// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Contains the block download scheduler to collect download tasks and schedule // them in an ordered, and throttled way. package downloader import ( "errors" "fmt" "sync" "sync/atomic" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/logger" "github.com/ethereum/go-ethereum/logger/glog" "github.com/ethereum/go-ethereum/trie" "github.com/rcrowley/go-metrics" "gopkg.in/karalabe/cookiejar.v2/collections/prque" ) var ( blockCacheLimit = 1024 // Maximum number of blocks to cache before throttling the download ) var ( errNoFetchesPending = errors.New("no fetches pending") errStateSyncPending = errors.New("state trie sync already scheduled") errStaleDelivery = errors.New("stale delivery") ) // fetchRequest is a currently running data retrieval operation. type fetchRequest struct { Peer *peer // Peer to which the request was sent Hashes map[common.Hash]int // [eth/61] Requested hashes with their insertion index (priority) Headers []*types.Header // [eth/62] Requested headers, sorted by request order Time time.Time // Time when the request was made } // fetchResult is the assembly collecting partial results from potentially more // than one fetcher routines, until all outstanding retrievals complete and the // result as a whole can be processed. type fetchResult struct { Pending int // Number of data fetches still pending Header *types.Header Uncles []*types.Header Transactions types.Transactions Receipts types.Receipts } // queue represents hashes that are either need fetching or are being fetched type queue struct { mode SyncMode // Synchronisation mode to decide on the block parts to schedule for fetching fastSyncPivot uint64 // Block number where the fast sync pivots into archive synchronisation mode hashPool map[common.Hash]int // [eth/61] Pending hashes, mapping to their insertion index (priority) hashQueue *prque.Prque // [eth/61] Priority queue of the block hashes to fetch hashCounter int // [eth/61] Counter indexing the added hashes to ensure retrieval order headerHead common.Hash // [eth/62] Hash of the last queued header to verify order blockTaskPool map[common.Hash]*types.Header // [eth/62] Pending block (body) retrieval tasks, mapping hashes to headers blockTaskQueue *prque.Prque // [eth/62] Priority queue of the headers to fetch the blocks (bodies) for blockPendPool map[string]*fetchRequest // [eth/62] Currently pending block (body) retrieval operations blockDonePool map[common.Hash]struct{} // [eth/62] Set of the completed block (body) fetches receiptTaskPool map[common.Hash]*types.Header // [eth/63] Pending receipt retrieval tasks, mapping hashes to headers receiptTaskQueue *prque.Prque // [eth/63] Priority queue of the headers to fetch the receipts for receiptPendPool map[string]*fetchRequest // [eth/63] Currently pending receipt retrieval operations receiptDonePool map[common.Hash]struct{} // [eth/63] Set of the completed receipt fetches stateTaskIndex int // [eth/63] Counter indexing the added hashes to ensure prioritized retrieval order stateTaskPool map[common.Hash]int // [eth/63] Pending node data retrieval tasks, mapping to their priority stateTaskQueue *prque.Prque // [eth/63] Priority queue of the hashes to fetch the node data for statePendPool map[string]*fetchRequest // [eth/63] Currently pending node data retrieval operations stateDatabase ethdb.Database // [eth/63] Trie database to populate during state reassembly stateScheduler *state.StateSync // [eth/63] State trie synchronisation scheduler and integrator stateProcessors int32 // [eth/63] Number of currently running state processors stateSchedLock sync.RWMutex // [eth/63] Lock serializing access to the state scheduler resultCache []*fetchResult // Downloaded but not yet delivered fetch results resultOffset uint64 // Offset of the first cached fetch result in the block-chain