Git with a cup of tea, painless self-hosted git service Mirror for internal git.with.parts use https://git.with.parts
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
gitea/vendor/github.com/klauspost/compress/flate/stateless.go

298 lines
7.3 KiB

package flate
import (
"io"
"math"
"sync"
)
const (
maxStatelessBlock = math.MaxInt16
// dictionary will be taken from maxStatelessBlock, so limit it.
maxStatelessDict = 8 << 10
slTableBits = 13
slTableSize = 1 << slTableBits
slTableShift = 32 - slTableBits
)
type statelessWriter struct {
dst io.Writer
closed bool
}
func (s *statelessWriter) Close() error {
if s.closed {
return nil
}
s.closed = true
// Emit EOF block
return StatelessDeflate(s.dst, nil, true, nil)
}
func (s *statelessWriter) Write(p []byte) (n int, err error) {
err = StatelessDeflate(s.dst, p, false, nil)
if err != nil {
return 0, err
}
return len(p), nil
}
func (s *statelessWriter) Reset(w io.Writer) {
s.dst = w
s.closed = false
}
// NewStatelessWriter will do compression but without maintaining any state
// between Write calls.
// There will be no memory kept between Write calls,
// but compression and speed will be suboptimal.
// Because of this, the size of actual Write calls will affect output size.
func NewStatelessWriter(dst io.Writer) io.WriteCloser {
return &statelessWriter{dst: dst}
}
// bitWriterPool contains bit writers that can be reused.
var bitWriterPool = sync.Pool{
New: func() interface{} {
return newHuffmanBitWriter(nil)
},
}
// StatelessDeflate allows to compress directly to a Writer without retaining state.
// When returning everything will be flushed.
// Up to 8KB of an optional dictionary can be given which is presumed to presumed to precede the block.
// Longer dictionaries will be truncated and will still produce valid output.
// Sending nil dictionary is perfectly fine.
func StatelessDeflate(out io.Writer, in []byte, eof bool, dict []byte) error {
var dst tokens
bw := bitWriterPool.Get().(*huffmanBitWriter)
bw.reset(out)
defer func() {
// don't keep a reference to our output
bw.reset(nil)
bitWriterPool.Put(bw)
}()
if eof && len(in) == 0 {
// Just write an EOF block.
// Could be faster...
bw.writeStoredHeader(0, true)
bw.flush()
return bw.err
}
// Truncate dict
if len(dict) > maxStatelessDict {
dict = dict[len(dict)-maxStatelessDict:]
}
for len(in) > 0 {
todo := in
if len(todo) > maxStatelessBlock-len(dict) {
todo = todo[:maxStatelessBlock-len(dict)]
}
in = in[len(todo):]
uncompressed := todo
if len(dict) > 0 {
// combine dict and source
bufLen := len(todo) + len(dict)
combined := make([]byte, bufLen)
copy(combined, dict)
copy(combined[len(dict):], todo)
todo = combined
}
// Compress
statelessEnc(&dst, todo, int16(len(dict)))
isEof := eof && len(in) == 0
if dst.n == 0 {
bw.writeStoredHeader(len(uncompressed), isEof)
if bw.err != nil {
return bw.err
}
bw.writeBytes(uncompressed)
} else if int(dst.n) > len(uncompressed)-len(uncompressed)>>4 {
// If we removed less than 1/16th, huffman compress the block.
bw.writeBlockHuff(isEof, uncompressed, len(in) == 0)
} else {
bw.writeBlockDynamic(&dst, isEof, uncompressed, len(in) == 0)
}
if len(in) > 0 {
// Retain a dict if we have more
dict = todo[len(todo)-maxStatelessDict:]
dst.Reset()
}
if bw.err != nil {
return bw.err
}
}
if !eof {
// Align, only a stored block can do that.
bw.writeStoredHeader(0, false)
}
bw.flush()
return bw.err
}
func hashSL(u uint32) uint32 {
return (u * 0x1e35a7bd) >> slTableShift
}
func load3216(b []byte, i int16) uint32 {
// Help the compiler eliminate bounds checks on the read so it can be done in a single read.
