mirror of https://github.com/go-gitea/gitea
Git with a cup of tea, painless self-hosted git service
Mirror for internal git.with.parts use
https://git.with.parts
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1504 lines
40 KiB
1504 lines
40 KiB
// Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.
|
|
|
|
// Package cpuid provides information about the CPU running the current program.
|
|
//
|
|
// CPU features are detected on startup, and kept for fast access through the life of the application.
|
|
// Currently x86 / x64 (AMD64) as well as arm64 is supported.
|
|
//
|
|
// You can access the CPU information by accessing the shared CPU variable of the cpuid library.
|
|
//
|
|
// Package home: https://github.com/klauspost/cpuid
|
|
package cpuid
|
|
|
|
import (
|
|
"math"
|
|
"strings"
|
|
)
|
|
|
|
// AMD refererence: https://www.amd.com/system/files/TechDocs/25481.pdf
|
|
// and Processor Programming Reference (PPR)
|
|
|
|
// Vendor is a representation of a CPU vendor.
|
|
type Vendor int
|
|
|
|
const (
|
|
Other Vendor = iota
|
|
Intel
|
|
AMD
|
|
VIA
|
|
Transmeta
|
|
NSC
|
|
KVM // Kernel-based Virtual Machine
|
|
MSVM // Microsoft Hyper-V or Windows Virtual PC
|
|
VMware
|
|
XenHVM
|
|
Bhyve
|
|
Hygon
|
|
SiS
|
|
RDC
|
|
)
|
|
|
|
const (
|
|
CMOV = 1 << iota // i686 CMOV
|
|
NX // NX (No-Execute) bit
|
|
AMD3DNOW // AMD 3DNOW
|
|
AMD3DNOWEXT // AMD 3DNowExt
|
|
MMX // standard MMX
|
|
MMXEXT // SSE integer functions or AMD MMX ext
|
|
SSE // SSE functions
|
|
SSE2 // P4 SSE functions
|
|
SSE3 // Prescott SSE3 functions
|
|
SSSE3 // Conroe SSSE3 functions
|
|
SSE4 // Penryn SSE4.1 functions
|
|
SSE4A // AMD Barcelona microarchitecture SSE4a instructions
|
|
SSE42 // Nehalem SSE4.2 functions
|
|
AVX // AVX functions
|
|
AVX2 // AVX2 functions
|
|
FMA3 // Intel FMA 3
|
|
FMA4 // Bulldozer FMA4 functions
|
|
XOP // Bulldozer XOP functions
|
|
F16C // Half-precision floating-point conversion
|
|
BMI1 // Bit Manipulation Instruction Set 1
|
|
BMI2 // Bit Manipulation Instruction Set 2
|
|
TBM // AMD Trailing Bit Manipulation
|
|
LZCNT // LZCNT instruction
|
|
POPCNT // POPCNT instruction
|
|
AESNI // Advanced Encryption Standard New Instructions
|
|
CLMUL // Carry-less Multiplication
|
|
HTT // Hyperthreading (enabled)
|
|
HLE // Hardware Lock Elision
|
|
RTM // Restricted Transactional Memory
|
|
RDRAND // RDRAND instruction is available
|
|
RDSEED // RDSEED instruction is available
|
|
ADX // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
|
|
SHA // Intel SHA Extensions
|
|
AVX512F // AVX-512 Foundation
|
|
AVX512DQ // AVX-512 Doubleword and Quadword Instructions
|
|
AVX512IFMA // AVX-512 Integer Fused Multiply-Add Instructions
|
|
AVX512PF // AVX-512 Prefetch Instructions
|
|
AVX512ER // AVX-512 Exponential and Reciprocal Instructions
|
|
AVX512CD // AVX-512 Conflict Detection Instructions
|
|
AVX512BW // AVX-512 Byte and Word Instructions
|
|
AVX512VL // AVX-512 Vector Length Extensions
|
|
AVX512VBMI // AVX-512 Vector Bit Manipulation Instructions
|
|
AVX512VBMI2 // AVX-512 Vector Bit Manipulation Instructions, Version 2
|
|
AVX512VNNI // AVX-512 Vector Neural Network Instructions
|
|
AVX512VPOPCNTDQ // AVX-512 Vector Population Count Doubleword and Quadword
|
|
GFNI // Galois Field New Instructions
|
|
VAES // Vector AES
|
|
AVX512BITALG // AVX-512 Bit Algorithms
|
|
VPCLMULQDQ // Carry-Less Multiplication Quadword
|
|
AVX512BF16 // AVX-512 BFLOAT16 Instructions
|
|
AVX512VP2INTERSECT // AVX-512 Intersect for D/Q
|
|
MPX // Intel MPX (Memory Protection Extensions)
|
|
ERMS // Enhanced REP MOVSB/STOSB
|
|
RDTSCP // RDTSCP Instruction
|
|
CX16 // CMPXCHG16B Instruction
|
|
SGX // Software Guard Extensions
|
|
SGXLC // Software Guard Extensions Launch Control
|
|
IBPB // Indirect Branch Restricted Speculation (IBRS) and Indirect Branch Predictor Barrier (IBPB)
|
|
STIBP // Single Thread Indirect Branch Predictors
|
|
VMX // Virtual Machine Extensions
|
|
|
|
// Performance indicators
|
|
SSE2SLOW // SSE2 is supported, but usually not faster
|
|
SSE3SLOW // SSE3 is supported, but usually not faster
|
|
ATOM // Atom processor, some SSSE3 instructions are slower
|
|
)
|
|
|
|
var flagNames = map[Flags]string{
|
|
CMOV: "CMOV", // i686 CMOV
|
|
NX: "NX", // NX (No-Execute) bit
|
|
AMD3DNOW: "AMD3DNOW", // AMD 3DNOW
|
|
AMD3DNOWEXT: "AMD3DNOWEXT", // AMD 3DNowExt
|
|
MMX: "MMX", // Standard MMX
|
|
MMXEXT: "MMXEXT", // SSE integer functions or AMD MMX ext
|
|
SSE: "SSE", // SSE functions
|
|
SSE2: "SSE2", // P4 SSE2 functions
|
|
SSE3: "SSE3", // Prescott SSE3 functions
|
|
SSSE3: "SSSE3", // Conroe SSSE3 functions
|
|
SSE4: "SSE4.1", // Penryn SSE4.1 functions
|
|
SSE4A: "SSE4A", // AMD Barcelona microarchitecture SSE4a instructions
|
|
SSE42: "SSE4.2", // Nehalem SSE4.2 functions
|
|
AVX: "AVX", // AVX functions
|
|
AVX2: "AVX2", // AVX functions
|
|
FMA3: "FMA3", // Intel FMA 3
|
|
FMA4: "FMA4", // Bulldozer FMA4 functions
|
|
XOP: "XOP", // Bulldozer XOP functions
|
|
F16C: "F16C", // Half-precision floating-point conversion
|
|
BMI1: "BMI1", // Bit Manipulation Instruction Set 1
|
|
BMI2: "BMI2", // Bit Manipulation Instruction Set 2
|
|
TBM: "TBM", // AMD Trailing Bit Manipulation
|
|
LZCNT: "LZCNT", // LZCNT instruction
|
|
POPCNT: "POPCNT", // POPCNT instruction
|
|
AESNI: "AESNI", // Advanced Encryption Standard New Instructions
|
|
CLMUL: "CLMUL", // Carry-less Multiplication
|
|
HTT: "HTT", // Hyperthreading (enabled)
|
|
HLE: "HLE", // Hardware Lock Elision
|
|
RTM: "RTM", // Restricted Transactional Memory
|
|
RDRAND: "RDRAND", // RDRAND instruction is available
|
|
RDSEED: "RDSEED", // RDSEED instruction is available
|
|
