|
|
|
// Copyright 2019 The go-ethereum Authors
|
|
|
|
// This file is part of the go-ethereum library.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
|
|
// (at your option) any later version.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
// GNU Lesser General Public License for more details.
|
|
|
|
//
|
|
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
package trie
|
|
|
|
|
|
|
|
import (
|
|
|
|
"errors"
|
|
|
|
"fmt"
|
|
|
|
"sync"
|
|
|
|
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
|
|
"github.com/ethereum/go-ethereum/rlp"
|
|
|
|
"golang.org/x/crypto/sha3"
|
|
|
|
)
|
|
|
|
|
|
|
|
// leafChanSize is the size of the leafCh. It's a pretty arbitrary number, to allow
|
|
|
|
// some parallelism but not incur too much memory overhead.
|
|
|
|
const leafChanSize = 200
|
|
|
|
|
|
|
|
// leaf represents a trie leaf value
|
|
|
|
type leaf struct {
|
|
|
|
size int // size of the rlp data (estimate)
|
|
|
|
hash common.Hash // hash of rlp data
|
|
|
|
node node // the node to commit
|
|
|
|
vnodes bool // set to true if the node (possibly) contains a valueNode
|
|
|
|
}
|
|
|
|
|
|
|
|
// committer is a type used for the trie Commit operation. A committer has some
|
|
|
|
// internal preallocated temp space, and also a callback that is invoked when
|
|
|
|
// leaves are committed. The leafs are passed through the `leafCh`, to allow
|
|
|
|
// some level of parallelism.
|
|
|
|
// By 'some level' of parallelism, it's still the case that all leaves will be
|
|
|
|
// processed sequentially - onleaf will never be called in parallel or out of order.
|
|
|
|
type committer struct {
|
|
|
|
tmp sliceBuffer
|
|
|
|
sha crypto.KeccakState
|
|
|
|
|
|
|
|
onleaf LeafCallback
|
|
|
|
leafCh chan *leaf
|
|
|
|
}
|
|
|
|
|
|
|
|
// committers live in a global sync.Pool
|
|
|
|
var committerPool = sync.Pool{
|
|
|
|
New: func() interface{} {
|
|
|
|
return &committer{
|
|
|
|
tmp: make(sliceBuffer, 0, 550), // cap is as large as a full fullNode.
|
|
|
|
sha: sha3.NewLegacyKeccak256().(crypto.KeccakState),
|
|
|
|
}
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
// newCommitter creates a new committer or picks one from the pool.
|
|
|
|
func newCommitter() *committer {
|
|
|
|
return committerPool.Get().(*committer)
|
|
|
|
}
|
|
|
|
|
|
|
|
func returnCommitterToPool(h *committer) {
|
|
|
|
h.onleaf = nil
|
|
|
|
h.leafCh = nil
|
|
|
|
committerPool.Put(h)
|
|
|
|
}
|
|
|
|
|
|
|
|
// commitNeeded returns 'false' if the given node is already in sync with db
|
|
|
|
func (c *committer) commitNeeded(n node) bool {
|
|
|
|
hash, dirty := n.cache()
|
|
|
|
return hash == nil || dirty
|
|
|
|
}
|
|
|
|
|
|
|
|
// commit collapses a node down into a hash node and inserts it into the database
|
|
|
|
func (c *committer) Commit(n node, db *Database) (hashNode, error) {
|
|
|
|
if db == nil {
|
|
|
|
return nil, errors.New("no db provided")
|
|
|
|
}
|
|
|
|
h, err := c.commit(n, db, true)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
return h.(hashNode), nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// commit collapses a node down into a hash node and inserts it into the database
|
|
|
|
func (c *committer) commit(n node, db *Database, force bool) (node, error) {
|
|
|
|
// if this path is clean, use available cached data
|
|
|
|
hash, dirty := n.cache()
|
|
|
|
if hash != nil && !dirty {
|
|
|
|
return hash, nil
|
|
|
|
}
|
|
|
|
// Commit children, then parent, and remove remove the dirty flag.
