Official Go implementation of the Ethereum protocol
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
go-ethereum/core/state/snapshot/iterator_test.go

604 lines
18 KiB

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"encoding/binary"
"fmt"
"math/rand"
"testing"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
)
// TestIteratorBasics tests some simple single-layer iteration
func TestIteratorBasics(t *testing.T) {
var (
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
// Fill up a parent
for i := 0; i < 100; i++ {
h := randomHash()
data := randomAccount()
accounts[h] = data
if rand.Intn(20) < 10 {
accStorage := make(map[common.Hash][]byte)
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
storage[h] = accStorage
}
}
// Add some (identical) layers on top
parent := newDiffLayer(emptyLayer(), common.Hash{}, accounts, storage)
it := parent.AccountIterator(common.Hash{})
verifyIterator(t, 100, it)
}
type testIterator struct {
values []byte
}
func newTestIterator(values ...byte) *testIterator {
return &testIterator{values}
}
func (ti *testIterator) Seek(common.Hash) {
panic("implement me")
}
func (ti *testIterator) Next() bool {
ti.values = ti.values[1:]
return len(ti.values) > 0
}
func (ti *testIterator) Error() error {
return nil
}
func (ti *testIterator) Hash() common.Hash {
return common.BytesToHash([]byte{ti.values[0]})
}
func (ti *testIterator) Account() []byte {
return nil
}
func (ti *testIterator) Release() {}
func TestFastIteratorBasics(t *testing.T) {
type testCase struct {
lists [][]byte
expKeys []byte
}
for i, tc := range []testCase{
{lists: [][]byte{{0, 1, 8}, {1, 2, 8}, {2, 9}, {4},
{7, 14, 15}, {9, 13, 15, 16}},
expKeys: []byte{0, 1, 2, 4, 7, 8, 9, 13, 14, 15, 16}},
{lists: [][]byte{{0, 8}, {1, 2, 8}, {7, 14, 15}, {8, 9},
{9, 10}, {10, 13, 15, 16}},
expKeys: []byte{0, 1, 2, 7, 8, 9, 10, 13, 14, 15, 16}},
} {
var iterators []*weightedAccountIterator
for i, data := range tc.lists {
it := newTestIterator(data...)
iterators = append(iterators, &weightedAccountIterator{it, i})
}
fi := &fastAccountIterator{
iterators: iterators,
initiated: false,
}
count := 0
for fi.Next() {
if got, exp := fi.Hash()[31], tc.expKeys[count]; exp != got {
t.Errorf("tc %d, [%d]: got %d exp %d", i, count, got, exp)
}
count++
}
}
}
func verifyIterator(t *testing.T, expCount int, it AccountIterator) {
t.Helper()
var (
count = 0
last = common.Hash{}
)
for it.Next() {
if hash := it.Hash(); bytes.Compare(last[:], hash[:]) >= 0 {
t.Errorf("wrong order: %x >= %x", last, hash)
}
count++
}
if count != expCount {
t.Errorf("iterator count mismatch: have %d, want %d", count, expCount)
}
if err := it.Error(); err != nil {
t.Errorf("iterator failed: %v", err)
}
}
// TestIteratorTraversal tests some simple multi-layer iteration.
func TestIteratorTraversal(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// Stack three diff layers on top with various overlaps
snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"),
randomAccountSet("0xaa", "0xee", "0xff", "0xf0"), nil)
snaps.Update(common.HexToHash("0x03"), common.HexToHash("0x02"),
randomAccountSet("0xbb", "0xdd", "0xf0"), nil)
snaps.Update(common.HexToHash("0x04"), common.HexToHash("0x03"),
randomAccountSet("0xcc", "0xf0", "0xff"), nil)
// Verify the single and multi-layer iterators
head := snaps.Snapshot(common.HexToHash("0x04"))
verifyIterator(t, 3, head.(snapshot).AccountIterator(common.Hash{}))
verifyIterator(t, 7, head.(*diffLayer).newBinaryAccountIterator())
it, _ := snaps.AccountIterator(common.HexToHash("0x04"), common.Hash{})
defer it.Release()
verifyIterator(t, 7, it)
}
// TestIteratorTraversalValues tests some multi-layer iteration, where we
// also expect the correct values to show up.
