Official Go implementation of the Ethereum protocol
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
go-ethereum/p2p/simulations/adapters/docker.go

191 lines
5.3 KiB

// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package adapters
import (
"errors"
"fmt"
"io"
"io/ioutil"
"os"
"os/exec"
"path/filepath"
"runtime"
"strings"
"github.com/docker/docker/pkg/reexec"
"github.com/ethereum/go-ethereum/node"
all: new p2p node representation (#17643) Package p2p/enode provides a generalized representation of p2p nodes which can contain arbitrary information in key/value pairs. It is also the new home for the node database. The "v4" identity scheme is also moved here from p2p/enr to remove the dependency on Ethereum crypto from that package. Record signature handling is changed significantly. The identity scheme registry is removed and acceptable schemes must be passed to any method that needs identity. This means records must now be validated explicitly after decoding. The enode API is designed to make signature handling easy and safe: most APIs around the codebase work with enode.Node, which is a wrapper around a valid record. Going from enr.Record to enode.Node requires a valid signature. * p2p/discover: port to p2p/enode This ports the discovery code to the new node representation in p2p/enode. The wire protocol is unchanged, this can be considered a refactoring change. The Kademlia table can now deal with nodes using an arbitrary identity scheme. This requires a few incompatible API changes: - Table.Lookup is not available anymore. It used to take a public key as argument because v4 protocol requires one. Its replacement is LookupRandom. - Table.Resolve takes *enode.Node instead of NodeID. This is also for v4 protocol compatibility because nodes cannot be looked up by ID alone. - Types Node and NodeID are gone. Further commits in the series will be fixes all over the the codebase to deal with those removals. * p2p: port to p2p/enode and discovery changes This adapts package p2p to the changes in p2p/discover. All uses of discover.Node and discover.NodeID are replaced by their equivalents from p2p/enode. New API is added to retrieve the enode.Node instance of a peer. The behavior of Server.Self with discovery disabled is improved. It now tries much harder to report a working IP address, falling back to 127.0.0.1 if no suitable address can be determined through other means. These changes were needed for tests of other packages later in the series. * p2p/simulations, p2p/testing: port to p2p/enode No surprises here, mostly replacements of discover.Node, discover.NodeID with their new equivalents. The 'interesting' API changes are: - testing.ProtocolSession tracks complete nodes, not just their IDs. - adapters.NodeConfig has a new method to create a complete node. These changes were needed to make swarm tests work. Note that the NodeID change makes the code incompatible with old simulation snapshots. * whisper/whisperv5, whisper/whisperv6: port to p2p/enode This port was easy because whisper uses []byte for node IDs and URL strings in the API. * eth: port to p2p/enode Again, easy to port because eth uses strings for node IDs and doesn't care about node information in any way. * les: port to p2p/enode Apart from replacing discover.NodeID with enode.ID, most changes are in the server pool code. It now deals with complete nodes instead of (Pubkey, IP, Port) triples. The database format is unchanged for now, but we should probably change it to use the node database later. * node: port to p2p/enode This change simply replaces discover.Node and discover.NodeID with their new equivalents. * swarm/network: port to p2p/enode Swarm has its own node address representation, BzzAddr, containing both an overlay address (the hash of a secp256k1 public key) and an underlay address (enode:// URL). There are no changes to the BzzAddr format in this commit, but certain operations such as creating a BzzAddr from a node ID are now impossible because node IDs aren't public keys anymore. Most swarm-related changes in the series remove uses of NewAddrFromNodeID, replacing it with NewAddr which takes a complete node as argument. ToOverlayAddr is removed because we can just use the node ID directly.
6 years ago
"github.com/ethereum/go-ethereum/p2p/enode"
)
var (
ErrLinuxOnly = errors.New("DockerAdapter can only be used on Linux as it uses the current binary (which must be a Linux binary)")
)
// DockerAdapter is a NodeAdapter which runs simulation nodes inside Docker
// containers.
//
// A Docker image is built which contains the current binary at /bin/p2p-node
// which when executed runs the underlying service (see the description
// of the execP2PNode function for more details)
type DockerAdapter struct {
ExecAdapter
}
// NewDockerAdapter builds the p2p-node Docker image containing the current
// binary and returns a DockerAdapter
func NewDockerAdapter() (*DockerAdapter, error) {
// Since Docker containers run on Linux and this adapter runs the
// current binary in the container, it must be compiled for Linux.
//
// It is reasonable to require this because the caller can just
// compile the current binary in a Docker container.
