Git with a cup of tea, painless self-hosted git service Mirror for internal git.with.parts use https://git.with.parts
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
gitea/vendor/github.com/syndtr/goleveldb/leveldb/db_write.go

465 lines
11 KiB

// Copyright (c) 2012, Suryandaru Triandana <syndtr@gmail.com>
// All rights reserved.
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
package leveldb
import (
"sync/atomic"
"time"
"github.com/syndtr/goleveldb/leveldb/memdb"
"github.com/syndtr/goleveldb/leveldb/opt"
"github.com/syndtr/goleveldb/leveldb/util"
)
func (db *DB) writeJournal(batches []*Batch, seq uint64, sync bool) error {
wr, err := db.journal.Next()
if err != nil {
return err
}
if err := writeBatchesWithHeader(wr, batches, seq); err != nil {
return err
}
if err := db.journal.Flush(); err != nil {
return err
}
if sync {
return db.journalWriter.Sync()
}
return nil
}
func (db *DB) rotateMem(n int, wait bool) (mem *memDB, err error) {
retryLimit := 3
retry:
// Wait for pending memdb compaction.
err = db.compTriggerWait(db.mcompCmdC)
if err != nil {
return
}
retryLimit--
// Create new memdb and journal.
mem, err = db.newMem(n)
if err != nil {
if err == errHasFrozenMem {
if retryLimit <= 0 {
panic("BUG: still has frozen memdb")
}
goto retry
}
return
}
// Schedule memdb compaction.
if wait {
err = db.compTriggerWait(db.mcompCmdC)
} else {
db.compTrigger(db.mcompCmdC)
}
return
}
func (db *DB) flush(n int) (mdb *memDB, mdbFree int, err error) {
delayed := false
slowdownTrigger := db.s.o.GetWriteL0SlowdownTrigger()
pauseTrigger := db.s.o.GetWriteL0PauseTrigger()
flush := func() (retry bool) {
mdb = db.getEffectiveMem()
if mdb == nil {
err = ErrClosed
return false
}
defer func() {
if retry {
mdb.decref()
mdb = nil
}
}()
tLen := db.s.tLen(0)
mdbFree = mdb.Free()
switch {
case tLen >= slowdownTrigger && !delayed:
delayed = true
time.Sleep(time.Millisecond)
case mdbFree >= n:
return false
case tLen >= pauseTrigger:
delayed = true
// Set the write paused flag explicitly.
atomic.StoreInt32(&db.inWritePaused, 1)
err = db.compTriggerWait(db.tcompCmdC)
// Unset the write paused flag.
atomic.StoreInt32(&db.inWritePaused, 0)
if err != nil {
return false
}
default:
// Allow memdb to grow if it has no entry.
if mdb.Len() == 0 {
mdbFree = n
} else {
mdb.decref()
mdb, err = db.rotateMem(n, false)
if err == nil {
mdbFree = mdb.Free()
} else {
mdbFree = 0
}
}
return false
}
return true
}
start := time.Now()
for flush() {
}
if delayed {
db.writeDelay += time.Since(start)
db.writeDelayN++
} else if db.writeDelayN > 0 {
db.logf("db@write was delayed N·%d T·%v", db.writeDelayN, db.writeDelay)
atomic.AddInt32(&db.cWriteDelayN, int32(db.writeDelayN))
atomic.AddInt64(&db.cWriteDelay, int64(db.writeDelay))
db.writeDelay = 0
db.writeDelayN = 0
}
return
}
type writeMerge struct {
sync bool
batch *Batch
keyType keyType
key, value []byte
}
func (db *DB) unlockWrite(overflow bool, merged int, err error) {
for i := 0; i < merged; i++ {
db.writeAckC <- err
}
if overflow {
// Pass lock to the next write (that failed to merge).
db.writeMergedC <- false
} else {
// Release lock.