func TestIteratorTraversalValues(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// Create a batch of account sets to seed subsequent layers with
var (
a = make(map[common.Hash][]byte)
b = make(map[common.Hash][]byte)
c = make(map[common.Hash][]byte)
d = make(map[common.Hash][]byte)
e = make(map[common.Hash][]byte)
f = make(map[common.Hash][]byte)
g = make(map[common.Hash][]byte)
h = make(map[common.Hash][]byte)
)
for i := byte(2); i < 0xff; i++ {
a[common.Hash{i}] = []byte(fmt.Sprintf("layer-%d, key %d", 0, i))
if i > 20 && i%2 == 0 {
b[common.Hash{i}] = []byte(fmt.Sprintf("layer-%d, key %d", 1, i))
}
if i%4 == 0 {
c[common.Hash{i}] = []byte(fmt.Sprintf("layer-%d, key %d", 2, i))
}
if i%7 == 0 {
d[common.Hash{i}] = []byte(fmt.Sprintf("layer-%d, key %d", 3, i))
}
if i%8 == 0 {
e[common.Hash{i}] = []byte(fmt.Sprintf("layer-%d, key %d", 4, i))
}
if i > 50 || i < 85 {
f[common.Hash{i}] = []byte(fmt.Sprintf("layer-%d, key %d", 5, i))
}
if i%64 == 0 {
g[common.Hash{i}] = []byte(fmt.Sprintf("layer-%d, key %d", 6, i))
}
if i%128 == 0 {
h[common.Hash{i}] = []byte(fmt.Sprintf("layer-%d, key %d", 7, i))
}
}
// Assemble a stack of snapshots from the account layers
snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"), a, nil)
snaps.Update(common.HexToHash("0x03"), common.HexToHash("0x02"), b, nil)
snaps.Update(common.HexToHash("0x04"), common.HexToHash("0x03"), c, nil)
snaps.Update(common.HexToHash("0x05"), common.HexToHash("0x04"), d, nil)
snaps.Update(common.HexToHash("0x06"), common.HexToHash("0x05"), e, nil)
snaps.Update(common.HexToHash("0x07"), common.HexToHash("0x06"), f, nil)
snaps.Update(common.HexToHash("0x08"), common.HexToHash("0x07"), g, nil)
snaps.Update(common.HexToHash("0x09"), common.HexToHash("0x08"), h, nil)
it, _ := snaps.AccountIterator(common.HexToHash("0x09"), common.Hash{})
defer it.Release()
head := snaps.Snapshot(common.HexToHash("0x09"))
for it.Next() {
hash := it.Hash()
want, err := head.AccountRLP(hash)
if err != nil {
t.Fatalf("failed to retrieve expected account: %v", err)
}
if have := it.Account(); !bytes.Equal(want, have) {
t.Fatalf("hash %x: account mismatch: have %x, want %x", hash, have, want)
}
}
}
// This testcase is notorious, all layers contain the exact same 200 accounts.
func TestIteratorLargeTraversal(t *testing.T) {
// Create a custom account factory to recreate the same addresses
makeAccounts := func(num int) map[common.Hash][]byte {
accounts := make(map[common.Hash][]byte)
for i := 0; i < num; i++ {
h := common.Hash{}
binary.BigEndian.PutUint64(h[:], uint64(i+1))
accounts[h] = randomAccount()
}
return accounts
}
// Build up a large stack of snapshots
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
for i := 1; i < 128; i++ {
snaps.Update(common.HexToHash(fmt.Sprintf("0x%02x", i+1)), common.HexToHash(fmt.Sprintf("0x%02x", i)), makeAccounts(200), nil)
}
// Iterate the entire stack and ensure everything is hit only once
head := snaps.Snapshot(common.HexToHash("0x80"))
verifyIterator(t, 200, head.(snapshot).AccountIterator(common.Hash{}))
verifyIterator(t, 200, head.(*diffLayer).newBinaryAccountIterator())
it, _ := snaps.AccountIterator(common.HexToHash("0x80"), common.Hash{})
defer it.Release()
verifyIterator(t, 200, it)
}
// TestIteratorFlattening tests what happens when we
// - have a live iterator on child C (parent C1 -> C2 .. CN)
// - flattens C2 all the way into CN
// - continues iterating
func TestIteratorFlattening(t *testing.T) {
// Create an empty base layer and a snapshot tree out of it
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
// Create a stack of diffs on top
snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"),
randomAccountSet("0xaa", "0xee", "0xff", "0xf0"), nil)
snaps.Update(common.HexToHash("0x03"), common.HexToHash("0x02"),
randomAccountSet("0xbb", "0xdd", "0xf0"), nil)
snaps.Update(common.HexToHash("0x04"), common.HexToHash("0x03"),
randomAccountSet("0xcc", "0xf0", "0xff"), nil)
// Create an iterator and flatten the data from underneath it
it, _ := snaps.AccountIterator(common.HexToHash("0x04"), common.Hash{})
defer it.Release()
if err := snaps.Cap(common.HexToHash("0x04"), 1); err != nil {
t.Fatalf("failed to flatten snapshot stack: %v", err)
}
