eth/downloader: separate state sync from queue (#14460)
* eth/downloader: separate state sync from queue
Scheduling of state node downloads hogged the downloader queue lock when
new requests were scheduled. This caused timeouts for other requests.
With this change, state sync is fully independent of all other downloads
and doesn't involve the queue at all.
State sync is started and checked on in processContent. This is slightly
awkward because processContent doesn't have a select loop. Instead, the
queue is closed by an auxiliary goroutine when state sync fails. We
tried several alternatives to this but settled on the current approach
because it's the least amount of change overall.
Handling of the pivot block has changed slightly: the queue previously
prevented import of pivot block receipts before the state of the pivot
block was available. In this commit, the receipt will be imported before
the state. This causes an annoyance where the pivot block is committed
as fast block head even when state downloads fail. Stay tuned for more
updates in this area ;)
* eth/downloader: remove cancelTimeout channel
* eth/downloader: retry state requests on timeout
* eth/downloader: improve comment
* eth/downloader: mark peers idle when state sync is done
* eth/downloader: move pivot block splitting to processContent
This change also ensures that pivot block receipts aren't imported
before the pivot block itself.
* eth/downloader: limit state node retries
* eth/downloader: improve state node error handling and retry check
* eth/downloader: remove maxStateNodeRetries
It fails the sync too much.
* eth/downloader: remove last use of cancelCh in statesync.go
Fixes TestDeliverHeadersHang*Fast and (hopefully)
the weird cancellation behaviour at the end of fast sync.
* eth/downloader: fix leak in runStateSync
* eth/downloader: don't run processFullSyncContent in LightSync mode
* eth/downloader: improve comments
* eth/downloader: fix vet, megacheck
* eth/downloader: remove unrequested tasks anyway
* eth/downloader, trie: various polishes around duplicate items
This commit explicitly tracks duplicate and unexpected state
delieveries done against a trie Sync structure, also adding
there to import info logs.
The commit moves the db batch used to commit trie changes one
level deeper so its flushed after every node insertion. This
is needed to avoid a lot of duplicate retrievals caused by
inconsistencies between Sync internals and database. A better
approach is to track not-yet-written states in trie.Sync and
flush on commit, but I'm focuing on correctness first now.
The commit fixes a regression around pivot block fail count.
The counter previously was reset to 1 if and only if a sync
cycle progressed (inserted at least 1 entry to the database).
The current code reset it already if a node was delivered,
which is not stong enough, because unless it ends up written
to disk, an attacker can just loop and attack ad infinitum.
The commit also fixes a regression around state deliveries
and timeouts. The old downloader tracked if a delivery is
stale (none of the deliveries were requestedt), in which
case it didn't mark the node idle and did not send further
requests, since it signals a past timeout. The current code
did mark it idle even on stale deliveries, which eventually
caused two requests to be in flight at the same time, making
the deliveries always stale and mass duplicating retrievals
between multiple peers.
* eth/downloader: fix state request leak
This commit fixes the hang seen sometimes while doing the state
sync. The cause of the hang was a rare combination of events:
request state data from peer, peer drops and reconnects almost
immediately. This caused a new download task to be assigned to
the peer, overwriting the old one still waiting for a timeout,
which in turned leaked the requests out, never to be retried.
The fix is to ensure that a task assignment moves any pending
one back into the retry queue.
The commit also fixes a regression with peer dropping due to
stalls. The current code considered a peer stalling if they
timed out delivering 1 item. However, the downloader never
requests only one, the minimum is 2 (attempt to fine tune
estimated latency/bandwidth). The fix is simply to drop if
a timeout is detected at 2 items.
Apart from the above bugfixes, the commit contains some code
polishes I made while debugging the hang.
* core, eth, trie: support batched trie sync db writes
* trie: rename SyncMemCache to syncMemBatch
7 years ago
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package downloader
import (
"fmt"
"hash"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/crypto/sha3"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/trie"
)
// stateReq represents a batch of state fetch requests groupped together into
// a single data retrieval network packet.
type stateReq struct {
items [ ] common . Hash // Hashes of the state items to download
tasks map [ common . Hash ] * stateTask // Download tasks to track previous attempts
timeout time . Duration // Maximum round trip time for this to complete
timer * time . Timer // Timer to fire when the RTT timeout expires
peer * peerConnection // Peer that we're requesting from
eth/downloader: separate state sync from queue (#14460)
* eth/downloader: separate state sync from queue
Scheduling of state node downloads hogged the downloader queue lock when
new requests were scheduled. This caused timeouts for other requests.
