mirror of https://github.com/go-gitea/gitea
Don't use custom PBKDF2 function (#382)
parent
73710c00a8
commit
d771e978a1
@ -0,0 +1,77 @@ |
||||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
/* |
||||
Package pbkdf2 implements the key derivation function PBKDF2 as defined in RFC |
||||
2898 / PKCS #5 v2.0. |
||||
|
||||
A key derivation function is useful when encrypting data based on a password |
||||
or any other not-fully-random data. It uses a pseudorandom function to derive |
||||
a secure encryption key based on the password. |
||||
|
||||
While v2.0 of the standard defines only one pseudorandom function to use, |
||||
HMAC-SHA1, the drafted v2.1 specification allows use of all five FIPS Approved |
||||
Hash Functions SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 for HMAC. To |
||||
choose, you can pass the `New` functions from the different SHA packages to |
||||
pbkdf2.Key. |
||||
*/ |
||||
package pbkdf2 // import "golang.org/x/crypto/pbkdf2"
|
||||
|
||||
import ( |
||||
"crypto/hmac" |
||||
"hash" |
||||
) |
||||
|
||||
// Key derives a key from the password, salt and iteration count, returning a
|
||||
// []byte of length keylen that can be used as cryptographic key. The key is
|
||||
// derived based on the method described as PBKDF2 with the HMAC variant using
|
||||
// the supplied hash function.
|
||||
//
|
||||
// For example, to use a HMAC-SHA-1 based PBKDF2 key derivation function, you
|
||||
// can get a derived key for e.g. AES-256 (which needs a 32-byte key) by
|
||||
// doing:
|
||||
//
|
||||
// dk := pbkdf2.Key([]byte("some password"), salt, 4096, 32, sha1.New)
|
||||
//
|
||||
// Remember to get a good random salt. At least 8 bytes is recommended by the
|
||||
// RFC.
|
||||
//
|
||||
// Using a higher iteration count will increase the cost of an exhaustive
|
||||
// search but will also make derivation proportionally slower.
|
||||
func Key(password, salt []byte, iter, keyLen int, h func() hash.Hash) []byte { |
||||
prf := hmac.New(h, password) |
||||
hashLen := prf.Size() |
||||
numBlocks := (keyLen + hashLen - 1) / hashLen |
||||
|
||||
var buf [4]byte |
||||
dk := make([]byte, 0, numBlocks*hashLen) |
||||
U := make([]byte, hashLen) |
||||
for block := 1; block <= numBlocks; block++ { |
||||
// N.B.: || means concatenation, ^ means XOR
|
||||
// for each block T_i = U_1 ^ U_2 ^ ... ^ U_iter
|
||||
// U_1 = PRF(password, salt || uint(i))
|
||||
prf.Reset() |
||||
prf.Write(salt) |
||||
buf[0] = byte(block >> 24) |
||||
buf[1] = byte(block >> 16) |
||||
buf[2] = byte(block >> 8) |
||||
buf[3] = byte(block) |
||||
prf.Write(buf[:4]) |
||||
dk = prf.Sum(dk) |
||||
T := dk[len(dk)-hashLen:] |
||||
copy(U, T) |
||||
|
||||
// U_n = PRF(password, U_(n-1))
|
||||
for n := 2; n <= iter; n++ { |
||||
prf.Reset() |
||||
prf.Write(U) |
||||
U = U[:0] |
||||
U = prf.Sum(U) |
||||
for x := range U { |
||||
T[x] ^= U[x] |
||||
} |
||||
} |
||||
} |
||||
return dk[:keyLen] |
||||
} |
Loading…
Reference in new issue