//verifyIterator(t, 7, it)
}
func TestIteratorSeek(t *testing.T) {
// Create a snapshot stack with some initial data
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"),
randomAccountSet("0xaa", "0xee", "0xff", "0xf0"), nil)
snaps.Update(common.HexToHash("0x03"), common.HexToHash("0x02"),
randomAccountSet("0xbb", "0xdd", "0xf0"), nil)
snaps.Update(common.HexToHash("0x04"), common.HexToHash("0x03"),
randomAccountSet("0xcc", "0xf0", "0xff"), nil)
// Construct various iterators and ensure their tranversal is correct
it, _ := snaps.AccountIterator(common.HexToHash("0x02"), common.HexToHash("0xdd"))
defer it.Release()
verifyIterator(t, 3, it) // expected: ee, f0, ff
it, _ = snaps.AccountIterator(common.HexToHash("0x02"), common.HexToHash("0xaa"))
defer it.Release()
verifyIterator(t, 3, it) // expected: ee, f0, ff
it, _ = snaps.AccountIterator(common.HexToHash("0x02"), common.HexToHash("0xff"))
defer it.Release()
verifyIterator(t, 0, it) // expected: nothing
it, _ = snaps.AccountIterator(common.HexToHash("0x04"), common.HexToHash("0xbb"))
defer it.Release()
verifyIterator(t, 5, it) // expected: cc, dd, ee, f0, ff
it, _ = snaps.AccountIterator(common.HexToHash("0x04"), common.HexToHash("0xef"))
defer it.Release()
verifyIterator(t, 2, it) // expected: f0, ff
it, _ = snaps.AccountIterator(common.HexToHash("0x04"), common.HexToHash("0xf0"))
defer it.Release()
verifyIterator(t, 1, it) // expected: ff
it, _ = snaps.AccountIterator(common.HexToHash("0x04"), common.HexToHash("0xff"))
defer it.Release()
verifyIterator(t, 0, it) // expected: nothing
}
// BenchmarkIteratorTraversal is a bit a bit notorious -- all layers contain the
// exact same 200 accounts. That means that we need to process 2000 items, but
// only spit out 200 values eventually.
//
// The value-fetching benchmark is easy on the binary iterator, since it never has to reach
// down at any depth for retrieving the values -- all are on the toppmost layer
//
// BenchmarkIteratorTraversal/binary_iterator_keys-6 2239 483674 ns/op
// BenchmarkIteratorTraversal/binary_iterator_values-6 2403 501810 ns/op
// BenchmarkIteratorTraversal/fast_iterator_keys-6 1923 677966 ns/op
// BenchmarkIteratorTraversal/fast_iterator_values-6 1741 649967 ns/op
func BenchmarkIteratorTraversal(b *testing.B) {
// Create a custom account factory to recreate the same addresses
makeAccounts := func(num int) map[common.Hash][]byte {
accounts := make(map[common.Hash][]byte)
for i := 0; i < num; i++ {
h := common.Hash{}
binary.BigEndian.PutUint64(h[:], uint64(i+1))
accounts[h] = randomAccount()
}
return accounts
}
// Build up a large stack of snapshots
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
for i := 1; i <= 100; i++ {
snaps.Update(common.HexToHash(fmt.Sprintf("0x%02x", i+1)), common.HexToHash(fmt.Sprintf("0x%02x", i)), makeAccounts(200), nil)
}
// We call this once before the benchmark, so the creation of
// sorted accountlists are not included in the results.
head := snaps.Snapshot(common.HexToHash("0x65"))
head.(*diffLayer).newBinaryAccountIterator()
b.Run("binary iterator keys", func(b *testing.B) {
for i := 0; i < b.N; i++ {
got := 0
it := head.(*diffLayer).newBinaryAccountIterator()
for it.Next() {
got++
}
if exp := 200; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
b.Run("binary iterator values", func(b *testing.B) {
for i := 0; i < b.N; i++ {
got := 0
it := head.(*diffLayer).newBinaryAccountIterator()
for it.Next() {
got++
head.(*diffLayer).accountRLP(it.Hash(), 0)
}
if exp := 200; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
b.Run("fast iterator keys", func(b *testing.B) {
for i := 0; i < b.N; i++ {
it, _ := snaps.AccountIterator(common.HexToHash("0x65"), common.Hash{})
defer it.Release()
got := 0
for it.Next() {
got++
}
if exp := 200; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
b.Run("fast iterator values", func(b *testing.B) {
for i := 0; i < b.N; i++ {
it, _ := snaps.AccountIterator(common.HexToHash("0x65"), common.Hash{})
defer it.Release()
got := 0
for it.Next() {
got++
it.Account()
}
if exp := 200; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
}
// BenchmarkIteratorLargeBaselayer is a pretty realistic benchmark, where
// the baselayer is a lot larger than the upper layer.