|
|
|
|
switch cn := n.(type) {
|
|
|
|
case *shortNode:
|
|
|
|
// Commit child
|
|
|
|
collapsed := cn.copy()
|
|
|
|
if _, ok := cn.Val.(valueNode); !ok {
|
|
|
|
if childV, err := c.commit(cn.Val, db, false); err != nil {
|
|
|
|
return nil, err
|
|
|
|
} else {
|
|
|
|
collapsed.Val = childV
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// The key needs to be copied, since we're delivering it to database
|
|
|
|
collapsed.Key = hexToCompact(cn.Key)
|
|
|
|
hashedNode := c.store(collapsed, db, force, true)
|
|
|
|
if hn, ok := hashedNode.(hashNode); ok {
|
|
|
|
return hn, nil
|
|
|
|
} else {
|
|
|
|
return collapsed, nil
|
|
|
|
}
|
|
|
|
case *fullNode:
|
|
|
|
hashedKids, hasVnodes, err := c.commitChildren(cn, db, force)
|
|
|
|
if err != nil {
|
|
|
|
return nil, err
|
|
|
|
}
|
|
|
|
collapsed := cn.copy()
|
|
|
|
collapsed.Children = hashedKids
|
|
|
|
|
|
|
|
hashedNode := c.store(collapsed, db, force, hasVnodes)
|
|
|
|
if hn, ok := hashedNode.(hashNode); ok {
|
|
|
|
return hn, nil
|
|
|
|
} else {
|
|
|
|
return collapsed, nil
|
|
|
|
}
|
|
|
|
case valueNode:
|
|
|
|
return c.store(cn, db, force, false), nil
|
|
|
|
// hashnodes aren't stored
|
|
|
|
case hashNode:
|
|
|
|
return cn, nil
|
|
|
|
}
|
|
|
|
return hash, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// commitChildren commits the children of the given fullnode
|
|
|
|
func (c *committer) commitChildren(n *fullNode, db *Database, force bool) ([17]node, bool, error) {
|
|
|
|
var children [17]node
|
|
|
|
var hasValueNodeChildren = false
|
|
|
|
for i, child := range n.Children {
|
|
|
|
if child == nil {
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
hnode, err := c.commit(child, db, false)
|
|
|
|
if err != nil {
|
|
|
|
return children, false, err
|
|
|
|
}
|
|
|
|
children[i] = hnode
|
|
|
|
if _, ok := hnode.(valueNode); ok {
|
|
|
|
hasValueNodeChildren = true
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return children, hasValueNodeChildren, nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// store hashes the node n and if we have a storage layer specified, it writes
|
|
|
|
// the key/value pair to it and tracks any node->child references as well as any
|
|
|
|
// node->external trie references.
|
|
|
|
func (c *committer) store(n node, db *Database, force bool, hasVnodeChildren bool) node {
|
|
|
|
// Larger nodes are replaced by their hash and stored in the database.
|
|
|
|
var (
|
|
|
|
hash, _ = n.cache()
|
|
|
|
size int
|
|
|
|
)
|
|
|
|
if hash == nil {
|
|
|
|
if vn, ok := n.(valueNode); ok {
|
|
|
|
c.tmp.Reset()
|
|
|
|
if err := rlp.Encode(&c.tmp, vn); err != nil {
|
|
|
|
panic("encode error: " + err.Error())
|
|
|
|
}
|
|
|
|
size = len(c.tmp)
|
|
|
|
if size < 32 && !force {
|
|
|
|
return n // Nodes smaller than 32 bytes are stored inside their parent
|
|
|
|
}
|
|
|
|
hash = c.makeHashNode(c.tmp)
|
|
|
|
} else {
|
|
|
|
// This was not generated - must be a small node stored in the parent
|
|
|
|
// No need to do anything here
|
|
|
|
return n
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// We have the hash already, estimate the RLP encoding-size of the node.