lock sync.RWMutex } // newQueue creates a new download queue for scheduling block retrieval. func newQueue(stateDb ethdb.Database) *queue { return &queue{ hashPool: make(map[common.Hash]int), hashQueue: prque.New(), blockTaskPool: make(map[common.Hash]*types.Header), blockTaskQueue: prque.New(), blockPendPool: make(map[string]*fetchRequest), blockDonePool: make(map[common.Hash]struct{}), receiptTaskPool: make(map[common.Hash]*types.Header), receiptTaskQueue: prque.New(), receiptPendPool: make(map[string]*fetchRequest), receiptDonePool: make(map[common.Hash]struct{}), stateTaskPool: make(map[common.Hash]int), stateTaskQueue: prque.New(), statePendPool: make(map[string]*fetchRequest), stateDatabase: stateDb, resultCache: make([]*fetchResult, blockCacheLimit), } } // Reset clears out the queue contents. func (q *queue) Reset() { q.lock.Lock() defer q.lock.Unlock() q.mode = FullSync q.fastSyncPivot = 0 q.hashPool = make(map[common.Hash]int) q.hashQueue.Reset() q.hashCounter = 0 q.headerHead = common.Hash{} q.blockTaskPool = make(map[common.Hash]*types.Header) q.blockTaskQueue.Reset() q.blockPendPool = make(map[string]*fetchRequest) q.blockDonePool = make(map[common.Hash]struct{}) q.receiptTaskPool = make(map[common.Hash]*types.Header) q.receiptTaskQueue.Reset() q.receiptPendPool = make(map[string]*fetchRequest) q.receiptDonePool = make(map[common.Hash]struct{}) q.stateTaskIndex = 0 q.stateTaskPool = make(map[common.Hash]int) q.stateTaskQueue.Reset() q.statePendPool = make(map[string]*fetchRequest) q.stateScheduler = nil q.resultCache = make([]*fetchResult, blockCacheLimit) q.resultOffset = 0 } // PendingBlocks retrieves the number of block (body) requests pending for retrieval. func (q *queue) PendingBlocks() int { q.lock.RLock() defer q.lock.RUnlock() return q.hashQueue.Size() + q.blockTaskQueue.Size() } // PendingReceipts retrieves the number of block receipts pending for retrieval. func (q *queue) PendingReceipts() int { q.lock.RLock() defer q.lock.RUnlock() return q.receiptTaskQueue.Size() } // PendingNodeData retrieves the number of node data entries pending for retrieval. func (q *queue) PendingNodeData() int { q.stateSchedLock.RLock() defer q.stateSchedLock.RUnlock() if q.stateScheduler != nil { return q.stateScheduler.Pending() } return 0 } // InFlightBlocks retrieves whether there are block fetch requests currently in // flight. func (q *queue) InFlightBlocks() bool { q.lock.RLock() defer q.lock.RUnlock() return len(q.blockPendPool) > 0 } // InFlightReceipts retrieves whether there are receipt fetch requests currently // in flight. func (q *queue) InFlightReceipts() bool { q.lock.RLock() defer q.lock.RUnlock() return len(q.receiptPendPool) > 0 } // InFlightNodeData retrieves whether there are node data entry fetch requests // currently in flight. func (q *queue) InFlightNodeData() bool { q.lock.RLock() defer q.lock.RUnlock() return len(q.statePendPool)+int(atomic.LoadInt32(&q.stateProcessors)) > 0 } // Idle returns if the queue is fully idle or has some data still inside. This // method is used by the tester to detect termination events. func (q *queue) Idle() bool { q.lock.RLock() defer q.lock.RUnlock() queued := q.hashQueue.Size() + q.blockTaskQueue.Size() + q.receiptTaskQueue.Size() + q.stateTaskQueue.Size() pending := len(q.blockPendPool) + len(q.receiptPendPool) + len(q.statePendPool) cached := len(q.blockDonePool) + len(q.receiptDonePool) q.stateSchedLock.RLock() if q.stateScheduler != nil { queued += q.stateScheduler.Pending() } q.stateSchedLock.RUnlock() return (queued + pending + cached) == 0 } // ThrottleBlocks checks if the download should be throttled (active block (body) // fetches exceed block cache). func (q *queue) ThrottleBlocks() bool { q.lock.RLock() defer q.lock.RUnlock() // Calculate the currently in-flight block (body) requests pending := 0 for _, request := range