With this change, state sync is fully independent of all other downloads
and doesn't involve the queue at all.
State sync is started and checked on in processContent. This is slightly
awkward because processContent doesn't have a select loop. Instead, the
queue is closed by an auxiliary goroutine when state sync fails. We
tried several alternatives to this but settled on the current approach
because it's the least amount of change overall.
Handling of the pivot block has changed slightly: the queue previously
prevented import of pivot block receipts before the state of the pivot
block was available. In this commit, the receipt will be imported before
the state. This causes an annoyance where the pivot block is committed
as fast block head even when state downloads fail. Stay tuned for more
updates in this area ;)
* eth/downloader: remove cancelTimeout channel
* eth/downloader: retry state requests on timeout
* eth/downloader: improve comment
* eth/downloader: mark peers idle when state sync is done
* eth/downloader: move pivot block splitting to processContent
This change also ensures that pivot block receipts aren't imported
before the pivot block itself.
* eth/downloader: limit state node retries
* eth/downloader: improve state node error handling and retry check
* eth/downloader: remove maxStateNodeRetries
It fails the sync too much.
* eth/downloader: remove last use of cancelCh in statesync.go
Fixes TestDeliverHeadersHang*Fast and (hopefully)
the weird cancellation behaviour at the end of fast sync.
* eth/downloader: fix leak in runStateSync
* eth/downloader: don't run processFullSyncContent in LightSync mode
* eth/downloader: improve comments
* eth/downloader: fix vet, megacheck
* eth/downloader: remove unrequested tasks anyway
* eth/downloader, trie: various polishes around duplicate items
This commit explicitly tracks duplicate and unexpected state
delieveries done against a trie Sync structure, also adding
there to import info logs.
The commit moves the db batch used to commit trie changes one
level deeper so its flushed after every node insertion. This
is needed to avoid a lot of duplicate retrievals caused by
inconsistencies between Sync internals and database. A better
approach is to track not-yet-written states in trie.Sync and
flush on commit, but I'm focuing on correctness first now.
The commit fixes a regression around pivot block fail count.
The counter previously was reset to 1 if and only if a sync
cycle progressed (inserted at least 1 entry to the database).
The current code reset it already if a node was delivered,
which is not stong enough, because unless it ends up written
to disk, an attacker can just loop and attack ad infinitum.
The commit also fixes a regression around state deliveries
and timeouts. The old downloader tracked if a delivery is
stale (none of the deliveries were requestedt), in which
case it didn't mark the node idle and did not send further
requests, since it signals a past timeout. The current code
did mark it idle even on stale deliveries, which eventually
caused two requests to be in flight at the same time, making
the deliveries always stale and mass duplicating retrievals
between multiple peers.
* eth/downloader: fix state request leak
This commit fixes the hang seen sometimes while doing the state
sync. The cause of the hang was a rare combination of events:
request state data from peer, peer drops and reconnects almost
immediately. This caused a new download task to be assigned to
the peer, overwriting the old one still waiting for a timeout,
which in turned leaked the requests out, never to be retried.
The fix is to ensure that a task assignment moves any pending
one back into the retry queue.
The commit also fixes a regression with peer dropping due to
stalls. The current code considered a peer stalling if they
timed out delivering 1 item. However, the downloader never
requests only one, the minimum is 2 (attempt to fine tune
estimated latency/bandwidth). The fix is simply to drop if
a timeout is detected at 2 items.
Apart from the above bugfixes, the commit contains some code
polishes I made while debugging the hang.
* core, eth, trie: support batched trie sync db writes
* trie: rename SyncMemCache to syncMemBatch
7 years ago
response [ ] [ ] byte // Response data of the peer (nil for timeouts)
}
// timedOut returns if this request timed out.
func ( req * stateReq ) timedOut ( ) bool {
return req . response == nil
}
// stateSyncStats is a collection of progress stats to report during a state trie
// sync to RPC requests as well as to display in user logs.
type stateSyncStats struct {
processed uint64 // Number of state entries processed
duplicate uint64 // Number of state entries downloaded twice
unexpected uint64 // Number of non-requested state entries received
pending uint64 // Number of still pending state entries
}
// syncState starts downloading state with the given root hash.