<-db.writeLockC
}
}
// ourBatch is batch that we can modify.
func (db *DB) writeLocked(batch, ourBatch *Batch, merge, sync bool) error {
// Try to flush memdb. This method would also trying to throttle writes
// if it is too fast and compaction cannot catch-up.
mdb, mdbFree, err := db.flush(batch.internalLen)
if err != nil {
db.unlockWrite(false, 0, err)
return err
}
defer mdb.decref()
var (
overflow bool
merged int
batches = []*Batch{batch}
)
if merge {
// Merge limit.
var mergeLimit int
if batch.internalLen > 128<<10 {
mergeLimit = (1 << 20) - batch.internalLen
} else {
mergeLimit = 128 << 10
}
mergeCap := mdbFree - batch.internalLen
if mergeLimit > mergeCap {
mergeLimit = mergeCap
}
merge:
for mergeLimit > 0 {
select {
case incoming := <-db.writeMergeC:
if incoming.batch != nil {
// Merge batch.
if incoming.batch.internalLen > mergeLimit {
overflow = true
break merge
}
batches = append(batches, incoming.batch)
mergeLimit -= incoming.batch.internalLen
} else {
// Merge put.
internalLen := len(incoming.key) + len(incoming.value) + 8
if internalLen > mergeLimit {
overflow = true
break merge
}
if ourBatch == nil {
ourBatch = db.batchPool.Get().(*Batch)
ourBatch.Reset()
batches = append(batches, ourBatch)
}
// We can use same batch since concurrent write doesn't
// guarantee write order.
ourBatch.appendRec(incoming.keyType, incoming.key, incoming.value)
mergeLimit -= internalLen
}
sync = sync || incoming.sync
merged++
db.writeMergedC <- true
default:
break merge
}
}
}
// Release ourBatch if any.
if ourBatch != nil {
defer db.batchPool.Put(ourBatch)
}
// Seq number.
seq := db.seq + 1
// Write journal.
if err := db.writeJournal(batches, seq, sync); err != nil {
db.unlockWrite(overflow, merged, err)
return err
}
// Put batches.
for _, batch := range batches {
if err := batch.putMem(seq, mdb.DB); err != nil {
panic(err)
}
seq += uint64(batch.Len())
}
// Incr seq number.
db.addSeq(uint64(batchesLen(batches)))
// Rotate memdb if it's reach the threshold.
if batch.internalLen >= mdbFree {
db.rotateMem(0, false)
}
db.unlockWrite(overflow, merged, nil)
return nil
}
// Write apply the given batch to the DB. The batch records will be applied
// sequentially. Write might be used concurrently, when used concurrently and
// batch is small enough, write will try to merge the batches. Set NoWriteMerge
// option to true to disable write merge.
//
// It is safe to modify the contents of the arguments after Write returns but
// not before. Write will not modify content of the batch.
func (db *DB) Write(batch *Batch, wo *opt.WriteOptions) error {
if err := db.ok(); err != nil || batch == nil || batch.Len() == 0 {
return err
}
// If the batch size is larger than write buffer, it may justified to write
// using transaction instead. Using transaction the batch will be written
// into tables directly, skipping the journaling.
if batch.internalLen > db.s.o.GetWriteBuffer() && !db.s.o.GetDisableLargeBatchTransaction() {
tr, err := db.OpenTransaction()
if err != nil {
return err
}
if err := tr.Write(batch, wo); err != nil {
tr.Discard()
return err
}
return tr.Commit()
}
merge := !wo.GetNoWriteMerge() && !db.s.o.GetNoWriteMerge()
sync := wo.GetSync() && !db.s.o.GetNoSync()
// Acquire write lock.
if merge {
select {
case db.writeMergeC <- writeMerge{sync: sync, batch: batch}:
if <-db.writeMergedC {
// Write is merged.
return <-db.writeAckC
}
// Write is not merged, the write lock is handed to us. Continue.
case db.writeLockC <- struct{}{}:
// Write lock acquired.
case err := <-db.compPerErrC:
// Compaction error.
return err
case <-db.closeC:
// Closed
return ErrClosed
}
} else {
select {
case db.writeLockC <- struct{}{}:
// Write lock acquired.
case err := <-db.compPerErrC:
// Compaction error.