//
// This is heavy on the binary iterator, which in most cases will have to
// call recursively 100 times for the majority of the values
//
// BenchmarkIteratorLargeBaselayer/binary_iterator_(keys)-6 514 1971999 ns/op
// BenchmarkIteratorLargeBaselayer/binary_iterator_(values)-6 61 18997492 ns/op
// BenchmarkIteratorLargeBaselayer/fast_iterator_(keys)-6 10000 114385 ns/op
// BenchmarkIteratorLargeBaselayer/fast_iterator_(values)-6 4047 296823 ns/op
func BenchmarkIteratorLargeBaselayer(b *testing.B) {
// Create a custom account factory to recreate the same addresses
makeAccounts := func(num int) map[common.Hash][]byte {
accounts := make(map[common.Hash][]byte)
for i := 0; i < num; i++ {
h := common.Hash{}
binary.BigEndian.PutUint64(h[:], uint64(i+1))
accounts[h] = randomAccount()
}
return accounts
}
// Build up a large stack of snapshots
base := &diskLayer{
diskdb: rawdb.NewMemoryDatabase(),
root: common.HexToHash("0x01"),
cache: fastcache.New(1024 * 500),
}
snaps := &Tree{
layers: map[common.Hash]snapshot{
base.root: base,
},
}
snaps.Update(common.HexToHash("0x02"), common.HexToHash("0x01"), makeAccounts(2000), nil)
for i := 2; i <= 100; i++ {
snaps.Update(common.HexToHash(fmt.Sprintf("0x%02x", i+1)), common.HexToHash(fmt.Sprintf("0x%02x", i)), makeAccounts(20), nil)
}
// We call this once before the benchmark, so the creation of
// sorted accountlists are not included in the results.
head := snaps.Snapshot(common.HexToHash("0x65"))
head.(*diffLayer).newBinaryAccountIterator()
b.Run("binary iterator (keys)", func(b *testing.B) {
for i := 0; i < b.N; i++ {
got := 0
it := head.(*diffLayer).newBinaryAccountIterator()
for it.Next() {
got++
}
if exp := 2000; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
b.Run("binary iterator (values)", func(b *testing.B) {
for i := 0; i < b.N; i++ {
got := 0
it := head.(*diffLayer).newBinaryAccountIterator()
for it.Next() {
got++
v := it.Hash()
head.(*diffLayer).accountRLP(v, 0)
}
if exp := 2000; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
b.Run("fast iterator (keys)", func(b *testing.B) {
for i := 0; i < b.N; i++ {
it, _ := snaps.AccountIterator(common.HexToHash("0x65"), common.Hash{})
defer it.Release()
got := 0
for it.Next() {
got++
}
if exp := 2000; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
b.Run("fast iterator (values)", func(b *testing.B) {
for i := 0; i < b.N; i++ {
it, _ := snaps.AccountIterator(common.HexToHash("0x65"), common.Hash{})
defer it.Release()
got := 0
for it.Next() {
it.Account()
got++
}
if exp := 2000; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
}
/*
func BenchmarkBinaryAccountIteration(b *testing.B) {
benchmarkAccountIteration(b, func(snap snapshot) AccountIterator {
return snap.(*diffLayer).newBinaryAccountIterator()
})
}
func BenchmarkFastAccountIteration(b *testing.B) {
benchmarkAccountIteration(b, newFastAccountIterator)
}
func benchmarkAccountIteration(b *testing.B, iterator func(snap snapshot) AccountIterator) {
// Create a diff stack and randomize the accounts across them
layers := make([]map[common.Hash][]byte, 128)
for i := 0; i < len(layers); i++ {
layers[i] = make(map[common.Hash][]byte)
}
for i := 0; i < b.N; i++ {
depth := rand.Intn(len(layers))
layers[depth][randomHash()] = randomAccount()
}
stack := snapshot(emptyLayer())
for _, layer := range layers {
stack = stack.Update(common.Hash{}, layer, nil)
}
// Reset the timers and report all the stats
it := iterator(stack)
b.ResetTimer()
b.ReportAllocs()
for it.Next() {
}
}
*/