ADX: "ADX", // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
|
|
SHA: "SHA", // Intel SHA Extensions
|
|
AVX512F: "AVX512F", // AVX-512 Foundation
|
|
AVX512DQ: "AVX512DQ", // AVX-512 Doubleword and Quadword Instructions
|
|
AVX512IFMA: "AVX512IFMA", // AVX-512 Integer Fused Multiply-Add Instructions
|
|
AVX512PF: "AVX512PF", // AVX-512 Prefetch Instructions
|
|
AVX512ER: "AVX512ER", // AVX-512 Exponential and Reciprocal Instructions
|
|
AVX512CD: "AVX512CD", // AVX-512 Conflict Detection Instructions
|
|
AVX512BW: "AVX512BW", // AVX-512 Byte and Word Instructions
|
|
AVX512VL: "AVX512VL", // AVX-512 Vector Length Extensions
|
|
AVX512VBMI: "AVX512VBMI", // AVX-512 Vector Bit Manipulation Instructions
|
|
AVX512VBMI2: "AVX512VBMI2", // AVX-512 Vector Bit Manipulation Instructions, Version 2
|
|
AVX512VNNI: "AVX512VNNI", // AVX-512 Vector Neural Network Instructions
|
|
AVX512VPOPCNTDQ: "AVX512VPOPCNTDQ", // AVX-512 Vector Population Count Doubleword and Quadword
|
|
GFNI: "GFNI", // Galois Field New Instructions
|
|
VAES: "VAES", // Vector AES
|
|
AVX512BITALG: "AVX512BITALG", // AVX-512 Bit Algorithms
|
|
VPCLMULQDQ: "VPCLMULQDQ", // Carry-Less Multiplication Quadword
|
|
AVX512BF16: "AVX512BF16", // AVX-512 BFLOAT16 Instruction
|
|
AVX512VP2INTERSECT: "AVX512VP2INTERSECT", // AVX-512 Intersect for D/Q
|
|
MPX: "MPX", // Intel MPX (Memory Protection Extensions)
|
|
ERMS: "ERMS", // Enhanced REP MOVSB/STOSB
|
|
RDTSCP: "RDTSCP", // RDTSCP Instruction
|
|
CX16: "CX16", // CMPXCHG16B Instruction
|
|
SGX: "SGX", // Software Guard Extensions
|
|
SGXLC: "SGXLC", // Software Guard Extensions Launch Control
|
|
IBPB: "IBPB", // Indirect Branch Restricted Speculation and Indirect Branch Predictor Barrier
|
|
STIBP: "STIBP", // Single Thread Indirect Branch Predictors
|
|
VMX: "VMX", // Virtual Machine Extensions
|
|
|
|
// Performance indicators
|
|
SSE2SLOW: "SSE2SLOW", // SSE2 supported, but usually not faster
|
|
SSE3SLOW: "SSE3SLOW", // SSE3 supported, but usually not faster
|
|
ATOM: "ATOM", // Atom processor, some SSSE3 instructions are slower
|
|
|
|
}
|
|
|
|
/* all special features for arm64 should be defined here */
|
|
const (
|
|
/* extension instructions */
|
|
FP ArmFlags = 1 << iota
|
|
ASIMD
|
|
EVTSTRM
|
|
AES
|
|
PMULL
|
|
SHA1
|
|
SHA2
|
|
CRC32
|
|
ATOMICS
|
|
FPHP
|
|
ASIMDHP
|
|
ARMCPUID
|
|
ASIMDRDM
|
|
JSCVT
|
|
FCMA
|
|
LRCPC
|
|
DCPOP
|
|
SHA3
|
|
SM3
|
|
SM4
|
|
ASIMDDP
|
|
SHA512
|
|
SVE
|
|
GPA
|
|
)
|
|
|
|
var flagNamesArm = map[ArmFlags]string{
|
|
FP: "FP", // Single-precision and double-precision floating point
|
|
ASIMD: "ASIMD", // Advanced SIMD
|
|
EVTSTRM: "EVTSTRM", // Generic timer
|
|
AES: "AES", // AES instructions
|
|
PMULL: "PMULL", // Polynomial Multiply instructions (PMULL/PMULL2)
|
|
SHA1: "SHA1", // SHA-1 instructions (SHA1C, etc)
|
|
SHA2: "SHA2", // SHA-2 instructions (SHA256H, etc)
|
|
CRC32: "CRC32", // CRC32/CRC32C instructions
|
|
ATOMICS: "ATOMICS", // Large System Extensions (LSE)
|
|
FPHP: "FPHP", // Half-precision floating point
|
|
ASIMDHP: "ASIMDHP", // Advanced SIMD half-precision floating point
|
|
ARMCPUID: "CPUID", // Some CPU ID registers readable at user-level
|
|
ASIMDRDM: "ASIMDRDM", // Rounding Double Multiply Accumulate/Subtract (SQRDMLAH/SQRDMLSH)
|
|
JSCVT: "JSCVT", // Javascript-style double->int convert (FJCVTZS)
|
|
FCMA: "FCMA", // Floatin point complex number addition and multiplication
|
|
LRCPC: "LRCPC", // Weaker release consistency (LDAPR, etc)
|
|
DCPOP: "DCPOP", // Data cache clean to Point of Persistence (DC CVAP)
|
|
SHA3: "SHA3", // SHA-3 instructions (EOR3, RAXI, XAR, BCAX)
|
|
SM3: "SM3", // SM3 instructions
|
|
SM4: "SM4", // SM4 instructions
|
|
ASIMDDP: "ASIMDDP", // SIMD Dot Product
|
|
SHA512: "SHA512", // SHA512 instructions
|
|
SVE: "SVE", // Scalable Vector Extension
|
|
GPA: "GPA", // Generic Pointer Authentication
|
|
}
|
|
|
|
// CPUInfo contains information about the detected system CPU.
|
|
type CPUInfo struct {
|
|
BrandName string // Brand name reported by the CPU
|
|
VendorID Vendor // Comparable CPU vendor ID
|
|
VendorString string // Raw vendor string.
|
|
Features Flags // Features of the CPU (x64)
|
|
Arm ArmFlags // Features of the CPU (arm)
|
|
PhysicalCores int // Number of physical processor cores in your CPU. Will be 0 if undetectable.
|
|
ThreadsPerCore int // Number of threads per physical core. Will be 1 if undetectable.
|
|
LogicalCores int // Number of physical cores times threads that can run on each core through the use of hyperthreading. Will be 0 if undetectable.
|
|
Family int // CPU family number
|
|
Model int // CPU model number
|
|
CacheLine int // Cache line size in bytes. Will be 0 if undetectable.
|
|
Hz int64 // Clock speed, if known
|
|
Cache struct {
|
|
L1I int // L1 Instruction Cache (per core or shared). Will be -1 if undetected
|
|
L1D int // L1 Data Cache (per core or shared). Will be -1 if undetected
|
|
L2 int // L2 Cache (per core or shared). Will be -1 if undetected
|
|
L3 int // L3 Cache (per core, per ccx or shared). Will be -1 if undetected
|
|
}
|
|
SGX SGXSupport
|
|
maxFunc uint32
|
|
maxExFunc uint32
|
|
}
|
|
|
|
var cpuid func(op uint32) (eax, ebx, ecx, edx uint32)
|
|
var cpuidex func(op, op2 uint32) (eax, ebx, ecx, edx uint32)
|
|
var xgetbv func(index uint32) (eax, edx uint32)
|
|
var rdtscpAsm func() (eax, ebx, ecx, edx uint32)
|
|
|
|
// CPU contains information about the CPU as detected on startup,
|
|
// or when Detect last was called.
|
|
//
|
|
// Use this as the primary entry point to you data.
|
|
var CPU CPUInfo
|
|
|
|
func init() {
|
|
initCPU()
|
|
Detect()
|
|
}
|
|
|
|
// Detect will re-detect current CPU info.