return err
case <-db.closeC:
// Closed
return ErrClosed
}
}
return db.writeLocked(batch, nil, merge, sync)
}
func (db *DB) putRec(kt keyType, key, value []byte, wo *opt.WriteOptions) error {
if err := db.ok(); err != nil {
return err
}
merge := !wo.GetNoWriteMerge() && !db.s.o.GetNoWriteMerge()
sync := wo.GetSync() && !db.s.o.GetNoSync()
// Acquire write lock.
if merge {
select {
case db.writeMergeC <- writeMerge{sync: sync, keyType: kt, key: key, value: value}:
if <-db.writeMergedC {
// Write is merged.
return <-db.writeAckC
}
// Write is not merged, the write lock is handed to us. Continue.
case db.writeLockC <- struct{}{}:
// Write lock acquired.
case err := <-db.compPerErrC:
// Compaction error.
return err
case <-db.closeC:
// Closed
return ErrClosed
}
} else {
select {
case db.writeLockC <- struct{}{}:
// Write lock acquired.
case err := <-db.compPerErrC:
// Compaction error.
return err
case <-db.closeC:
// Closed
return ErrClosed
}
}
batch := db.batchPool.Get().(*Batch)
batch.Reset()
batch.appendRec(kt, key, value)
return db.writeLocked(batch, batch, merge, sync)
}
// Put sets the value for the given key. It overwrites any previous value
// for that key; a DB is not a multi-map. Write merge also applies for Put, see
// Write.
//
// It is safe to modify the contents of the arguments after Put returns but not
// before.
func (db *DB) Put(key, value []byte, wo *opt.WriteOptions) error {
return db.putRec(keyTypeVal, key, value, wo)
}
// Delete deletes the value for the given key. Delete will not returns error if
// key doesn't exist. Write merge also applies for Delete, see Write.
//
// It is safe to modify the contents of the arguments after Delete returns but
// not before.
func (db *DB) Delete(key []byte, wo *opt.WriteOptions) error {
return db.putRec(keyTypeDel, key, nil, wo)
}
func isMemOverlaps(icmp *iComparer, mem *memdb.DB, min, max []byte) bool {
iter := mem.NewIterator(nil)
defer iter.Release()
return (max == nil || (iter.First() && icmp.uCompare(max, internalKey(iter.Key()).ukey()) >= 0)) &&
(min == nil || (iter.Last() && icmp.uCompare(min, internalKey(iter.Key()).ukey()) <= 0))
}
// CompactRange compacts the underlying DB for the given key range.
// In particular, deleted and overwritten versions are discarded,
// and the data is rearranged to reduce the cost of operations
// needed to access the data. This operation should typically only
// be invoked by users who understand the underlying implementation.
//
// A nil Range.Start is treated as a key before all keys in the DB.
// And a nil Range.Limit is treated as a key after all keys in the DB.
// Therefore if both is nil then it will compact entire DB.
func (db *DB) CompactRange(r util.Range) error {
if err := db.ok(); err != nil {
return err
}
// Lock writer.
select {
case db.writeLockC <- struct{}{}:
case err := <-db.compPerErrC:
return err
case <-db.closeC:
return ErrClosed
}
// Check for overlaps in memdb.
mdb := db.getEffectiveMem()
if mdb == nil {
return ErrClosed
}
defer mdb.decref()
if isMemOverlaps(db.s.icmp, mdb.DB, r.Start, r.Limit) {
// Memdb compaction.
if _, err := db.rotateMem(0, false); err != nil {
<-db.writeLockC
return err
}
<-db.writeLockC
if err := db.compTriggerWait(db.mcompCmdC); err != nil {
return err
}
} else {
<-db.writeLockC
}
// Table compaction.
return db.compTriggerRange(db.tcompCmdC, -1, r.Start, r.Limit)
}
// SetReadOnly makes DB read-only. It will stay read-only until reopened.
func (db *DB) SetReadOnly() error {
if err := db.ok(); err != nil {
return err
}
// Lock writer.
select {
case db.writeLockC <- struct{}{}:
db.compWriteLocking = true
case err := <-db.compPerErrC:
return err
case <-db.closeC:
return ErrClosed
}
// Set compaction read-only.
select {
case db.compErrSetC <- ErrReadOnly:
case perr := <-db.compPerErrC:
return perr
case <-db.closeC:
return ErrClosed
}
return nil
}