if runtime.GOOS != "linux" {
return nil, ErrLinuxOnly
}
if err := buildDockerImage(); err != nil {
return nil, err
}
return &DockerAdapter{
ExecAdapter{
all: new p2p node representation (#17643) Package p2p/enode provides a generalized representation of p2p nodes which can contain arbitrary information in key/value pairs. It is also the new home for the node database. The "v4" identity scheme is also moved here from p2p/enr to remove the dependency on Ethereum crypto from that package. Record signature handling is changed significantly. The identity scheme registry is removed and acceptable schemes must be passed to any method that needs identity. This means records must now be validated explicitly after decoding. The enode API is designed to make signature handling easy and safe: most APIs around the codebase work with enode.Node, which is a wrapper around a valid record. Going from enr.Record to enode.Node requires a valid signature. * p2p/discover: port to p2p/enode This ports the discovery code to the new node representation in p2p/enode. The wire protocol is unchanged, this can be considered a refactoring change. The Kademlia table can now deal with nodes using an arbitrary identity scheme. This requires a few incompatible API changes: - Table.Lookup is not available anymore. It used to take a public key as argument because v4 protocol requires one. Its replacement is LookupRandom. - Table.Resolve takes *enode.Node instead of NodeID. This is also for v4 protocol compatibility because nodes cannot be looked up by ID alone. - Types Node and NodeID are gone. Further commits in the series will be fixes all over the the codebase to deal with those removals. * p2p: port to p2p/enode and discovery changes This adapts package p2p to the changes in p2p/discover. All uses of discover.Node and discover.NodeID are replaced by their equivalents from p2p/enode. New API is added to retrieve the enode.Node instance of a peer. The behavior of Server.Self with discovery disabled is improved. It now tries much harder to report a working IP address, falling back to 127.0.0.1 if no suitable address can be determined through other means. These changes were needed for tests of other packages later in the series. * p2p/simulations, p2p/testing: port to p2p/enode No surprises here, mostly replacements of discover.Node, discover.NodeID with their new equivalents. The 'interesting' API changes are: - testing.ProtocolSession tracks complete nodes, not just their IDs. - adapters.NodeConfig has a new method to create a complete node. These changes were needed to make swarm tests work. Note that the NodeID change makes the code incompatible with old simulation snapshots. * whisper/whisperv5, whisper/whisperv6: port to p2p/enode This port was easy because whisper uses []byte for node IDs and URL strings in the API. * eth: port to p2p/enode Again, easy to port because eth uses strings for node IDs and doesn't care about node information in any way. * les: port to p2p/enode Apart from replacing discover.NodeID with enode.ID, most changes are in the server pool code. It now deals with complete nodes instead of (Pubkey, IP, Port) triples. The database format is unchanged for now, but we should probably change it to use the node database later. * node: port to p2p/enode This change simply replaces discover.Node and discover.NodeID with their new equivalents. * swarm/network: port to p2p/enode Swarm has its own node address representation, BzzAddr, containing both an overlay address (the hash of a secp256k1 public key) and an underlay address (enode:// URL). There are no changes to the BzzAddr format in this commit, but certain operations such as creating a BzzAddr from a node ID are now impossible because node IDs aren't public keys anymore. Most swarm-related changes in the series remove uses of NewAddrFromNodeID, replacing it with NewAddr which takes a complete node as argument. ToOverlayAddr is removed because we can just use the node ID directly.
6 years ago
nodes: make(map[enode.ID]*ExecNode),
},
}, nil
}
// Name returns the name of the adapter for logging purposes
func (d *DockerAdapter) Name() string {
return "docker-adapter"
}
// NewNode returns a new DockerNode using the given config
func (d *DockerAdapter) NewNode(config *NodeConfig) (Node, error) {
if len(config.Services) == 0 {
return nil, errors.New("node must have at least one service")
}
for _, service := range config.Services {
if _, exists := serviceFuncs[service]; !exists {
return nil, fmt.Errorf("unknown node service %q", service)
}
}
// generate the config
conf := &execNodeConfig{
Stack: node.DefaultConfig,
Node: config,
}
conf.Stack.DataDir = "/data"
conf.Stack.WSHost = "0.0.0.0"
conf.Stack.WSOrigins = []string{"*"}
conf.Stack.WSExposeAll = true
conf.Stack.P2P.EnableMsgEvents = false
conf.Stack.P2P.NoDiscovery = true
conf.Stack.P2P.NAT = nil
conf.Stack.NoUSB = true
// listen on all interfaces on a given port, which we set when we
// initialise NodeConfig (usually a random port)
conf.Stack.P2P.ListenAddr = fmt.Sprintf(":%d", config.Port)
node := &DockerNode{
ExecNode: ExecNode{
ID: config.ID,
Config: conf,
adapter: &d.ExecAdapter,
},
}
node.newCmd = node.dockerCommand
d.ExecAdapter.nodes[node.ID] = &node.ExecNode
return node, nil
}
// DockerNode wraps an ExecNode but exec's the current binary in a docker
// container rather than locally
type DockerNode struct {
ExecNode
}
// dockerCommand returns a command which exec's the binary in a Docker
// container.
//
// It uses a shell so that we can pass the _P2P_NODE_CONFIG environment
// variable to the container using the --env flag.
func (n *DockerNode) dockerCommand() *exec.Cmd {
return exec.Command(
"sh", "-c",
fmt.Sprintf(
`exec docker run --interactive --env _P2P_NODE_CONFIG="${_P2P_NODE_CONFIG}" %s p2p-node %s %s`,
dockerImage, strings.Join(n.Config.Node.Services, ","), n.ID.String(),
),
)
}
// dockerImage is the name of the Docker image which gets built to run the
// simulation node
const dockerImage = "p2p-node"
// buildDockerImage builds the Docker image which is used to run the simulation
// node in a Docker container.
//
// It adds the current binary as "p2p-node" so that it runs execP2PNode
// when executed.
func buildDockerImage() error {
// create a directory to use as the build context
dir, err := ioutil.TempDir("", "p2p-docker")
if err != nil {
return err
}
defer os.RemoveAll(dir)
// copy the current binary into the build context
bin, err := os.Open(reexec.Self())
if err != nil {
return err
}
defer bin.Close()
dst, err := os.OpenFile(filepath.Join(dir, "self.bin"), os.O_WRONLY|os.O_CREATE, 0755)
if err != nil {
return err
}
defer dst.Close()
if _, err := io.Copy(dst, bin); err != nil {
return err
}
// create the Dockerfile
dockerfile := []byte(`
FROM ubuntu:16.04
RUN mkdir /data
ADD self.bin /bin/p2p-node
`)
if err := ioutil.WriteFile(filepath.Join(dir, "Dockerfile"), dockerfile, 0644); err != nil {
return err
}
// run 'docker build'
cmd := exec.Command("docker", "build", "-t", dockerImage, dir)
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
if err := cmd.Run(); err != nil {
return fmt.Errorf("error building docker image: %s", err)
}
return nil
}