q.blockPendPool { pending += len(request.Hashes) + len(request.Headers) } // Throttle if more blocks (bodies) are in-flight than free space in the cache return pending >= len(q.resultCache)-len(q.blockDonePool) } // ThrottleReceipts checks if the download should be throttled (active receipt // fetches exceed block cache). func (q *queue) ThrottleReceipts() bool { q.lock.RLock() defer q.lock.RUnlock() // Calculate the currently in-flight receipt requests pending := 0 for _, request := range q.receiptPendPool { pending += len(request.Headers) } // Throttle if more receipts are in-flight than free space in the cache return pending >= len(q.resultCache)-len(q.receiptDonePool) } // Schedule61 adds a set of hashes for the download queue for scheduling, returning // the new hashes encountered. func (q *queue) Schedule61(hashes []common.Hash, fifo bool) []common.Hash { q.lock.Lock() defer q.lock.Unlock() // Insert all the hashes prioritized in the arrival order inserts := make([]common.Hash, 0, len(hashes)) for _, hash := range hashes { // Skip anything we already have if old, ok := q.hashPool[hash]; ok { glog.V(logger.Warn).Infof("Hash %x already scheduled at index %v", hash, old) continue } // Update the counters and insert the hash q.hashCounter = q.hashCounter + 1 inserts = append(inserts, hash) q.hashPool[hash] = q.hashCounter if fifo { q.hashQueue.Push(hash, -float32(q.hashCounter)) // Lowest gets schedules first } else { q.hashQueue.Push(hash, float32(q.hashCounter)) // Highest gets schedules first } } return inserts } // Schedule adds a set of headers for the download queue for scheduling, returning // the new headers encountered. func (q *queue) Schedule(headers []*types.Header, from uint64) []*types.Header { q.lock.Lock() defer q.lock.Unlock() // Insert all the headers prioritized by the contained block number inserts := make([]*types.Header, 0, len(headers)) for _, header := range headers { // Make sure chain order is honored and preserved throughout hash := header.Hash() if header.Number == nil || header.Number.Uint64() != from { glog.V(logger.Warn).Infof("Header #%v [%x] broke chain ordering, expected %d", header.Number, hash[:4], from) break } if q.headerHead != (common.Hash{}) && q.headerHead != header.ParentHash { glog.V(logger.Warn).Infof("Header #%v [%x] broke chain ancestry", header.Number, hash[:4]) break } // Make sure no duplicate requests are executed if _, ok := q.blockTaskPool[hash]; ok { glog.V(logger.Warn).Infof("Header #%d [%x] already scheduled for block fetch", header.Number.Uint64(), hash[:4]) continue } if _, ok := q.receiptTaskPool[hash]; ok { glog.V(logger.Warn).Infof("Header #%d [%x] already scheduled for receipt fetch", header.Number.Uint64(), hash[:4]) continue } // Queue the header for content retrieval q.blockTaskPool[hash] = header q.blockTaskQueue.Push(header, -float32(header.Number.Uint64())) if q.mode == FastSync && header.Number.Uint64() <= q.fastSyncPivot { // Fast phase of the fast sync, retrieve receipts too q.receiptTaskPool[hash] = header q.receiptTaskQueue.Push(header, -float32(header.Number.Uint64())) } if q.mode == FastSync && header.Number.Uint64() == q.fastSyncPivot { // Pivoting point of the fast sync, retrieve the state tries q.stateSchedLock.Lock() q.stateScheduler = state.NewStateSync(header.Root, q.stateDatabase) q.stateSchedLock.Unlock() } inserts = append(inserts, header) q.headerHead = hash from++ } return inserts } // GetHeadResult retrieves the first fetch result from the cache, or nil if it hasn't // been downloaded yet (or simply non existent). func (q *queue) GetHeadResult() *fetchResult { q.lock.RLock() defer q.lock.RUnlock() if len(q.resultCache) == 0 || q.resultCache[0] == nil { return nil } if q.resultCache[0].Pending > 0 { return nil } if q.mode == FastSync && q.resultCache[0].Header.Number.Uint64() == q.fastSyncPivot { if len(q.stateTaskPool) > 