Official Go implementation of the Ethereum protocol
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
go-ethereum/les/ulc_test.go

220 lines
6.3 KiB

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package les
import (
"crypto/ecdsa"
"fmt"
"math/big"
"net"
"reflect"
"testing"
"time"
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
6 years ago
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/light"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/enode"
)
func TestULCSyncWithOnePeer(t *testing.T) {
f := newFullPeerPair(t, 1, 4)
l := newLightPeer(t, []string{f.Node.String()}, 100)
if reflect.DeepEqual(f.PM.blockchain.CurrentHeader().Hash(), l.PM.blockchain.CurrentHeader().Hash()) {
t.Fatal("blocks are equal")
}
_, _, err := connectPeers(f, l, 2)
if err != nil {
t.Fatal(err)
}
l.PM.fetcher.lock.Lock()
l.PM.fetcher.nextRequest()
l.PM.fetcher.lock.Unlock()
if !reflect.DeepEqual(f.PM.blockchain.CurrentHeader().Hash(), l.PM.blockchain.CurrentHeader().Hash()) {
t.Fatal("sync doesn't work")
}
}
func TestULCReceiveAnnounce(t *testing.T) {
f := newFullPeerPair(t, 1, 4)
l := newLightPeer(t, []string{f.Node.String()}, 100)
fPeer, lPeer, err := connectPeers(f, l, 2)
if err != nil {
t.Fatal(err)
}
l.PM.synchronise(fPeer)
//check that the sync is finished correctly
if !reflect.DeepEqual(f.PM.blockchain.CurrentHeader().Hash(), l.PM.blockchain.CurrentHeader().Hash()) {
t.Fatal("sync doesn't work")
}
l.PM.peers.lock.Lock()
if len(l.PM.peers.peers) == 0 {
t.Fatal("peer list should not be empty")
}
l.PM.peers.lock.Unlock()
time.Sleep(time.Second)
//send a signed announce message(payload doesn't matter)
td := f.PM.blockchain.GetTd(l.PM.blockchain.CurrentHeader().Hash(), l.PM.blockchain.CurrentHeader().Number.Uint64())
announce := announceData{
Number: l.PM.blockchain.CurrentHeader().Number.Uint64() + 1,
Td: td.Add(td, big.NewInt(1)),
}
announce.sign(f.Key)
lPeer.SendAnnounce(announce)
}
func TestULCShouldNotSyncWithTwoPeersOneHaveEmptyChain(t *testing.T) {
f1 := newFullPeerPair(t, 1, 4)
f2 := newFullPeerPair(t, 2, 0)
l := newLightPeer(t, []string{f1.Node.String(), f2.Node.String()}, 100)
_, _, err := connectPeers(f1, l, 2)
if err != nil {
t.Fatal(err)
}
_, _, err = connectPeers(f2, l, 2)
if err != nil {
t.Fatal(err)
}
l.PM.fetcher.lock.Lock()
l.PM.fetcher.nextRequest()
l.PM.fetcher.lock.Unlock()
if reflect.DeepEqual(f2.PM.blockchain.CurrentHeader().Hash(), l.PM.blockchain.CurrentHeader().Hash()) {
t.Fatal("Incorrect hash: second peer has empty chain")
}
}
func TestULCShouldNotSyncWithThreePeersOneHaveEmptyChain(t *testing.T) {
f1 := newFullPeerPair(t, 1, 3)
f2 := newFullPeerPair(t, 2, 4)
f3 := newFullPeerPair(t, 3, 0)
l := newLightPeer(t, []string{f1.Node.String(), f2.Node.String(), f3.Node.String()}, 60)
_, _, err := connectPeers(f1, l, 2)
if err != nil {
t.Fatal(err)
}
_, _, err = connectPeers(f2, l, 2)
if err != nil {
t.Fatal(err)
}
_, _, err = connectPeers(f3, l, 2)
if err != nil {
t.Fatal(err)
}
l.PM.fetcher.lock.Lock()
l.PM.fetcher.nextRequest()
l.PM.fetcher.lock.Unlock()
if !reflect.DeepEqual(f1.PM.blockchain.CurrentHeader().Hash(), l.PM.blockchain.CurrentHeader().Hash()) {
t.Fatal("Incorrect hash")
}
}
type pairPeer struct {
Name string
Node *enode.Node
PM *ProtocolManager
Key *ecdsa.PrivateKey
}
func connectPeers(full, light pairPeer, version int) (*peer, *peer, error) {
// Create a message pipe to communicate through
app, net := p2p.MsgPipe()
peerLight := full.PM.newPeer(version, NetworkId, p2p.NewPeer(light.Node.ID(), light.Name, nil), net)