|
|
// This will replace the content of the exported CPU variable.
|
|
//
|
|
// Unless you expect the CPU to change while you are running your program
|
|
// you should not need to call this function.
|
|
// If you call this, you must ensure that no other goroutine is accessing the
|
|
// exported CPU variable.
|
|
func Detect() {
|
|
// Set defaults
|
|
CPU.ThreadsPerCore = 1
|
|
CPU.Cache.L1I = -1
|
|
CPU.Cache.L1D = -1
|
|
CPU.Cache.L2 = -1
|
|
CPU.Cache.L3 = -1
|
|
addInfo(&CPU)
|
|
}
|
|
|
|
// Generated here: http://play.golang.org/p/BxFH2Gdc0G
|
|
|
|
// Cmov indicates support of CMOV instructions
|
|
func (c CPUInfo) Cmov() bool {
|
|
return c.Features&CMOV != 0
|
|
}
|
|
|
|
// Amd3dnow indicates support of AMD 3DNOW! instructions
|
|
func (c CPUInfo) Amd3dnow() bool {
|
|
return c.Features&AMD3DNOW != 0
|
|
}
|
|
|
|
// Amd3dnowExt indicates support of AMD 3DNOW! Extended instructions
|
|
func (c CPUInfo) Amd3dnowExt() bool {
|
|
return c.Features&AMD3DNOWEXT != 0
|
|
}
|
|
|
|
// VMX indicates support of VMX
|
|
func (c CPUInfo) VMX() bool {
|
|
return c.Features&VMX != 0
|
|
}
|
|
|
|
// MMX indicates support of MMX instructions
|
|
func (c CPUInfo) MMX() bool {
|
|
return c.Features&MMX != 0
|
|
}
|
|
|
|
// MMXExt indicates support of MMXEXT instructions
|
|
// (SSE integer functions or AMD MMX ext)
|
|
func (c CPUInfo) MMXExt() bool {
|
|
return c.Features&MMXEXT != 0
|
|
}
|
|
|
|
// SSE indicates support of SSE instructions
|
|
func (c CPUInfo) SSE() bool {
|
|
return c.Features&SSE != 0
|
|
}
|
|
|
|
// SSE2 indicates support of SSE 2 instructions
|
|
func (c CPUInfo) SSE2() bool {
|
|
return c.Features&SSE2 != 0
|
|
}
|
|
|
|
// SSE3 indicates support of SSE 3 instructions
|
|
func (c CPUInfo) SSE3() bool {
|
|
return c.Features&SSE3 != 0
|
|
}
|
|
|
|
// SSSE3 indicates support of SSSE 3 instructions
|
|
func (c CPUInfo) SSSE3() bool {
|
|
return c.Features&SSSE3 != 0
|
|
}
|
|
|
|
// SSE4 indicates support of SSE 4 (also called SSE 4.1) instructions
|
|
func (c CPUInfo) SSE4() bool {
|
|
return c.Features&SSE4 != 0
|
|
}
|
|
|
|
// SSE42 indicates support of SSE4.2 instructions
|
|
func (c CPUInfo) SSE42() bool {
|
|
return c.Features&SSE42 != 0
|
|
}
|
|
|
|
// AVX indicates support of AVX instructions
|
|
// and operating system support of AVX instructions
|
|
func (c CPUInfo) AVX() bool {
|
|
return c.Features&AVX != 0
|
|
}
|
|
|
|
// AVX2 indicates support of AVX2 instructions
|
|
func (c CPUInfo) AVX2() bool {
|
|
return c.Features&AVX2 != 0
|
|
}
|
|
|
|
// FMA3 indicates support of FMA3 instructions
|
|
func (c CPUInfo) FMA3() bool {
|
|
return c.Features&FMA3 != 0
|
|
}
|
|
|
|
// FMA4 indicates support of FMA4 instructions
|
|
func (c CPUInfo) FMA4() bool {
|
|
return c.Features&FMA4 != 0
|
|
}
|
|
|
|
// XOP indicates support of XOP instructions
|
|
func (c CPUInfo) XOP() bool {
|
|
return c.Features&XOP != 0
|
|
}
|
|
|
|
// F16C indicates support of F16C instructions
|
|
func (c CPUInfo) F16C() bool {
|
|
return c.Features&F16C != 0
|
|
}
|
|
|
|
// BMI1 indicates support of BMI1 instructions
|
|
func (c CPUInfo) BMI1() bool {
|
|
return c.Features&BMI1 != 0
|
|
}
|
|
|
|
// BMI2 indicates support of BMI2 instructions
|
|
func (c CPUInfo) BMI2() bool {
|
|
return c.Features&BMI2 != 0
|
|
}
|
|
|
|
// TBM indicates support of TBM instructions
|
|
// (AMD Trailing Bit Manipulation)
|
|
func (c CPUInfo) TBM() bool {
|
|
return c.Features&TBM != 0
|
|
}
|
|
|
|
// Lzcnt indicates support of LZCNT instruction
|
|
func (c CPUInfo) Lzcnt() bool {
|
|
return c.Features&LZCNT != 0
|
|
}
|
|
|
|
// Popcnt indicates support of POPCNT instruction
|
|
func (c CPUInfo) Popcnt() bool {
|
|
return c.Features&POPCNT != 0
|
|
}
|
|
|
|
// HTT indicates the processor has Hyperthreading enabled
|
|
func (c CPUInfo) HTT() bool {
|
|
return c.Features&HTT != 0
|
|
}
|
|
|
|
// SSE2Slow indicates that SSE2 may be slow on this processor
|
|
func (c CPUInfo) SSE2Slow() bool {
|
|
return c.Features&SSE2SLOW != 0
|
|
}
|
|
|
|
// SSE3Slow indicates that SSE3 may be slow on this processor
|
|
func (c CPUInfo) SSE3Slow() bool {
|
|
return c.Features&SSE3SLOW != 0
|
|
}
|
|
|
|
// AesNi indicates support of AES-NI instructions
|
|
// (Advanced Encryption Standard New Instructions)
|
|
func (c CPUInfo) AesNi() bool {
|
|
return c.Features&AESNI != 0
|
|
}
|
|
|
|
// Clmul indicates support of CLMUL instructions
|
|
// (Carry-less Multiplication)
|
|
func (c CPUInfo) Clmul() bool {
|
|
return c.Features&CLMUL != 0
|
|
}
|
|
|
|
// NX indicates support of NX (No-Execute) bit
|
|
func (c CPUInfo) NX() bool {
|
|
return c.Features&NX != 0
|
|
}
|
|
|
|
// SSE4A indicates support of AMD Barcelona microarchitecture SSE4a instructions
|
|
func (c CPUInfo) SSE4A() bool {
|
|
return c.Features&SSE4A != 0
|
|
}
|
|
|
|
// HLE indicates support of Hardware Lock Elision
|
|
func (c CPUInfo) HLE() bool {
|
|
return c.Features&HLE != 0
|
|
}
|
|
|
|
// RTM indicates support of Restricted Transactional Memory
|
|
func (c CPUInfo) RTM() bool {
|
|
return c.Features&RTM != 0
|
|
}
|
|
|
|
// Rdrand indicates support of RDRAND instruction is available
|
|
func (c CPUInfo) Rdrand() bool {
|
|
return c.Features&RDRAND != 0
|
|
}
|
|
|
|
// Rdseed indicates support of RDSEED instruction is available
|
|
func (c CPUInfo) Rdseed() bool {
|
|
return c.Features&RDSEED != 0
|
|
}
|
|
|
|
// ADX indicates support of Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
|
|
func (c CPUInfo) ADX() bool {
|
|
return c.Features&ADX != 0
|
|
}
|
|
|
|
// SHA indicates support of Intel SHA Extensions
|
|
func (c CPUInfo) SHA() bool {
|
|