b = b[i:]
b = b[:4]
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}
func load6416(b []byte, i int16) uint64 {
// Help the compiler eliminate bounds checks on the read so it can be done in a single read.
b = b[i:]
b = b[:8]
return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
}
func statelessEnc(dst *tokens, src []byte, startAt int16) {
const (
inputMargin = 12 - 1
minNonLiteralBlockSize = 1 + 1 + inputMargin
)
type tableEntry struct {
offset int16
}
var table [slTableSize]tableEntry
// This check isn't in the Snappy implementation, but there, the caller
// instead of the callee handles this case.
if len(src)-int(startAt) < minNonLiteralBlockSize {
// We do not fill the token table.
// This will be picked up by caller.
dst.n = 0
return
}
// Index until startAt
if startAt > 0 {
cv := load3232(src, 0)
for i := int16(0); i < startAt; i++ {
table[hashSL(cv)] = tableEntry{offset: i}
cv = (cv >> 8) | (uint32(src[i+4]) << 24)
}
}
s := startAt + 1
nextEmit := startAt
// sLimit is when to stop looking for offset/length copies. The inputMargin
// lets us use a fast path for emitLiteral in the main loop, while we are
// looking for copies.
sLimit := int16(len(src) - inputMargin)
// nextEmit is where in src the next emitLiteral should start from.
cv := load3216(src, s)
for {
const skipLog = 5
const doEvery = 2
nextS := s
var candidate tableEntry
for {
nextHash := hashSL(cv)
candidate = table[nextHash]
nextS = s + doEvery + (s-nextEmit)>>skipLog
if nextS > sLimit || nextS <= 0 {
goto emitRemainder
}
now := load6416(src, nextS)
table[nextHash] = tableEntry{offset: s}
nextHash = hashSL(uint32(now))
if cv == load3216(src, candidate.offset) {
table[nextHash] = tableEntry{offset: nextS}
break
}
// Do one right away...
cv = uint32(now)
s = nextS
nextS++
candidate = table[nextHash]
now >>= 8
table[nextHash] = tableEntry{offset: s}
if cv == load3216(src, candidate.offset) {
table[nextHash] = tableEntry{offset: nextS}
break
}
cv = uint32(now)
s = nextS
}
// A 4-byte match has been found. We'll later see if more than 4 bytes
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
// them as literal bytes.
for {
// Invariant: we have a 4-byte match at s, and no need to emit any
// literal bytes prior to s.
// Extend the 4-byte match as long as possible.
t := candidate.offset
l := int16(matchLen(src[s+4:], src[t+4:]) + 4)
// Extend backwards
for t > 0 && s > nextEmit && src[t-1] == src[s-1] {
s--
t--
l++
}
if nextEmit < s {
emitLiteral(dst, src[nextEmit:s])
}
// Save the match found
dst.AddMatchLong(int32(l), uint32(s-t-baseMatchOffset))
s += l
nextEmit = s
if nextS >= s {
s = nextS + 1
}
if s >= sLimit {
goto emitRemainder
}
// We could immediately start working at s now, but to improve
// compression we first update the hash table at s-2 and at s. If
// another emitCopy is not our next move, also calculate nextHash
// at s+1. At least on GOARCH=amd64, these three hash calculations
// are faster as one load64 call (with some shifts) instead of
// three load32 calls.
x := load6416(src, s-2)
o := s - 2
prevHash := hashSL(uint32(x))
table[prevHash] = tableEntry{offset: o}
x >>= 16
currHash := hashSL(uint32(x))
candidate = table[currHash]
table[currHash] = tableEntry{offset: o + 2}
if uint32(x) != load3216(src, candidate.offset) {
cv = uint32(x >> 8)
s++
break
}
}
}
emitRemainder:
if int(nextEmit) < len(src) {
// If nothing was added, don't encode literals.
if dst.n == 0 {
return
}
emitLiteral(dst, src[nextEmit:])
}
}