0 { return nil } if q.PendingNodeData() > 0 { return nil } } return q.resultCache[0] } // TakeResults retrieves and permanently removes a batch of fetch results from // the cache. func (q *queue) TakeResults() []*fetchResult { q.lock.Lock() defer q.lock.Unlock() // Accumulate all available results results := []*fetchResult{} for _, result := range q.resultCache { // Stop if no more results are ready if result == nil || result.Pending > 0 { break } // The fast sync pivot block may only be processed after state fetch completes if q.mode == FastSync && result.Header.Number.Uint64() == q.fastSyncPivot { if len(q.stateTaskPool) > 0 { break } if q.PendingNodeData() > 0 { break } } // If we've just inserted the fast sync pivot, stop as the following batch needs different insertion if q.mode == FastSync && result.Header.Number.Uint64() == q.fastSyncPivot+1 && len(results) > 0 { break } results = append(results, result) hash := result.Header.Hash() delete(q.blockDonePool, hash) delete(q.receiptDonePool, hash) } // Delete the results from the slice and let them be garbage collected // without this slice trick the results would stay in memory until nil // would be assigned to them. copy(q.resultCache, q.resultCache[len(results):]) for k, n := len(q.resultCache)-len(results), len(q.resultCache); k < n; k++ { q.resultCache[k] = nil } q.resultOffset += uint64(len(results)) return results } // ReserveBlocks reserves a set of block hashes for the given peer, skipping any // previously failed download. func (q *queue) ReserveBlocks(p *peer, count int) *fetchRequest { return q.reserveHashes(p, count, q.hashQueue, nil, q.blockPendPool, len(q.resultCache)-len(q.blockDonePool)) } // ReserveNodeData reserves a set of node data hashes for the given peer, skipping // any previously failed download. func (q *queue) ReserveNodeData(p *peer, count int) *fetchRequest { // Create a task generator to fetch status-fetch tasks if all schedules ones are done generator := func(max int) { q.stateSchedLock.Lock() defer q.stateSchedLock.Unlock() for _, hash := range q.stateScheduler.Missing(max) { q.stateTaskPool[hash] = q.stateTaskIndex q.stateTaskQueue.Push(hash, -float32(q.stateTaskIndex)) q.stateTaskIndex++ } } return q.reserveHashes(p, count, q.stateTaskQueue, generator, q.statePendPool, count) } // reserveHashes reserves a set of hashes for the given peer, skipping previously // failed ones. func (q *queue) reserveHashes(p *peer, count int, taskQueue *prque.Prque, taskGen func(int), pendPool map[string]*fetchRequest, maxPending int) *fetchRequest { q.lock.Lock() defer q.lock.Unlock() // Short circuit if the peer's already downloading something (sanity check not // to corrupt state) if _, ok := pendPool[p.id]; ok { return nil } // Calculate an upper limit on the hashes we might fetch (i.e. throttling) allowance := maxPending if allowance > 0 { for _, request := range pendPool { allowance -= len(request.Hashes) } } // If there's a task generator, ask it to fill our task queue if taskGen != nil && taskQueue.Size() < allowance { taskGen(allowance - taskQueue.Size()) } if taskQueue.Empty() { return nil } // Retrieve a batch of hashes, skipping previously failed ones send := make(map[common.Hash]int) skip := make(map[common.Hash]int) for proc := 0; (allowance == 0 || proc < allowance) && len(send) < count && !taskQueue.Empty(); proc++ { hash, priority := taskQueue.Pop() if p.ignored.Has(hash) { skip[hash.(common.Hash)] = int(priority) } else { send[hash.