return c.Features&SHA != 0
|
|
}
|
|
|
|
// AVX512F indicates support of AVX-512 Foundation
|
|
func (c CPUInfo) AVX512F() bool {
|
|
return c.Features&AVX512F != 0
|
|
}
|
|
|
|
// AVX512DQ indicates support of AVX-512 Doubleword and Quadword Instructions
|
|
func (c CPUInfo) AVX512DQ() bool {
|
|
return c.Features&AVX512DQ != 0
|
|
}
|
|
|
|
// AVX512IFMA indicates support of AVX-512 Integer Fused Multiply-Add Instructions
|
|
func (c CPUInfo) AVX512IFMA() bool {
|
|
return c.Features&AVX512IFMA != 0
|
|
}
|
|
|
|
// AVX512PF indicates support of AVX-512 Prefetch Instructions
|
|
func (c CPUInfo) AVX512PF() bool {
|
|
return c.Features&AVX512PF != 0
|
|
}
|
|
|
|
// AVX512ER indicates support of AVX-512 Exponential and Reciprocal Instructions
|
|
func (c CPUInfo) AVX512ER() bool {
|
|
return c.Features&AVX512ER != 0
|
|
}
|
|
|
|
// AVX512CD indicates support of AVX-512 Conflict Detection Instructions
|
|
func (c CPUInfo) AVX512CD() bool {
|
|
return c.Features&AVX512CD != 0
|
|
}
|
|
|
|
// AVX512BW indicates support of AVX-512 Byte and Word Instructions
|
|
func (c CPUInfo) AVX512BW() bool {
|
|
return c.Features&AVX512BW != 0
|
|
}
|
|
|
|
// AVX512VL indicates support of AVX-512 Vector Length Extensions
|
|
func (c CPUInfo) AVX512VL() bool {
|
|
return c.Features&AVX512VL != 0
|
|
}
|
|
|
|
// AVX512VBMI indicates support of AVX-512 Vector Bit Manipulation Instructions
|
|
func (c CPUInfo) AVX512VBMI() bool {
|
|
return c.Features&AVX512VBMI != 0
|
|
}
|
|
|
|
// AVX512VBMI2 indicates support of AVX-512 Vector Bit Manipulation Instructions, Version 2
|
|
func (c CPUInfo) AVX512VBMI2() bool {
|
|
return c.Features&AVX512VBMI2 != 0
|
|
}
|
|
|
|
// AVX512VNNI indicates support of AVX-512 Vector Neural Network Instructions
|
|
func (c CPUInfo) AVX512VNNI() bool {
|
|
return c.Features&AVX512VNNI != 0
|
|
}
|
|
|
|
// AVX512VPOPCNTDQ indicates support of AVX-512 Vector Population Count Doubleword and Quadword
|
|
func (c CPUInfo) AVX512VPOPCNTDQ() bool {
|
|
return c.Features&AVX512VPOPCNTDQ != 0
|
|
}
|
|
|
|
// GFNI indicates support of Galois Field New Instructions
|
|
func (c CPUInfo) GFNI() bool {
|
|
return c.Features&GFNI != 0
|
|
}
|
|
|
|
// VAES indicates support of Vector AES
|
|
func (c CPUInfo) VAES() bool {
|
|
return c.Features&VAES != 0
|
|
}
|
|
|
|
// AVX512BITALG indicates support of AVX-512 Bit Algorithms
|
|
func (c CPUInfo) AVX512BITALG() bool {
|
|
return c.Features&AVX512BITALG != 0
|
|
}
|
|
|
|
// VPCLMULQDQ indicates support of Carry-Less Multiplication Quadword
|
|
func (c CPUInfo) VPCLMULQDQ() bool {
|
|
return c.Features&VPCLMULQDQ != 0
|
|
}
|
|
|
|
// AVX512BF16 indicates support of
|
|
func (c CPUInfo) AVX512BF16() bool {
|
|
return c.Features&AVX512BF16 != 0
|
|
}
|
|
|
|
// AVX512VP2INTERSECT indicates support of
|
|
func (c CPUInfo) AVX512VP2INTERSECT() bool {
|
|
return c.Features&AVX512VP2INTERSECT != 0
|
|
}
|
|
|
|
// MPX indicates support of Intel MPX (Memory Protection Extensions)
|
|
func (c CPUInfo) MPX() bool {
|
|
return c.Features&MPX != 0
|
|
}
|
|
|
|
// ERMS indicates support of Enhanced REP MOVSB/STOSB
|
|
func (c CPUInfo) ERMS() bool {
|
|
return c.Features&ERMS != 0
|
|
}
|
|
|
|
// RDTSCP Instruction is available.
|
|
func (c CPUInfo) RDTSCP() bool {
|
|
return c.Features&RDTSCP != 0
|
|
}
|
|
|
|
// CX16 indicates if CMPXCHG16B instruction is available.
|
|
func (c CPUInfo) CX16() bool {
|
|
return c.Features&CX16 != 0
|
|
}
|
|
|
|
// TSX is split into HLE (Hardware Lock Elision) and RTM (Restricted Transactional Memory) detection.
|
|
// So TSX simply checks that.
|
|
func (c CPUInfo) TSX() bool {
|
|
return c.Features&(HLE|RTM) == HLE|RTM
|
|
}
|
|
|
|
// Atom indicates an Atom processor
|
|
func (c CPUInfo) Atom() bool {
|
|
return c.Features&ATOM != 0
|
|
}
|
|
|
|
// Intel returns true if vendor is recognized as Intel
|
|
func (c CPUInfo) Intel() bool {
|
|
return c.VendorID == Intel
|
|
}
|
|
|
|
// AMD returns true if vendor is recognized as AMD
|
|
func (c CPUInfo) AMD() bool {
|
|
return c.VendorID == AMD
|
|
}
|
|
|
|
// Hygon returns true if vendor is recognized as Hygon
|
|
func (c CPUInfo) Hygon() bool {
|
|
return c.VendorID == Hygon
|
|
}
|
|
|
|
// Transmeta returns true if vendor is recognized as Transmeta
|
|
func (c CPUInfo) Transmeta() bool {
|
|
return c.VendorID == Transmeta
|
|
}
|
|
|
|
// NSC returns true if vendor is recognized as National Semiconductor
|
|
func (c CPUInfo) NSC() bool {
|
|
return c.VendorID == NSC
|
|
}
|
|
|
|
// VIA returns true if vendor is recognized as VIA
|
|
func (c CPUInfo) VIA() bool {
|
|
return c.VendorID == VIA
|
|
}
|
|
|
|
// RTCounter returns the 64-bit time-stamp counter
|
|
// Uses the RDTSCP instruction. The value 0 is returned
|
|
// if the CPU does not support the instruction.
|
|
func (c CPUInfo) RTCounter() uint64 {
|
|
if !c.RDTSCP() {
|
|
return 0
|
|
}
|
|
a, _, _, d := rdtscpAsm()
|
|
return uint64(a) | (uint64(d) << 32)
|
|
}
|
|
|
|
// Ia32TscAux returns the IA32_TSC_AUX part of the RDTSCP.
|
|
// This variable is OS dependent, but on Linux contains information
|
|
// about the current cpu/core the code is running on.
|
|
// If the RDTSCP instruction isn't supported on the CPU, the value 0 is returned.
|
|
func (c CPUInfo) Ia32TscAux() uint32 {
|
|
if !c.RDTSCP() {
|
|
return 0
|
|
}
|
|
_, _, ecx, _ := rdtscpAsm()
|
|
return ecx
|
|
}
|
|
|
|
// LogicalCPU will return the Logical CPU the code is currently executing on.
|
|
// This is likely to change when the OS re-schedules the running thread
|
|
// to another CPU.
|
|
// If the current core cannot be detected, -1 will be returned.
