get the offset which determines the start of this array ... offset := int(common.BytesToBig(output[index : index+32]).Uint64()) if offset+32 > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go slice: offset %d would go over slice boundary (len=%d)", len(output), offset+32) } slice := output[offset:] // ... starting with the size of the array in elements ... size := int(common.BytesToBig(slice[:32]).Uint64()) slice = slice[32:] // ... and make sure that we've at the very least the amount of bytes // available in the buffer. if size*32 > len(slice) { return nil, fmt.Errorf("abi: cannot marshal in to go slice: insufficient size output %d require %d", len(output), offset+32+size*32) } // reslice to match the required size slice = slice[:(size * 32)] for i := 0; i < size; i++ { var ( inter interface{} // interface type returnOutput = slice[i*32 : i*32+32] // the return output ) // set inter to the correct type (cast) switch elem.T { case IntTy, UintTy: inter = common.BytesToBig(returnOutput) case BoolTy: inter = common.BytesToBig(returnOutput).Uint64() > 0 case AddressTy: inter = common.BytesToAddress(returnOutput) case HashTy: inter = common.BytesToHash(returnOutput) } // append the item to our reflect slice refSlice = reflect.Append(refSlice, reflect.ValueOf(inter)) } // return the interface return refSlice.Interface(), nil } // toGoType parses the input and casts it to the proper type defined by the ABI // argument in T. func toGoType(i int, t Argument, output []byte) (interface{}, error) { // we need to treat slices differently if (t.Type.IsSlice || t.Type.IsArray) && t.Type.T != BytesTy && t.Type.T != StringTy && t.Type.T != FixedBytesTy { return toGoSlice(i, t, output) } index := i * 32 if index+32 > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %d require %d", len(output), index+32) } // Parse the given index output and check whether we need to read // a different offset and length based on the type (i.e. string, bytes) var returnOutput []byte switch t.Type.T { case StringTy, BytesTy: // variable arrays are written at the end of the return bytes // parse offset from which we should start reading offset := int(common.BytesToBig(output[index : index+32]).Uint64()) if offset+32 > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %d require %d", len(output), offset+32) } // parse the size up until we should be reading size := int(common.BytesToBig(output[offset : offset+32]).Uint64()) if offset+32+size > len(output) { return nil, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %d require %d", len(output), offset+32+size) } // get the bytes for this return value returnOutput = output[offset+32 : offset+32+size] default: returnOutput = output[index : index+32] } // cast bytes to abi return type switch t.Type.T { case IntTy: return common.BytesToBig(returnOutput), nil case UintTy: return common.BytesToBig(returnOutput), nil case BoolTy: return common.BytesToBig(returnOutput).Uint64() > 0, nil case AddressTy: return common.BytesToAddress(returnOutput), nil case HashTy: return common.BytesToHash(returnOutput), nil case BytesTy, FixedBytesTy: return returnOutput, nil case StringTy: return string(returnOutput), nil } return nil, fmt.Errorf("abi: unknown type %v", t.Type.T) } // these variable are used to determine certain types during type assertion for // assignment. var ( r_interSlice = reflect.TypeOf([]interface{}{}) r_hash = reflect.TypeOf(common.Hash{}) r_bytes = reflect.TypeOf([]byte{}) r_byte = reflect.TypeOf(byte(0)) ) // Unpack output in v according to the abi specification func (abi ABI) Unpack(v interface{}, name string, output []byte) error { var method = abi.Methods[name] if len(output) == 0 { return fmt.Errorf("abi: unmarshalling empty output") } value := reflect.ValueOf(v).Elem() typ := value.Type() if len(method.Outputs) > 1 { switch value.Kind() { // struct will match named return values to the struct's field // names case reflect.Struct: for i := 0; i < len(method.Outputs); i++ { marshalledValue, err := toGoType(i, method.Outputs[i], output) if err != nil { return err } reflectValue := reflect.ValueOf(marshalledValue) for j := 0; j < typ.NumField(); j++ { field := typ.Field(j) // TODO read tags: `abi:"fieldName"` if field.Name == strings.ToUpper(method.Outputs[i].Name[:1])+method.Outputs[i].Name[1:] { if err := set(value.Field(j), reflectValue, method.Outputs[i]); err != nil { return err } } } } case reflect.Slice: if !value.Type().AssignableTo(r_interSlice) { return fmt.Errorf("abi: cannot marshal tuple in to slice %T (only []interface{} is supported)", v) } // create a new slice and start appending the unmarshalled // values to the new interface slice. z := reflect.MakeSlice(typ, 0, len(method.Outputs)) for i := 0; i < len(method.Outputs); i++ { marshalledValue, err := toGoType(i, method.Outputs[i], output) if err != nil { return err } z = reflect.Append(z, reflect.ValueOf(marshalledValue)) } value.Set(z) default: return fmt.Errorf("abi: cannot unmarshal tuple in to %v", typ) } } else { marshalledValue, err := toGoType(0, method.Outputs[0], output) if err != nil { return err } if err := set(value, reflect.ValueOf(marshalledValue), method.Outputs[0]); err != nil { return err } } return nil } // set attempts to assign src to dst by either setting, copying or otherwise. // // set is a bit more lenient when it comes to assignment and doesn't force an as // strict ruleset as bare `reflect` does. func set(dst, src reflect.Value, output Argument) error { dstType := dst.Type() srcType := src.Type() switch { case dstType.AssignableTo(src.Type()): dst.Set(src) case dstType.Kind() == reflect.Array && srcType.Kind() == reflect.Slice: if !dstType.Elem().AssignableTo(r_byte) { return fmt.Errorf("abi: cannot unmarshal %v in to array of elem %v", src.Type(), dstType.Elem()) } if dst.Len() < output.Type.SliceSize { return fmt.Errorf("abi: cannot unmarshal src (len=%d) in to dst (len=%d)", output.Type.SliceSize, dst.Len()) } reflect.Copy(dst, src) default: return fmt.Errorf("abi: cannot unmarshal %v in to %v", src.Type(), dst.Type()) } return nil } func (abi *ABI) UnmarshalJSON(data []byte) error { var fields []struct { Type string Name string Constant bool Indexed bool Inputs []Argument Outputs []Argument } if err := json.Unmarshal(data, &fields); err != nil { return err } abi.Methods = make(map[string]Method) abi.Events = make(map[string]Event) for _, field := range fields { switch field.Type { case "constructor": abi.Constructor = Method{ Inputs: field.Inputs, } // empty defaults to function according to the abi spec case "function", "": abi.Methods[field.Name] = Method{ Name: field.Name, Const: field.Constant, Inputs: field.Inputs, Outputs: field.Outputs, } case "event": abi.Events[field.Name] = Event{ Name: field.Name, Inputs: field.Inputs, } } } return nil }