peerFull := light.PM.newPeer(version, NetworkId, p2p.NewPeer(full.Node.ID(), full.Name, nil), app)
// Start the peerLight on a new thread
errc1 := make(chan error, 1)
errc2 := make(chan error, 1)
go func() {
select {
case light.PM.newPeerCh <- peerFull:
errc1 <- light.PM.handle(peerFull)
case <-light.PM.quitSync:
errc1 <- p2p.DiscQuitting
}
}()
go func() {
select {
case full.PM.newPeerCh <- peerLight:
errc2 <- full.PM.handle(peerLight)
case <-full.PM.quitSync:
errc2 <- p2p.DiscQuitting
}
}()
select {
case <-time.After(time.Millisecond * 100):
case err := <-errc1:
return nil, nil, fmt.Errorf("peerLight handshake error: %v", err)
case err := <-errc2:
return nil, nil, fmt.Errorf("peerFull handshake error: %v", err)
}
return peerFull, peerLight, nil
}
// newFullPeerPair creates node with full sync mode
func newFullPeerPair(t *testing.T, index int, numberOfblocks int) pairPeer {
db := rawdb.NewMemoryDatabase()
pmFull, _ := newTestProtocolManagerMust(t, false, numberOfblocks, nil, nil, nil, db, nil, 0)
peerPairFull := pairPeer{
Name: "full node",
PM: pmFull,
}
key, err := crypto.GenerateKey()
if err != nil {
t.Fatal("generate key err:", err)
}
peerPairFull.Key = key
peerPairFull.Node = enode.NewV4(&key.PublicKey, net.ParseIP("127.0.0.1"), 35000, 35000)
return peerPairFull
}
// newLightPeer creates node with light sync mode
func newLightPeer(t *testing.T, ulcServers []string, ulcFraction int) pairPeer {
peers := newPeerSet()
les, les/flowcontrol: improved request serving and flow control (#18230) This change - implements concurrent LES request serving even for a single peer. - replaces the request cost estimation method with a cost table based on benchmarks which gives much more consistent results. Until now the allowed number of light peers was just a guess which probably contributed a lot to the fluctuating quality of available service. Everything related to request cost is implemented in a single object, the 'cost tracker'. It uses a fixed cost table with a global 'correction factor'. Benchmark code is included and can be run at any time to adapt costs to low-level implementation changes. - reimplements flowcontrol.ClientManager in a cleaner and more efficient way, with added capabilities: There is now control over bandwidth, which allows using the flow control parameters for client prioritization. Target utilization over 100 percent is now supported to model concurrent request processing. Total serving bandwidth is reduced during block processing to prevent database contention. - implements an RPC API for the LES servers allowing server operators to assign priority bandwidth to certain clients and change prioritized status even while the client is connected. The new API is meant for cases where server operators charge for LES using an off-protocol mechanism. - adds a unit test for the new client manager. - adds an end-to-end test using the network simulator that tests bandwidth control functions through the new API.
6 years ago
dist := newRequestDistributor(peers, make(chan struct{}), &mclock.System{})
rm := newRetrieveManager(peers, dist, nil)
ldb := rawdb.NewMemoryDatabase()
odr := NewLesOdr(ldb, light.DefaultClientIndexerConfig, rm)
pmLight, _ := newTestProtocolManagerMust(t, true, 0, odr, nil, peers, ldb, ulcServers, ulcFraction)
peerPairLight := pairPeer{
Name: "ulc node",
PM: pmLight,
}
key, err := crypto.GenerateKey()
if err != nil {
t.Fatal("generate key err:", err)
}
peerPairLight.Key = key
peerPairLight.Node = enode.NewV4(&key.PublicKey, net.IP{}, 35000, 35000)
return peerPairLight
}