|
|
func (c CPUInfo) LogicalCPU() int {
|
|
if c.maxFunc < 1 {
|
|
return -1
|
|
}
|
|
_, ebx, _, _ := cpuid(1)
|
|
return int(ebx >> 24)
|
|
}
|
|
|
|
// hertz tries to compute the clock speed of the CPU. If leaf 15 is
|
|
// supported, use it, otherwise parse the brand string. Yes, really.
|
|
func hertz(model string) int64 {
|
|
mfi := maxFunctionID()
|
|
if mfi >= 0x15 {
|
|
eax, ebx, ecx, _ := cpuid(0x15)
|
|
if eax != 0 && ebx != 0 && ecx != 0 {
|
|
return int64((int64(ecx) * int64(ebx)) / int64(eax))
|
|
}
|
|
}
|
|
// computeHz determines the official rated speed of a CPU from its brand
|
|
// string. This insanity is *actually the official documented way to do
|
|
// this according to Intel*, prior to leaf 0x15 existing. The official
|
|
// documentation only shows this working for exactly `x.xx` or `xxxx`
|
|
// cases, e.g., `2.50GHz` or `1300MHz`; this parser will accept other
|
|
// sizes.
|
|
hz := strings.LastIndex(model, "Hz")
|
|
if hz < 3 {
|
|
return -1
|
|
}
|
|
var multiplier int64
|
|
switch model[hz-1] {
|
|
case 'M':
|
|
multiplier = 1000 * 1000
|
|
case 'G':
|
|
multiplier = 1000 * 1000 * 1000
|
|
case 'T':
|
|
multiplier = 1000 * 1000 * 1000 * 1000
|
|
}
|
|
if multiplier == 0 {
|
|
return -1
|
|
}
|
|
freq := int64(0)
|
|
divisor := int64(0)
|
|
decimalShift := int64(1)
|
|
var i int
|
|
for i = hz - 2; i >= 0 && model[i] != ' '; i-- {
|
|
if model[i] >= '0' && model[i] <= '9' {
|
|
freq += int64(model[i]-'0') * decimalShift
|
|
decimalShift *= 10
|
|
} else if model[i] == '.' {
|
|
if divisor != 0 {
|
|
return -1
|
|
}
|
|
divisor = decimalShift
|
|
} else {
|
|
return -1
|
|
}
|
|
}
|
|
// we didn't find a space
|
|
if i < 0 {
|
|
return -1
|
|
}
|
|
if divisor != 0 {
|
|
return (freq * multiplier) / divisor
|
|
}
|
|
return freq * multiplier
|
|
}
|
|
|
|
// VM Will return true if the cpu id indicates we are in
|
|
// a virtual machine. This is only a hint, and will very likely
|
|
// have many false negatives.
|
|
func (c CPUInfo) VM() bool {
|
|
switch c.VendorID {
|
|
case MSVM, KVM, VMware, XenHVM, Bhyve:
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// Flags contains detected cpu features and characteristics
|
|
type Flags uint64
|
|
|
|
// ArmFlags contains detected ARM cpu features and characteristics
|
|
type ArmFlags uint64
|
|
|
|
// String returns a string representation of the detected
|
|
// CPU features.
|
|
func (f Flags) String() string {
|
|
return strings.Join(f.Strings(), ",")
|
|
}
|
|
|
|
// Strings returns an array of the detected features.
|
|
func (f Flags) Strings() []string {
|
|
r := make([]string, 0, 20)
|
|
for i := uint(0); i < 64; i++ {
|
|
key := Flags(1 << i)
|
|
val := flagNames[key]
|
|
if f&key != 0 {
|
|
r = append(r, val)
|
|
}
|
|
}
|
|
return r
|
|
}
|
|
|
|
// String returns a string representation of the detected
|
|
// CPU features.
|
|
func (f ArmFlags) String() string {
|
|
return strings.Join(f.Strings(), ",")
|
|
}
|
|
|
|
// Strings returns an array of the detected features.
|
|
func (f ArmFlags) Strings() []string {
|
|
r := make([]string, 0, 20)
|
|
for i := uint(0); i < 64; i++ {
|
|
key := ArmFlags(1 << i)
|
|
val := flagNamesArm[key]
|
|
if f&key != 0 {
|
|
r = append(r, val)
|
|
}
|
|
}
|
|
return r
|
|
}
|
|
func maxExtendedFunction() uint32 {
|
|
eax, _, _, _ := cpuid(0x80000000)
|
|
return eax
|
|
}
|
|
|
|
func maxFunctionID() uint32 {
|
|
a, _, _, _ := cpuid(0)
|
|
return a
|
|
}
|
|
|
|
func brandName() string {
|
|
if maxExtendedFunction() >= 0x80000004 {
|
|
v := make([]uint32, 0, 48)
|
|
for i := uint32(0); i < 3; i++ {
|
|
a, b, c, d := cpuid(0x80000002 + i)
|
|
v = append(v, a, b, c, d)
|
|
}
|
|
return strings.Trim(string(valAsString(v...)), " ")
|
|
}
|
|
return "unknown"
|
|
}
|
|
|
|
func threadsPerCore() int {
|
|
mfi := maxFunctionID()
|
|
vend, _ := vendorID()
|
|
|
|
if mfi < 0x4 || (vend != Intel && vend != AMD) {
|
|
return 1
|
|
}
|
|
|
|
if mfi < 0xb {
|
|
if vend != Intel {
|
|
return 1
|
|
}
|
|
_, b, _, d := cpuid(1)
|
|
if (d & (1 << 28)) != 0 {
|
|
// v will contain logical core count
|
|
v := (b >> 16) & 255
|
|
if v > 1 {
|
|
a4, _, _, _ := cpuid(4)
|
|
// physical cores
|
|
v2 := (a4 >> 26) + 1
|
|
if v2 > 0 {
|
|
return int(v) / int(v2)
|
|
}
|
|
}
|
|
}
|
|
return 1
|
|
}
|
|
_, b, _, _ := cpuidex(0xb, 0)
|
|
if b&0xffff == 0 {
|
|
return 1
|
|
}
|
|
return int(b & 0xffff)
|
|
}
|
|
|
|
func logicalCores() int {
|
|
mfi := maxFunctionID()
|
|
v, _ := vendorID()
|
|
switch v {
|
|
case Intel:
|
|
// Use this on old Intel processors
|
|
if mfi < 0xb {
|
|
if mfi < 1 {
|
|
return 0
|
|
}
|
|
// CPUID.1:EBX[23:16] represents the maximum number of addressable IDs (initial APIC ID)
|
|
// that can be assigned to logical processors in a physical package.
|
|
// The value may not be the same as the number of logical processors that are present in the hardware of a physical package.