|
|
|
|
// The size is used for mem tracking, does not need to be exact
|
|
|
|
size = estimateSize(n)
|
|
|
|
}
|
|
|
|
// If we're using channel-based leaf-reporting, send to channel.
|
|
|
|
// The leaf channel will be active only when there an active leaf-callback
|
|
|
|
if c.leafCh != nil {
|
|
|
|
c.leafCh <- &leaf{
|
|
|
|
size: size,
|
|
|
|
hash: common.BytesToHash(hash),
|
|
|
|
node: n,
|
|
|
|
vnodes: hasVnodeChildren,
|
|
|
|
}
|
|
|
|
} else if db != nil {
|
|
|
|
// No leaf-callback used, but there's still a database. Do serial
|
|
|
|
// insertion
|
|
|
|
db.lock.Lock()
|
|
|
|
db.insert(common.BytesToHash(hash), size, n)
|
|
|
|
db.lock.Unlock()
|
|
|
|
}
|
|
|
|
return hash
|
|
|
|
}
|
|
|
|
|
|
|
|
// commitLoop does the actual insert + leaf callback for nodes
|
|
|
|
func (c *committer) commitLoop(db *Database) {
|
|
|
|
for item := range c.leafCh {
|
|
|
|
var (
|
|
|
|
hash = item.hash
|
|
|
|
size = item.size
|
|
|
|
n = item.node
|
|
|
|
hasVnodes = item.vnodes
|
|
|
|
)
|
|
|
|
// We are pooling the trie nodes into an intermediate memory cache
|
|
|
|
db.lock.Lock()
|
|
|
|
db.insert(hash, size, n)
|
|
|
|
db.lock.Unlock()
|
|
|
|
if c.onleaf != nil && hasVnodes {
|
|
|
|
switch n := n.(type) {
|
|
|
|
case *shortNode:
|
|
|
|
if child, ok := n.Val.(valueNode); ok {
|
|
|
|
c.onleaf(child, hash)
|
|
|
|
}
|
|
|
|
case *fullNode:
|
|
|
|
for i := 0; i < 16; i++ {
|
|
|
|
if child, ok := n.Children[i].(valueNode); ok {
|
|
|
|
c.onleaf(child, hash)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func (c *committer) makeHashNode(data []byte) hashNode {
|
|
|
|
n := make(hashNode, c.sha.Size())
|
|
|
|
c.sha.Reset()
|
|
|
|
c.sha.Write(data)
|
|
|
|
c.sha.Read(n)
|
|
|
|
return n
|
|
|
|
}
|
|
|
|
|
|
|
|
// estimateSize estimates the size of an rlp-encoded node, without actually
|
|
|
|
// rlp-encoding it (zero allocs). This method has been experimentally tried, and with a trie
|
|
|
|
// with 1000 leafs, the only errors above 1% are on small shortnodes, where this
|
|
|
|
// method overestimates by 2 or 3 bytes (e.g. 37 instead of 35)
|
|
|
|
func estimateSize(n node) int {
|
|
|
|
switch n := n.(type) {
|
|
|
|
case *shortNode:
|
|
|
|
// A short node contains a compacted key, and a value.
|
|
|
|
return 3 + len(n.Key) + estimateSize(n.Val)
|
|
|
|
case *fullNode:
|
|
|
|
// A full node contains up to 16 hashes (some nils), and a key
|
|
|
|
s := 3
|
|
|
|
for i := 0; i < 16; i++ {
|
|
|
|
if child := n.Children[i]; child != nil {
|
|
|
|
s += estimateSize(child)
|
|
|
|
} else {
|
|
|
|
s += 1
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return s
|
|
|
|
case valueNode:
|
|
|
|
return 1 + len(n)
|
|
|
|
case hashNode:
|
|
|
|
return 1 + len(n)
|
|
|
|
default:
|
|
|
|
panic(fmt.Sprintf("node type %T", n))
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|