func ( d * Downloader ) syncState ( root common . Hash ) * stateSync {
s := newStateSync ( d , root )
select {
case d . stateSyncStart <- s :
case <- d . quitCh :
s . err = errCancelStateFetch
close ( s . done )
}
return s
}
// stateFetcher manages the active state sync and accepts requests
// on its behalf.
func ( d * Downloader ) stateFetcher ( ) {
for {
select {
case s := <- d . stateSyncStart :
for next := s ; next != nil ; {
next = d . runStateSync ( next )
}
case <- d . stateCh :
// Ignore state responses while no sync is running.
case <- d . quitCh :
return
}
}
}
// runStateSync runs a state synchronisation until it completes or another root
// hash is requested to be switched over to.
func ( d * Downloader ) runStateSync ( s * stateSync ) * stateSync {
var (
active = make ( map [ string ] * stateReq ) // Currently in-flight requests
finished [ ] * stateReq // Completed or failed requests
timeout = make ( chan * stateReq ) // Timed out active requests
)
defer func ( ) {
// Cancel active request timers on exit. Also set peers to idle so they're
// available for the next sync.
for _ , req := range active {
req . timer . Stop ( )
req . peer . SetNodeDataIdle ( len ( req . items ) )
}
} ( )
// Run the state sync.
go s . run ( )
defer s . Cancel ( )
for {
// Enable sending of the first buffered element if there is one.
var (
deliverReq * stateReq
deliverReqCh chan * stateReq
)
if len ( finished ) > 0 {
deliverReq = finished [ 0 ]
deliverReqCh = s . deliver
}
select {
// The stateSync lifecycle:
case next := <- d . stateSyncStart :
return next
case <- s . done :
return nil
// Send the next finished request to the current sync:
case deliverReqCh <- deliverReq :
finished = append ( finished [ : 0 ] , finished [ 1 : ] ... )
// Handle incoming state packs:
case pack := <- d . stateCh :
// Discard any data not requested (or previsouly timed out)
req := active [ pack . PeerId ( ) ]
if req == nil {
log . Debug ( "Unrequested node data" , "peer" , pack . PeerId ( ) , "len" , pack . Items ( ) )
continue
}
// Finalize the request and queue up for processing
req . timer . Stop ( )
req . response = pack . ( * statePack ) . states
finished = append ( finished , req )
delete ( active , pack . PeerId ( ) )
// Handle timed-out requests:
case req := <- timeout :
// If the peer is already requesting something else, ignore the stale timeout.
// This can happen when the timeout and the delivery happens simultaneously,
// causing both pathways to trigger.
if active [ req . peer . id ] != req {
continue
}
// Move the timed out data back into the download queue
finished = append ( finished , req )
delete ( active , req . peer . id )
// Track outgoing state requests:
case req := <- d . trackStateReq :
// If an active request already exists for this peer, we have a problem. In
// theory the trie node schedule must never assign two requests to the same
// peer. In practive however, a peer might receive a request, disconnect and
// immediately reconnect before the previous times out. In this case the first
// request is never honored, alas we must not silently overwrite it, as that
// causes valid requests to go missing and sync to get stuck.
if old := active [ req . peer . id ] ; old != nil {
log . Warn ( "Busy peer assigned new state fetch" , "peer" , old . peer . id )
// Make sure the previous one doesn't get siletly lost
finished = append ( finished , old )
}
// Start a timer to notify the sync loop if the peer stalled.
req . timer = time . AfterFunc ( req . timeout , func ( ) {
select {
case timeout <- req :
case <- s . done :
// Prevent leaking of timer goroutines in the unlikely case where a
// timer is fired just before exiting runStateSync.
}
} )
active [ req . peer . id ] = req
}
}
}
// stateSync schedules requests for downloading a particular state trie defined
// by a given state root.
type stateSync struct {
d * Downloader // Downloader instance to access and manage current peerset
sched * state . StateSync // State trie sync scheduler defining the tasks
keccak hash . Hash // Keccak256 hasher to verify deliveries with
tasks map [ common . Hash ] * stateTask // Set of tasks currently queued for retrieval
deliver chan * stateReq // Delivery channel multiplexing peer responses
cancel chan struct { } // Channel to signal a termination request
cancelOnce sync . Once // Ensures cancel only ever gets called once
done chan struct { } // Channel to signal termination completion
err error // Any error hit during sync (set before completion)
}
// stateTask represents a single trie node download taks, containing a set of
// peers already attempted retrieval from to detect stalled syncs and abort.