|
|
_, ebx, _, _ := cpuid(1)
|
|
logical := (ebx >> 16) & 0xff
|
|
return int(logical)
|
|
}
|
|
_, b, _, _ := cpuidex(0xb, 1)
|
|
return int(b & 0xffff)
|
|
case AMD, Hygon:
|
|
_, b, _, _ := cpuid(1)
|
|
return int((b >> 16) & 0xff)
|
|
default:
|
|
return 0
|
|
}
|
|
}
|
|
|
|
func familyModel() (int, int) {
|
|
if maxFunctionID() < 0x1 {
|
|
return 0, 0
|
|
}
|
|
eax, _, _, _ := cpuid(1)
|
|
family := ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff)
|
|
model := ((eax >> 4) & 0xf) + ((eax >> 12) & 0xf0)
|
|
return int(family), int(model)
|
|
}
|
|
|
|
func physicalCores() int {
|
|
v, _ := vendorID()
|
|
switch v {
|
|
case Intel:
|
|
return logicalCores() / threadsPerCore()
|
|
case AMD, Hygon:
|
|
lc := logicalCores()
|
|
tpc := threadsPerCore()
|
|
if lc > 0 && tpc > 0 {
|
|
return lc / tpc
|
|
}
|
|
// The following is inaccurate on AMD EPYC 7742 64-Core Processor
|
|
|
|
if maxExtendedFunction() >= 0x80000008 {
|
|
_, _, c, _ := cpuid(0x80000008)
|
|
return int(c&0xff) + 1
|
|
}
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// Except from http://en.wikipedia.org/wiki/CPUID#EAX.3D0:_Get_vendor_ID
|
|
var vendorMapping = map[string]Vendor{
|
|
"AMDisbetter!": AMD,
|
|
"AuthenticAMD": AMD,
|
|
"CentaurHauls": VIA,
|
|
"GenuineIntel": Intel,
|
|
"TransmetaCPU": Transmeta,
|
|
"GenuineTMx86": Transmeta,
|
|
"Geode by NSC": NSC,
|
|
"VIA VIA VIA ": VIA,
|
|
"KVMKVMKVMKVM": KVM,
|
|
"Microsoft Hv": MSVM,
|
|
"VMwareVMware": VMware,
|
|
"XenVMMXenVMM": XenHVM,
|
|
"bhyve bhyve ": Bhyve,
|
|
"HygonGenuine": Hygon,
|
|
"Vortex86 SoC": SiS,
|
|
"SiS SiS SiS ": SiS,
|
|
"RiseRiseRise": SiS,
|
|
"Genuine RDC": RDC,
|
|
}
|
|
|
|
func vendorID() (Vendor, string) {
|
|
_, b, c, d := cpuid(0)
|
|
v := string(valAsString(b, d, c))
|
|
vend, ok := vendorMapping[v]
|
|
if !ok {
|
|
return Other, v
|
|
}
|
|
return vend, v
|
|
}
|
|
|
|
func cacheLine() int {
|
|
if maxFunctionID() < 0x1 {
|
|
return 0
|
|
}
|
|
|
|
_, ebx, _, _ := cpuid(1)
|
|
cache := (ebx & 0xff00) >> 5 // cflush size
|
|
if cache == 0 && maxExtendedFunction() >= 0x80000006 {
|
|
_, _, ecx, _ := cpuid(0x80000006)
|
|
cache = ecx & 0xff // cacheline size
|
|
}
|
|
// TODO: Read from Cache and TLB Information
|
|
return int(cache)
|
|
}
|
|
|
|
func (c *CPUInfo) cacheSize() {
|
|
c.Cache.L1D = -1
|
|
c.Cache.L1I = -1
|
|
c.Cache.L2 = -1
|
|
c.Cache.L3 = -1
|
|
vendor, _ := vendorID()
|
|
switch vendor {
|
|
case Intel:
|
|
if maxFunctionID() < 4 {
|
|
return
|
|
}
|
|
for i := uint32(0); ; i++ {
|
|
eax, ebx, ecx, _ := cpuidex(4, i)
|
|
cacheType := eax & 15
|
|
if cacheType == 0 {
|
|
break
|
|
}
|
|
cacheLevel := (eax >> 5) & 7
|
|
coherency := int(ebx&0xfff) + 1
|
|
partitions := int((ebx>>12)&0x3ff) + 1
|
|
associativity := int((ebx>>22)&0x3ff) + 1
|
|
sets := int(ecx) + 1
|
|
size := associativity * partitions * coherency * sets
|
|
switch cacheLevel {
|
|
case 1:
|
|
if cacheType == 1 {
|
|
// 1 = Data Cache
|
|
c.Cache.L1D = size
|
|
} else if cacheType == 2 {
|
|
// 2 = Instruction Cache
|
|
c.Cache.L1I = size
|
|
} else {
|
|
if c.Cache.L1D < 0 {
|
|
c.Cache.L1I = size
|
|
}
|
|
if c.Cache.L1I < 0 {
|
|
c.Cache.L1I = size
|
|
}
|
|
}
|
|
case 2:
|
|
c.Cache.L2 = size
|
|
case 3:
|
|
c.Cache.L3 = size
|
|
}
|
|
}
|
|
case AMD, Hygon:
|
|
// Untested.
|
|
if maxExtendedFunction() < 0x80000005 {
|
|
return
|
|
}
|
|
_, _, ecx, edx := cpuid(0x80000005)
|
|
c.Cache.L1D = int(((ecx >> 24) & 0xFF) * 1024)
|
|
c.Cache.L1I = int(((edx >> 24) & 0xFF) * 1024)
|
|
|
|
if maxExtendedFunction() < 0x80000006 {
|
|
return
|
|
}
|
|
_, _, ecx, _ = cpuid(0x80000006)
|
|
c.Cache.L2 = int(((ecx >> 16) & 0xFFFF) * 1024)
|
|
|
|
// CPUID Fn8000_001D_EAX_x[N:0] Cache Properties
|
|
if maxExtendedFunction() < 0x8000001D {
|
|
return
|
|
}
|
|
for i := uint32(0); i < math.MaxUint32; i++ {
|
|
eax, ebx, ecx, _ := cpuidex(0x8000001D, i)
|
|
|
|
level := (eax >> 5) & 7
|
|
cacheNumSets := ecx + 1
|
|
cacheLineSize := 1 + (ebx & 2047)
|
|
cachePhysPartitions := 1 + ((ebx >> 12) & 511)
|
|
cacheNumWays := 1 + ((ebx >> 22) & 511)
|
|
|
|
typ := eax & 15
|
|
size := int(cacheNumSets * cacheLineSize * cachePhysPartitions * cacheNumWays)
|
|
if typ == 0 {
|
|
return
|
|
}
|
|
|
|
switch level {
|
|
case 1:
|
|
switch typ {
|
|
case 1:
|
|
// Data cache
|
|
c.Cache.L1D = size
|
|
case 2:
|
|
// Inst cache
|
|
c.Cache.L1I = size
|
|
default:
|
|
if c.Cache.L1D < 0 {
|
|
c.Cache.L1I = size
|
|
}
|
|
if c.Cache.L1I < 0 {
|
|
c.Cache.L1I = size
|
|
}
|
|
}
|
|
case 2:
|
|
c.Cache.L2 = size
|
|
case 3:
|
|
c.Cache.L3 = size
|
|
}
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
type SGXEPCSection struct {
|
|
BaseAddress uint64
|
|
EPCSize uint64
|
|
}
|
|
|
|
type SGXSupport struct {
|
|
Available bool
|
|
LaunchControl bool
|
|
SGX1Supported bool
|
|
SGX2Supported bool
|
|
MaxEnclaveSizeNot64 int64
|
|
MaxEnclaveSize64 int64
|
|
EPCSections []SGXEPCSection
|
|
}
|
|
|
|
func hasSGX(available, lc bool) (rval SGXSupport) {
|
|
rval.Available = available
|
|
|
|
if !available {
|
|
return
|
|
}
|
|
|
|
rval.LaunchControl = lc
|
|
|
|
a, _, _, d := cpuidex(0x12, 0)
|
|
rval.SGX1Supported = a&0x01 != 0
|
|
rval.SGX2Supported = a&0x02 != 0
|
|
rval.MaxEnclaveSizeNot64 = 1 << (d & 0xFF) // pow 2
|
|
rval.MaxEnclaveSize64 = 1 << ((d >> 8) & 0xFF) // pow 2