(common.Hash)] = int(priority) } } // Merge all the skipped hashes back for hash, index := range skip { taskQueue.Push(hash, float32(index)) } // Assemble and return the block download request if len(send) == 0 { return nil } request := &fetchRequest{ Peer: p, Hashes: send, Time: time.Now(), } pendPool[p.id] = request return request } // ReserveBodies reserves a set of body fetches for the given peer, skipping any // previously failed downloads. Beside the next batch of needed fetches, it also // returns a flag whether empty blocks were queued requiring processing. func (q *queue) ReserveBodies(p *peer, count int) (*fetchRequest, bool, error) { noop := func(header *types.Header) bool { return header.TxHash == types.EmptyRootHash && header.UncleHash == types.EmptyUncleHash } return q.reserveHeaders(p, count, q.blockTaskPool, q.blockTaskQueue, q.blockPendPool, q.blockDonePool, noop) } // ReserveReceipts reserves a set of receipt fetches for the given peer, skipping // any previously failed downloads. Beside the next batch of needed fetches, it // also returns a flag whether empty receipts were queued requiring importing. func (q *queue) ReserveReceipts(p *peer, count int) (*fetchRequest, bool, error) { noop := func(header *types.Header) bool { return header.ReceiptHash == types.EmptyRootHash } return q.reserveHeaders(p, count, q.receiptTaskPool, q.receiptTaskQueue, q.receiptPendPool, q.receiptDonePool, noop) } // reserveHeaders reserves a set of data download operations for a given peer, // skipping any previously failed ones. This method is a generic version used // by the individual special reservation functions. func (q *queue) reserveHeaders(p *peer, count int, taskPool map[common.Hash]*types.Header, taskQueue *prque.Prque, pendPool map[string]*fetchRequest, donePool map[common.Hash]struct{}, noop func(*types.Header) bool) (*fetchRequest, bool, error) { q.lock.Lock() defer q.lock.Unlock() // Short circuit if the pool has been depleted, or if the peer's already // downloading something (sanity check not to corrupt state) if taskQueue.Empty() { return nil, false, nil } if _, ok := pendPool[p.id]; ok { return nil, false, nil } // Calculate an upper limit on the items we might fetch (i.e. throttling) space := len(q.resultCache) - len(donePool) for _, request := range pendPool { space -= len(request.Headers) } // Retrieve a batch of tasks, skipping previously failed ones send := make([]*types.Header, 0, count) skip := make([]*types.Header, 0) progress := false for proc := 0; proc < space && len(send) < count && !taskQueue.Empty(); proc++ { header := taskQueue.PopItem().(*types.Header) // If we're the first to request this task, initialize the result container index := int(header.Number.Int64() - int64(q.resultOffset)) if index >= len(q.resultCache) || index < 0 { return nil, false, errInvalidChain } if q.resultCache[index] == nil { components := 1 if q.mode == FastSync && header.Number.Uint64() <= q.fastSyncPivot { components = 2 } q.resultCache[index] = &fetchResult{ Pending: components, Header: header, } } // If this fetch task is a noop, skip this fetch operation if noop(header) { donePool[header.Hash()] = struct{}{} delete(taskPool, header.Hash()) space, proc = space-1, proc-1 q.resultCache[index].Pending-- progress = true continue } // Otherwise if not a known unknown block, add to the retrieve list if p.ignored.Has(header.Hash()) { skip = append(skip, header) } else { send = append(send, header) } } // Merge all the skipped headers back for _, header := range skip { taskQueue.Push(header, -float32(header.Number.Uint64())) } // Assemble and return the block download request if len(send) == 0 { return nil, progress, nil } request := &fetchRequest{ Peer: p, Headers: send, Time: time.Now(), } pendPool[p.id] = request return request, progress, nil } // CancelBlocks aborts a fetch request, returning all pending hashes to the queue. func (q *queue) CancelBlocks(request *fetchRequest) { q.cancel(request, q.hashQueue, q.blockPendPool) } // CancelBodies aborts a body fetch request, returning all pending headers to the // task queue. func (q *queue) CancelBodies(request *fetchRequest) { q.cancel(request, q.blockTaskQueue, q.blockPendPool) } // CancelReceipts aborts a body fetch