type stateTask struct {
attempts map [ string ] struct { }
}
// newStateSync creates a new state trie download scheduler. This method does not
// yet start the sync. The user needs to call run to initiate.
func newStateSync ( d * Downloader , root common . Hash ) * stateSync {
return & stateSync {
d : d ,
sched : state . NewStateSync ( root , d . stateDB ) ,
keccak : sha3 . NewKeccak256 ( ) ,
tasks : make ( map [ common . Hash ] * stateTask ) ,
deliver : make ( chan * stateReq ) ,
cancel : make ( chan struct { } ) ,
done : make ( chan struct { } ) ,
}
}
// run starts the task assignment and response processing loop, blocking until
// it finishes, and finally notifying any goroutines waiting for the loop to
// finish.
func ( s * stateSync ) run ( ) {
s . err = s . loop ( )
close ( s . done )
}
// Wait blocks until the sync is done or canceled.
func ( s * stateSync ) Wait ( ) error {
<- s . done
return s . err
}
// Cancel cancels the sync and waits until it has shut down.
func ( s * stateSync ) Cancel ( ) error {
s . cancelOnce . Do ( func ( ) { close ( s . cancel ) } )
return s . Wait ( )
}
// loop is the main event loop of a state trie sync. It it responsible for the
// assignment of new tasks to peers (including sending it to them) as well as
// for the processing of inbound data. Note, that the loop does not directly
// receive data from peers, rather those are buffered up in the downloader and
// pushed here async. The reason is to decouple processing from data receipt
// and timeouts.
func ( s * stateSync ) loop ( ) error {
// Listen for new peer events to assign tasks to them
newPeer := make ( chan * peerConnection , 1024 )
eth/downloader: separate state sync from queue (#14460)
* eth/downloader: separate state sync from queue
Scheduling of state node downloads hogged the downloader queue lock when
new requests were scheduled. This caused timeouts for other requests.
With this change, state sync is fully independent of all other downloads
and doesn't involve the queue at all.
State sync is started and checked on in processContent. This is slightly
awkward because processContent doesn't have a select loop. Instead, the
queue is closed by an auxiliary goroutine when state sync fails. We
tried several alternatives to this but settled on the current approach
because it's the least amount of change overall.
Handling of the pivot block has changed slightly: the queue previously
prevented import of pivot block receipts before the state of the pivot
block was available. In this commit, the receipt will be imported before
the state. This causes an annoyance where the pivot block is committed
as fast block head even when state downloads fail. Stay tuned for more
updates in this area ;)
* eth/downloader: remove cancelTimeout channel
* eth/downloader: retry state requests on timeout
* eth/downloader: improve comment
* eth/downloader: mark peers idle when state sync is done
* eth/downloader: move pivot block splitting to processContent
This change also ensures that pivot block receipts aren't imported
before the pivot block itself.
* eth/downloader: limit state node retries
* eth/downloader: improve state node error handling and retry check
* eth/downloader: remove maxStateNodeRetries
It fails the sync too much.
* eth/downloader: remove last use of cancelCh in statesync.go
Fixes TestDeliverHeadersHang*Fast and (hopefully)
the weird cancellation behaviour at the end of fast sync.
* eth/downloader: fix leak in runStateSync
* eth/downloader: don't run processFullSyncContent in LightSync mode
* eth/downloader: improve comments
* eth/downloader: fix vet, megacheck
* eth/downloader: remove unrequested tasks anyway
* eth/downloader, trie: various polishes around duplicate items
This commit explicitly tracks duplicate and unexpected state
delieveries done against a trie Sync structure, also adding
there to import info logs.
The commit moves the db batch used to commit trie changes one
level deeper so its flushed after every node insertion. This
is needed to avoid a lot of duplicate retrievals caused by
inconsistencies between Sync internals and database. A better
approach is to track not-yet-written states in trie.Sync and
flush on commit, but I'm focuing on correctness first now.
The commit fixes a regression around pivot block fail count.
The counter previously was reset to 1 if and only if a sync
cycle progressed (inserted at least 1 entry to the database).
The current code reset it already if a node was delivered,
which is not stong enough, because unless it ends up written
to disk, an attacker can just loop and attack ad infinitum.
The commit also fixes a regression around state deliveries
and timeouts. The old downloader tracked if a delivery is
stale (none of the deliveries were requestedt), in which
case it didn't mark the node idle and did not send further
requests, since it signals a past timeout. The current code
did mark it idle even on stale deliveries, which eventually
caused two requests to be in flight at the same time, making
the deliveries always stale and mass duplicating retrievals
between multiple peers.