|
|
rval.EPCSections = make([]SGXEPCSection, 0)
|
|
|
|
for subleaf := uint32(2); subleaf < 2+8; subleaf++ {
|
|
eax, ebx, ecx, edx := cpuidex(0x12, subleaf)
|
|
leafType := eax & 0xf
|
|
|
|
if leafType == 0 {
|
|
// Invalid subleaf, stop iterating
|
|
break
|
|
} else if leafType == 1 {
|
|
// EPC Section subleaf
|
|
baseAddress := uint64(eax&0xfffff000) + (uint64(ebx&0x000fffff) << 32)
|
|
size := uint64(ecx&0xfffff000) + (uint64(edx&0x000fffff) << 32)
|
|
|
|
section := SGXEPCSection{BaseAddress: baseAddress, EPCSize: size}
|
|
rval.EPCSections = append(rval.EPCSections, section)
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func support() Flags {
|
|
mfi := maxFunctionID()
|
|
vend, _ := vendorID()
|
|
if mfi < 0x1 {
|
|
return 0
|
|
}
|
|
rval := uint64(0)
|
|
_, _, c, d := cpuid(1)
|
|
if (d & (1 << 15)) != 0 {
|
|
rval |= CMOV
|
|
}
|
|
if (d & (1 << 23)) != 0 {
|
|
rval |= MMX
|
|
}
|
|
if (d & (1 << 25)) != 0 {
|
|
rval |= MMXEXT
|
|
}
|
|
if (d & (1 << 25)) != 0 {
|
|
rval |= SSE
|
|
}
|
|
if (d & (1 << 26)) != 0 {
|
|
rval |= SSE2
|
|
}
|
|
if (c & 1) != 0 {
|
|
rval |= SSE3
|
|
}
|
|
if (c & (1 << 5)) != 0 {
|
|
rval |= VMX
|
|
}
|
|
if (c & 0x00000200) != 0 {
|
|
rval |= SSSE3
|
|
}
|
|
if (c & 0x00080000) != 0 {
|
|
rval |= SSE4
|
|
}
|
|
if (c & 0x00100000) != 0 {
|
|
rval |= SSE42
|
|
}
|
|
if (c & (1 << 25)) != 0 {
|
|
rval |= AESNI
|
|
}
|
|
if (c & (1 << 1)) != 0 {
|
|
rval |= CLMUL
|
|
}
|
|
if c&(1<<23) != 0 {
|
|
rval |= POPCNT
|
|
}
|
|
if c&(1<<30) != 0 {
|
|
rval |= RDRAND
|
|
}
|
|
if c&(1<<29) != 0 {
|
|
rval |= F16C
|
|
}
|
|
if c&(1<<13) != 0 {
|
|
rval |= CX16
|
|
}
|
|
if vend == Intel && (d&(1<<28)) != 0 && mfi >= 4 {
|
|
if threadsPerCore() > 1 {
|
|
rval |= HTT
|
|
}
|
|
}
|
|
if vend == AMD && (d&(1<<28)) != 0 && mfi >= 4 {
|
|
if threadsPerCore() > 1 {
|
|
rval |= HTT
|
|
}
|
|
}
|
|
// Check XGETBV, OXSAVE and AVX bits
|
|
if c&(1<<26) != 0 && c&(1<<27) != 0 && c&(1<<28) != 0 {
|
|
// Check for OS support
|
|
eax, _ := xgetbv(0)
|
|
if (eax & 0x6) == 0x6 {
|
|
rval |= AVX
|
|
if (c & 0x00001000) != 0 {
|
|
rval |= FMA3
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check AVX2, AVX2 requires OS support, but BMI1/2 don't.
|
|
if mfi >= 7 {
|
|
_, ebx, ecx, edx := cpuidex(7, 0)
|
|
eax1, _, _, _ := cpuidex(7, 1)
|
|
if (rval&AVX) != 0 && (ebx&0x00000020) != 0 {
|
|
rval |= AVX2
|
|
}
|
|
if (ebx & 0x00000008) != 0 {
|
|
rval |= BMI1
|
|
if (ebx & 0x00000100) != 0 {
|
|
rval |= BMI2
|
|
}
|
|
}
|
|
if ebx&(1<<2) != 0 {
|
|
rval |= SGX
|
|
}
|
|
if ebx&(1<<4) != 0 {
|
|
rval |= HLE
|
|
}
|
|
if ebx&(1<<9) != 0 {
|
|
rval |= ERMS
|
|
}
|
|
if ebx&(1<<11) != 0 {
|
|
rval |= RTM
|
|
}
|
|
if ebx&(1<<14) != 0 {
|
|
rval |= MPX
|
|
}
|
|
if ebx&(1<<18) != 0 {
|
|
rval |= RDSEED
|
|
}
|
|
if ebx&(1<<19) != 0 {
|
|
rval |= ADX
|
|
}
|
|
if ebx&(1<<29) != 0 {
|
|
rval |= SHA
|
|
}
|
|
if edx&(1<<26) != 0 {
|
|
rval |= IBPB
|
|
}
|
|
if ecx&(1<<30) != 0 {
|
|
rval |= SGXLC
|
|
}
|
|
if edx&(1<<27) != 0 {
|
|
rval |= STIBP
|
|
}
|
|
|
|
// Only detect AVX-512 features if XGETBV is supported
|
|
if c&((1<<26)|(1<<27)) == (1<<26)|(1<<27) {
|
|
// Check for OS support
|
|
eax, _ := xgetbv(0)
|
|
|
|
// Verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
|
|
// ZMM16-ZMM31 state are enabled by OS)
|
|
/// and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
|
|
if (eax>>5)&7 == 7 && (eax>>1)&3 == 3 {
|
|
if ebx&(1<<16) != 0 {
|
|
rval |= AVX512F
|
|
}
|
|
if ebx&(1<<17) != 0 {
|
|
rval |= AVX512DQ
|
|
}
|
|
if ebx&(1<<21) != 0 {
|
|
rval |= AVX512IFMA
|
|
}
|
|
if ebx&(1<<26) != 0 {
|
|
rval |= AVX512PF
|
|
}
|
|
if ebx&(1<<27) != 0 {
|
|
rval |= AVX512ER
|
|
}
|
|
if ebx&(1<<28) != 0 {
|
|
rval |= AVX512CD
|
|
}
|
|
if ebx&(1<<30) != 0 {
|
|
rval |= AVX512BW
|
|
}
|
|
if ebx&(1<<31) != 0 {
|
|
rval |= AVX512VL
|
|
}
|
|
// ecx
|
|
if ecx&(1<<1) != 0 {
|
|
rval |= AVX512VBMI
|
|
}
|
|
if ecx&(1<<6) != 0 {
|
|
rval |= AVX512VBMI2
|
|
}
|
|
if ecx&(1<<8) != 0 {
|
|
rval |= GFNI
|
|
}
|
|
if ecx&(1<<9) != 0 {
|
|
rval |= VAES
|
|
}
|
|
if ecx&(1<<10) != 0 {
|
|
rval |= VPCLMULQDQ
|
|
}
|
|
if ecx&(1<<11) != 0 {
|
|
rval |= AVX512VNNI
|
|
}
|
|
if ecx&(1<<12) != 0 {
|
|
rval |= AVX512BITALG
|
|
}
|
|
if ecx&(1<<14) != 0 {
|
|
rval |= AVX512VPOPCNTDQ
|
|
}
|
|
// edx
|
|
if edx&(1<<8) != 0 {
|
|
rval |= AVX512VP2INTERSECT
|
|
}
|
|
// cpuid eax 07h,ecx=1
|
|
if eax1&(1<<5) != 0 {
|
|
rval |= AVX512BF16
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if maxExtendedFunction() >= 0x80000001 {
|
|
_, _, c, d := cpuid(0x80000001)
|
|
if (c & (1 << 5)) != 0 {
|
|
rval |= LZCNT
|
|
rval |= POPCNT
|
|
}
|
|
if (d & (1 << 31)) != 0 {
|
|
rval |= AMD3DNOW
|
|
}
|
|
if (d & (1 << 30)) != 0 {
|
|
rval |= AMD3DNOWEXT
|
|
}
|
|
if (d & (1 << 23)) != 0 {
|
|
rval |= MMX
|
|
}
|
|
if (d & (1 << 22)) != 0 {
|
|
rval |= MMXEXT
|
|
}
|
|
if (c & (1 << 6)) != 0 {
|
|
rval |= SSE4A
|
|
}
|
|
if d&(1<<20) != 0 {
|
|
rval |= NX
|
|
}
|
|
if d&(1<<27) != 0 {
|
|
rval |= RDTSCP
|
|
}
|
|
|
|
/* Allow for selectively disabling SSE2 functions on AMD processors
|
|
with SSE2 support but not SSE4a. This includes Athlon64, some
|
|
Opteron, and some Sempron processors. MMX, SSE, or 3DNow! are faster
|
|
than SSE2 often enough to utilize this special-case flag.