request, returning all pending headers to // the task queue. func (q *queue) CancelReceipts(request *fetchRequest) { q.cancel(request, q.receiptTaskQueue, q.receiptPendPool) } // CancelNodeData aborts a node state data fetch request, returning all pending // hashes to the task queue. func (q *queue) CancelNodeData(request *fetchRequest) { q.cancel(request, q.stateTaskQueue, q.statePendPool) } // Cancel aborts a fetch request, returning all pending hashes to the task queue. func (q *queue) cancel(request *fetchRequest, taskQueue *prque.Prque, pendPool map[string]*fetchRequest) { q.lock.Lock() defer q.lock.Unlock() for hash, index := range request.Hashes { taskQueue.Push(hash, float32(index)) } for _, header := range request.Headers { taskQueue.Push(header, -float32(header.Number.Uint64())) } delete(pendPool, request.Peer.id) } // Revoke cancels all pending requests belonging to a given peer. This method is // meant to be called during a peer drop to quickly reassign owned data fetches // to remaining nodes. func (q *queue) Revoke(peerId string) { q.lock.Lock() defer q.lock.Unlock() if request, ok := q.blockPendPool[peerId]; ok { for hash, index := range request.Hashes { q.hashQueue.Push(hash, float32(index)) } for _, header := range request.Headers { q.blockTaskQueue.Push(header, -float32(header.Number.Uint64())) } delete(q.blockPendPool, peerId) } if request, ok := q.receiptPendPool[peerId]; ok { for _, header := range request.Headers { q.receiptTaskQueue.Push(header, -float32(header.Number.Uint64())) } delete(q.receiptPendPool, peerId) } if request, ok := q.statePendPool[peerId]; ok { for hash, index := range request.Hashes { q.stateTaskQueue.Push(hash, float32(index)) } delete(q.statePendPool, peerId) } } // ExpireBlocks checks for in flight requests that exceeded a timeout allowance, // canceling them and returning the responsible peers for penalization. func (q *queue) ExpireBlocks(timeout time.Duration) []string { return q.expire(timeout, q.blockPendPool, q.hashQueue, blockTimeoutMeter) } // ExpireBodies checks for in flight block body requests that exceeded a timeout // allowance, canceling them and returning the responsible peers for penalization. func (q *queue) ExpireBodies(timeout time.Duration) []string { return q.expire(timeout, q.blockPendPool, q.blockTaskQueue, bodyTimeoutMeter) } // ExpireReceipts checks for in flight receipt requests that exceeded a timeout // allowance, canceling them and returning the responsible peers for penalization. func (q *queue) ExpireReceipts(timeout time.Duration) []string { return q.expire(timeout, q.receiptPendPool, q.receiptTaskQueue, receiptTimeoutMeter) } // ExpireNodeData checks for in flight node data requests that exceeded a timeout // allowance, canceling them and returning the responsible peers for penalization. func (q *queue) ExpireNodeData(timeout time.Duration) []string { return q.expire(timeout, q.statePendPool, q.stateTaskQueue, stateTimeoutMeter) } // expire is the generic check that move expired tasks from a pending pool back // into a task pool, returning all entities caught with expired tasks. func (q *queue) expire(timeout time.Duration, pendPool map[string]*fetchRequest, taskQueue *prque.Prque, timeoutMeter metrics.Meter) []string { q.lock.Lock() defer q.lock.Unlock() // Iterate over the expired requests and return each to the queue peers := []string{} for id, request := range pendPool { if time.Since(request.Time) > timeout { // Update the metrics with the timeout timeoutMeter.Mark(1) // Return any non satisfied requests to the pool for hash, index := range request.Hashes { taskQueue.Push(hash, float32(index)) } for _, header := range request.Headers { taskQueue.Push(header, -float32(header.Number.Uint64())) } peers = append(peers, id) } } // Remove the expired requests from the pending pool for _, id := range peers { delete(pendPool, id) } return peers } // DeliverBlocks injects a block retrieval response into the download queue. func (q *queue) DeliverBlocks(id string, blocks []*types.Block) error { q.lock.Lock() defer q.lock.Unlock() // Short circuit if the blocks were never requested request := q.blockPendPool[id] if request == nil { return errNoFetchesPending } blockReqTimer.UpdateSince(request.Time) delete(q.blockPendPool, id) // If no blocks were retrieved, mark them as unavailable for the origin peer if len(blocks) == 0 { for hash, _ := range request.Hashes { request.Peer.ignored.Add(hash) } } // Iterate over the downloaded blocks and add each of them errs := make([]error, 0) for _, block := range blocks { // Skip any blocks that were not requested hash := block.Hash() if _, ok := request.Hashes[hash]; !ok { errs = append(errs, fmt.Errorf("non-requested block %x", hash)) continue } // Reconstruct the next result if contents match up index := int(block.Number().Int64() - int64(q.resultOffset)) if index >= len(q.resultCache) || index < 0 { errs = []error{errInvalidChain} break } q.resultCache[index] = &fetchResult{ Header: block.Header(), Transactions: block.Transactions(), Uncles: block.Uncles(), } q.blockDonePool[block.Hash()] = struct{}{} delete(request.Hashes, hash) delete(q.hashPool, hash) } // Return all failed or missing fetches to the queue for hash, index := range request.Hashes { q.hashQueue.Push(hash, float32(index)) } // If none of the blocks were good, it's a stale delivery switch { case len(errs) == 0: return nil case len(errs) == 1 && (errs[0] == errInvalidChain || errs[0] == errInvalidBlock): return errs[0] case len(errs) == len(request.Headers): return errStaleDelivery default: return fmt.Errorf("multiple failures: %v", errs) } } // DeliverBodies injects a block body retrieval response into the results queue. func (q *queue) DeliverBodies(id string, txLists [][]*types.Transaction, uncleLists [][]*types.Header) error { reconstruct := func(header *types.Header, index int, result *fetchResult) error { if types.DeriveSha(types.Transactions(txLists[index])) != header.TxHash || types.CalcUncleHash(uncleLists[index]) != header.UncleHash { return errInvalidBody } result.Transactions = txLists[index] result.Uncles = uncleLists[index] return nil } return q.deliver(id, q.blockTaskPool, q.blockTaskQueue, q.blockPendPool, q.blockDonePool, bodyReqTimer, len(txLists), reconstruct) } // DeliverReceipts injects a receipt retrieval response into the results queue. func (q *queue) DeliverReceipts(id string, receiptList [][]*types.Receipt) error { reconstruct := func(header *types.Header, index int, result *fetchResult) error { if types.DeriveSha(types.Receipts(receiptList[index])) != header.ReceiptHash { return errInvalidReceipt } result.Receipts = receiptList[index] return nil } return q.deliver(id, q.receiptTaskPool, q.receiptTaskQueue, q.receiptPendPool, q.receiptDonePool, receiptReqTimer, len(receiptList), reconstruct) } // deliver injects a data retrieval response into the results queue. func (q *queue) deliver(id string, taskPool map[common.Hash]*types.Header, taskQueue *prque.Prque, pendPool map[string]*fetchRequest, donePool map[common.Hash]struct{}, reqTimer metrics.Timer, results int, reconstruct func(header *types.Header, index int, result *fetchResult) error) error { q.lock.Lock() defer q.lock.Unlock() // Short circuit if the data was never requested request := pendPool[id] if request == nil { return errNoFetchesPending } reqTimer.UpdateSince(request.Time) delete(pendPool, id) // If no data items were retrieved, mark them as unavailable for the origin peer if results == 0 { for hash, _ := range request.Headers { request.Peer.ignored.Add(hash) } } // Assemble each of the results with their headers and retrieved data parts errs := make([]error, 0) for i, header := range request.Headers { // Short circuit assembly