* eth/downloader: fix state request leak
This commit fixes the hang seen sometimes while doing the state
sync. The cause of the hang was a rare combination of events:
request state data from peer, peer drops and reconnects almost
immediately. This caused a new download task to be assigned to
the peer, overwriting the old one still waiting for a timeout,
which in turned leaked the requests out, never to be retried.
The fix is to ensure that a task assignment moves any pending
one back into the retry queue.
The commit also fixes a regression with peer dropping due to
stalls. The current code considered a peer stalling if they
timed out delivering 1 item. However, the downloader never
requests only one, the minimum is 2 (attempt to fine tune
estimated latency/bandwidth). The fix is simply to drop if
a timeout is detected at 2 items.
Apart from the above bugfixes, the commit contains some code
polishes I made while debugging the hang.
* core, eth, trie: support batched trie sync db writes
* trie: rename SyncMemCache to syncMemBatch
7 years ago
peerSub := s . d . peers . SubscribeNewPeers ( newPeer )
defer peerSub . Unsubscribe ( )
// Keep assigning new tasks until the sync completes or aborts
for s . sched . Pending ( ) > 0 {
if err := s . assignTasks ( ) ; err != nil {
return err
}
// Tasks assigned, wait for something to happen
select {
case <- newPeer :
// New peer arrived, try to assign it download tasks
case <- s . cancel :
return errCancelStateFetch
case req := <- s . deliver :
// Response or timeout triggered, drop the peer if stalling
log . Trace ( "Received node data response" , "peer" , req . peer . id , "count" , len ( req . response ) , "timeout" , req . timedOut ( ) )
if len ( req . items ) <= 2 && req . timedOut ( ) {
// 2 items are the minimum requested, if even that times out, we've no use of
// this peer at the moment.
log . Warn ( "Stalling state sync, dropping peer" , "peer" , req . peer . id )
s . d . dropPeer ( req . peer . id )
}
// Process all the received blobs and check for stale delivery
stale , err := s . process ( req )
if err != nil {
log . Warn ( "Node data write error" , "err" , err )
return err
}
// The the delivery contains requested data, mark the node idle (otherwise it's a timed out delivery)
if ! stale {
req . peer . SetNodeDataIdle ( len ( req . response ) )
}
}
}
return nil
}
// assignTasks attempts to assing new tasks to all idle peers, either from the
// batch currently being retried, or fetching new data from the trie sync itself.
func ( s * stateSync ) assignTasks ( ) error {
// Iterate over all idle peers and try to assign them state fetches
peers , _ := s . d . peers . NodeDataIdlePeers ( )
for _ , p := range peers {
// Assign a batch of fetches proportional to the estimated latency/bandwidth
cap := p . NodeDataCapacity ( s . d . requestRTT ( ) )
req := & stateReq { peer : p , timeout : s . d . requestTTL ( ) }
s . fillTasks ( cap , req )
// If the peer was assigned tasks to fetch, send the network request
if len ( req . items ) > 0 {
req . peer . log . Trace ( "Requesting new batch of data" , "type" , "state" , "count" , len ( req . items ) )
select {
case s . d . trackStateReq <- req :
req . peer . FetchNodeData ( req . items )
case <- s . cancel :
}
}
}
return nil
}
// fillTasks fills the given request object with a maximum of n state download
// tasks to send to the remote peer.
func ( s * stateSync ) fillTasks ( n int , req * stateReq ) {
// Refill available tasks from the scheduler.
if len ( s . tasks ) < n {
new := s . sched . Missing ( n - len ( s . tasks ) )
for _ , hash := range new {
s . tasks [ hash ] = & stateTask { make ( map [ string ] struct { } ) }
}
}
// Find tasks that haven't been tried with the request's peer.
req . items = make ( [ ] common . Hash , 0 , n )
req . tasks = make ( map [ common . Hash ] * stateTask , n )
for hash , t := range s . tasks {
// Stop when we've gathered enough requests
if len ( req . items ) == n {
break
}
// Skip any requests we've already tried from this peer
if _ , ok := t . attempts [ req . peer . id ] ; ok {
continue
}
// Assign the request to this peer
t . attempts [ req . peer . id ] = struct { } { }
req . items = append ( req . items , hash )
req . tasks [ hash ] = t
delete ( s . tasks , hash )
}
}
// process iterates over a batch of delivered state data, injecting each item
// into a running state sync, re-queuing any items that were requested but not
// delivered.