|
|
AV_CPU_FLAG_SSE2 and AV_CPU_FLAG_SSE2SLOW are both set in this case
|
|
so that SSE2 is used unless explicitly disabled by checking
|
|
AV_CPU_FLAG_SSE2SLOW. */
|
|
if vend != Intel &&
|
|
rval&SSE2 != 0 && (c&0x00000040) == 0 {
|
|
rval |= SSE2SLOW
|
|
}
|
|
|
|
/* XOP and FMA4 use the AVX instruction coding scheme, so they can't be
|
|
* used unless the OS has AVX support. */
|
|
if (rval & AVX) != 0 {
|
|
if (c & 0x00000800) != 0 {
|
|
rval |= XOP
|
|
}
|
|
if (c & 0x00010000) != 0 {
|
|
rval |= FMA4
|
|
}
|
|
}
|
|
|
|
if vend == Intel {
|
|
family, model := familyModel()
|
|
if family == 6 && (model == 9 || model == 13 || model == 14) {
|
|
/* 6/9 (pentium-m "banias"), 6/13 (pentium-m "dothan"), and
|
|
* 6/14 (core1 "yonah") theoretically support sse2, but it's
|
|
* usually slower than mmx. */
|
|
if (rval & SSE2) != 0 {
|
|
rval |= SSE2SLOW
|
|
}
|
|
if (rval & SSE3) != 0 {
|
|
rval |= SSE3SLOW
|
|
}
|
|
}
|
|
/* The Atom processor has SSSE3 support, which is useful in many cases,
|
|
* but sometimes the SSSE3 version is slower than the SSE2 equivalent
|
|
* on the Atom, but is generally faster on other processors supporting
|
|
* SSSE3. This flag allows for selectively disabling certain SSSE3
|
|
* functions on the Atom. */
|
|
if family == 6 && model == 28 {
|
|
rval |= ATOM
|
|
}
|
|
}
|
|
}
|
|
return Flags(rval)
|
|
}
|
|
|
|
func valAsString(values ...uint32) []byte {
|
|
r := make([]byte, 4*len(values))
|
|
for i, v := range values {
|
|
dst := r[i*4:]
|
|
dst[0] = byte(v & 0xff)
|
|
dst[1] = byte((v >> 8) & 0xff)
|
|
dst[2] = byte((v >> 16) & 0xff)
|
|
dst[3] = byte((v >> 24) & 0xff)
|
|
switch {
|
|
case dst[0] == 0:
|
|
return r[:i*4]
|
|
case dst[1] == 0:
|
|
return r[:i*4+1]
|
|
case dst[2] == 0:
|
|
return r[:i*4+2]
|
|
case dst[3] == 0:
|
|
return r[:i*4+3]
|
|
}
|
|
}
|
|
return r
|
|
}
|
|
|
|
// Single-precision and double-precision floating point
|
|
func (c CPUInfo) ArmFP() bool {
|
|
return c.Arm&FP != 0
|
|
}
|
|
|
|
// Advanced SIMD
|
|
func (c CPUInfo) ArmASIMD() bool {
|
|
return c.Arm&ASIMD != 0
|
|
}
|
|
|
|
// Generic timer
|
|
func (c CPUInfo) ArmEVTSTRM() bool {
|
|
return c.Arm&EVTSTRM != 0
|
|
}
|
|
|
|
// AES instructions
|
|
func (c CPUInfo) ArmAES() bool {
|
|
return c.Arm&AES != 0
|
|
}
|
|
|
|
// Polynomial Multiply instructions (PMULL/PMULL2)
|
|
func (c CPUInfo) ArmPMULL() bool {
|
|
return c.Arm&PMULL != 0
|
|
}
|
|
|
|
// SHA-1 instructions (SHA1C, etc)
|
|
func (c CPUInfo) ArmSHA1() bool {
|
|
return c.Arm&SHA1 != 0
|
|
}
|
|
|
|
// SHA-2 instructions (SHA256H, etc)
|
|
func (c CPUInfo) ArmSHA2() bool {
|
|
return c.Arm&SHA2 != 0
|
|
}
|
|
|
|
// CRC32/CRC32C instructions
|
|
func (c CPUInfo) ArmCRC32() bool {
|
|
return c.Arm&CRC32 != 0
|
|
}
|
|
|
|
// Large System Extensions (LSE)
|
|
func (c CPUInfo) ArmATOMICS() bool {
|
|
return c.Arm&ATOMICS != 0
|
|
}
|
|
|
|
// Half-precision floating point
|
|
func (c CPUInfo) ArmFPHP() bool {
|
|
return c.Arm&FPHP != 0
|
|
}
|
|
|
|
// Advanced SIMD half-precision floating point
|
|
func (c CPUInfo) ArmASIMDHP() bool {
|
|
return c.Arm&ASIMDHP != 0
|
|
}
|
|
|
|
// Rounding Double Multiply Accumulate/Subtract (SQRDMLAH/SQRDMLSH)
|
|
func (c CPUInfo) ArmASIMDRDM() bool {
|
|
return c.Arm&ASIMDRDM != 0
|
|
}
|
|
|
|
// Javascript-style double->int convert (FJCVTZS)
|
|
func (c CPUInfo) ArmJSCVT() bool {
|
|
return c.Arm&JSCVT != 0
|
|
}
|
|
|
|
// Floatin point complex number addition and multiplication
|
|
func (c CPUInfo) ArmFCMA() bool {
|
|
return c.Arm&FCMA != 0
|
|
}
|
|
|
|
// Weaker release consistency (LDAPR, etc)
|
|
func (c CPUInfo) ArmLRCPC() bool {
|
|
return c.Arm&LRCPC != 0
|
|
}
|
|
|
|
// Data cache clean to Point of Persistence (DC CVAP)
|
|
func (c CPUInfo) ArmDCPOP() bool {
|
|
return c.Arm&DCPOP != 0
|
|
}
|
|
|
|
// SHA-3 instructions (EOR3, RAXI, XAR, BCAX)
|
|
func (c CPUInfo) ArmSHA3() bool {
|
|
return c.Arm&SHA3 != 0
|
|
}
|
|
|
|
// SM3 instructions
|
|
func (c CPUInfo) ArmSM3() bool {
|
|
return c.Arm&SM3 != 0
|
|
}
|
|
|
|
// SM4 instructions
|
|
func (c CPUInfo) ArmSM4() bool {
|
|
return c.Arm&SM4 != 0
|
|
}
|
|
|
|
// SIMD Dot Product
|
|
func (c CPUInfo) ArmASIMDDP() bool {
|
|
return c.Arm&ASIMDDP != 0
|
|
}
|
|
|
|
// SHA512 instructions
|
|
func (c CPUInfo) ArmSHA512() bool {
|
|
return c.Arm&SHA512 != 0
|
|
}
|
|
|
|
// Scalable Vector Extension
|
|
func (c CPUInfo) ArmSVE() bool {
|
|
return c.Arm&SVE != 0
|
|
}
|
|
|
|
// Generic Pointer Authentication
|
|
func (c CPUInfo) ArmGPA() bool {
|
|
return c.Arm&GPA != 0
|
|
}
|
|
|