if no more fetch results are found if i >= results { break } // Reconstruct the next result if contents match up index := int(header.Number.Int64() - int64(q.resultOffset)) if index >= len(q.resultCache) || index < 0 || q.resultCache[index] == nil { errs = []error{errInvalidChain} break } if err := reconstruct(header, i, q.resultCache[index]); err != nil { errs = []error{err} break } donePool[header.Hash()] = struct{}{} q.resultCache[index].Pending-- // Clean up a successful fetch request.Headers[i] = nil delete(taskPool, header.Hash()) } // Return all failed or missing fetches to the queue for _, header := range request.Headers { if header != nil { taskQueue.Push(header, -float32(header.Number.Uint64())) } } // If none of the blocks were good, it's a stale delivery switch { case len(errs) == 0: return nil case len(errs) == 1 && (errs[0] == errInvalidChain || errs[0] == errInvalidBody || errs[0] == errInvalidReceipt): return errs[0] case len(errs) == len(request.Headers): return errStaleDelivery default: return fmt.Errorf("multiple failures: %v", errs) } } // DeliverNodeData injects a node state data retrieval response into the queue. func (q *queue) DeliverNodeData(id string, data [][]byte, callback func(error, int)) error { q.lock.Lock() defer q.lock.Unlock() // Short circuit if the data was never requested request := q.statePendPool[id] if request == nil { return errNoFetchesPending } stateReqTimer.UpdateSince(request.Time) delete(q.statePendPool, id) // If no data was retrieved, mark them as unavailable for the origin peer if len(data) == 0 { for hash, _ := range request.Hashes { request.Peer.ignored.Add(hash) } } // Iterate over the downloaded data and verify each of them errs := make([]error, 0) process := []trie.SyncResult{} for _, blob := range data { // Skip any blocks that were not requested hash := common.BytesToHash(crypto.Sha3(blob)) if _, ok := request.Hashes[hash]; !ok { errs = append(errs, fmt.Errorf("non-requested state data %x", hash)) continue } // Inject the next state trie item into the processing queue process = append(process, trie.SyncResult{hash, blob}) delete(request.Hashes, hash) delete(q.stateTaskPool, hash) } // Start the asynchronous node state data injection atomic.AddInt32(&q.stateProcessors, 1) go func() { defer atomic.AddInt32(&q.stateProcessors, -1) q.deliverNodeData(process, callback) }() // Return all failed or missing fetches to the queue for hash, index := range request.Hashes { q.stateTaskQueue.Push(hash, float32(index)) } // If none of the data items were good, it's a stale delivery switch { case len(errs) == 0: return nil case len(errs) == len(request.Hashes): return errStaleDelivery default: return fmt.Errorf("multiple failures: %v", errs) } } // deliverNodeData is the asynchronous node data processor that injects a batch // of sync results into the state scheduler. func (q *queue) deliverNodeData(results []trie.SyncResult, callback func(error, int)) { // Process results one by one to permit task fetches in between for i, result := range results { q.stateSchedLock.Lock() if q.stateScheduler == nil { // Syncing aborted since this async delivery started, bail out q.stateSchedLock.Unlock() callback(errNoFetchesPending, i) return } if _, err := q.stateScheduler.Process([]trie.SyncResult{result}); err != nil { // Processing a state result failed, bail out q.stateSchedLock.Unlock() callback(err, i) return } // Item processing succeeded, release the lock (temporarily) q.stateSchedLock.Unlock() } callback(nil, len(results)) } // Prepare configures the result cache to allow accepting and caching inbound // fetch results. func (q *queue) Prepare(offset uint64, mode SyncMode, pivot uint64) { q.lock.Lock() defer q.lock.Unlock() if q.resultOffset < offset { q.resultOffset = offset } q.fastSyncPivot = 0 if mode == FastSync { q.fastSyncPivot = pivot } q.mode = mode }