func ( s * stateSync ) process ( req * stateReq ) ( bool , error ) {
// Collect processing stats and update progress if valid data was received
processed , written , duplicate , unexpected := 0 , 0 , 0 , 0
defer func ( start time . Time ) {
if processed + written + duplicate + unexpected > 0 {
s . updateStats ( processed , written , duplicate , unexpected , time . Since ( start ) )
}
} ( time . Now ( ) )
// Iterate over all the delivered data and inject one-by-one into the trie
progress , stale := false , len ( req . response ) > 0
for _ , blob := range req . response {
prog , hash , err := s . processNodeData ( blob )
switch err {
case nil :
processed ++
case trie . ErrNotRequested :
unexpected ++
case trie . ErrAlreadyProcessed :
duplicate ++
default :
return stale , fmt . Errorf ( "invalid state node %s: %v" , hash . TerminalString ( ) , err )
}
if prog {
progress = true
}
// If the node delivered a requested item, mark the delivery non-stale
if _ , ok := req . tasks [ hash ] ; ok {
delete ( req . tasks , hash )
stale = false
}
}
// If some data managed to hit the database, flush and reset failure counters
if progress {
// Flush any accumulated data out to disk
batch := s . d . stateDB . NewBatch ( )
count , err := s . sched . Commit ( batch )
if err != nil {
return stale , err
}
if err := batch . Write ( ) ; err != nil {
return stale , err
}
written = count
// If we're inside the critical section, reset fail counter since we progressed
if atomic . LoadUint32 ( & s . d . fsPivotFails ) > 1 {
log . Trace ( "Fast-sync progressed, resetting fail counter" , "previous" , atomic . LoadUint32 ( & s . d . fsPivotFails ) )
atomic . StoreUint32 ( & s . d . fsPivotFails , 1 ) // Don't ever reset to 0, as that will unlock the pivot block
}
}
// Put unfulfilled tasks back into the retry queue
npeers := s . d . peers . Len ( )
for hash , task := range req . tasks {
// If the node did deliver something, missing items may be due to a protocol
// limit or a previous timeout + delayed delivery. Both cases should permit
// the node to retry the missing items (to avoid single-peer stalls).
if len ( req . response ) > 0 || req . timedOut ( ) {
delete ( task . attempts , req . peer . id )
}
// If we've requested the node too many times already, it may be a malicious
// sync where nobody has the right data. Abort.
if len ( task . attempts ) >= npeers {
return stale , fmt . Errorf ( "state node %s failed with all peers (%d tries, %d peers)" , hash . TerminalString ( ) , len ( task . attempts ) , npeers )
}
// Missing item, place into the retry queue.
s . tasks [ hash ] = task
}
return stale , nil
}
// processNodeData tries to inject a trie node data blob delivered from a remote
// peer into the state trie, returning whether anything useful was written or any
// error occurred.
func ( s * stateSync ) processNodeData ( blob [ ] byte ) ( bool , common . Hash , error ) {
res := trie . SyncResult { Data : blob }
s . keccak . Reset ( )
s . keccak . Write ( blob )
s . keccak . Sum ( res . Hash [ : 0 ] )
committed , _ , err := s . sched . Process ( [ ] trie . SyncResult { res } )
return committed , res . Hash , err
}
// updateStats bumps the various state sync progress counters and displays a log
// message for the user to see.
func ( s * stateSync ) updateStats ( processed , written , duplicate , unexpected int , duration time . Duration ) {
s . d . syncStatsLock . Lock ( )
defer s . d . syncStatsLock . Unlock ( )
s . d . syncStatsState . pending = uint64 ( s . sched . Pending ( ) )
s . d . syncStatsState . processed += uint64 ( processed )
s . d . syncStatsState . duplicate += uint64 ( duplicate )
s . d . syncStatsState . unexpected += uint64 ( unexpected )
log . Info ( "Imported new state entries" , "count" , processed , "flushed" , written , "elapsed" , common . PrettyDuration ( duration ) , "processed" , s . d . syncStatsState . processed , "pending" , s . d . syncStatsState . pending , "retry" , len ( s . tasks ) , "duplicate" , s . d . syncStatsState . duplicate , "unexpected" , s . d . syncStatsState . unexpected )
}