Official Go implementation of the Ethereum protocol
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
go-ethereum/core/bloombits/matcher.go

580 lines
15 KiB

// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bloombits
import (
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/bitutil"
"github.com/ethereum/go-ethereum/core/types"
)
const channelCap = 100
// fetcher handles bit vector retrieval pipelines for a single bit index
type fetcher struct {
bloomIndex uint
requestMap map[uint64]fetchRequest
requestLock sync.RWMutex
}
// fetchRequest represents the state of a bit vector requested from a fetcher. When a distRequest has been sent to the distributor but
// the data has not been delivered yet, queued is true. When delivered, it is stored in the data field and the delivered channel is closed.
type fetchRequest struct {
data []byte
queued bool
delivered chan struct{}
}
// distRequest is sent by the fetcher to the distributor which groups and prioritizes these requests.
type distRequest struct {
bloomIndex uint
sectionIndex uint64
}
// fetch creates a retrieval pipeline, receiving section indexes from sectionCh and returning the results
// in the same order through the returned channel. Multiple fetch instances of the same fetcher are allowed
// to run in parallel, in case the same bit index appears multiple times in the filter structure. Each section
// is requested only once, requests are sent to the request distributor (part of Matcher) through distCh.
func (f *fetcher) fetch(sectionCh chan uint64, distCh chan distRequest, stop chan struct{}, wg *sync.WaitGroup) chan []byte {
dataCh := make(chan []byte, channelCap)
returnCh := make(chan uint64, channelCap)
wg.Add(2)
go func() {
defer wg.Done()
defer close(returnCh)
for {
select {
case <-stop:
return
case idx, ok := <-sectionCh:
if !ok {
return
}
req := false
f.requestLock.Lock()
r := f.requestMap[idx]
if r.data == nil {
req = !r.queued
r.queued = true
if r.delivered == nil {
r.delivered = make(chan struct{})
}
f.requestMap[idx] = r
}
f.requestLock.Unlock()
if req {
distCh <- distRequest{bloomIndex: f.bloomIndex, sectionIndex: idx} // success is guaranteed, distibuteRequests shuts down after fetch
}
select {
case <-stop:
return
case returnCh <- idx:
}
}
}
}()
go func() {
defer wg.Done()
defer close(dataCh)
for {
select {
case <-stop:
return
case idx, ok := <-returnCh:
if !ok {
return
}
f.requestLock.RLock()
r := f.requestMap[idx]
f.requestLock.RUnlock()
if r.data == nil {
select {
case <-stop:
return
case <-r.delivered:
f.requestLock.RLock()
r = f.requestMap[idx]
f.requestLock.RUnlock()
}
}
select {
case <-stop:
return
case dataCh <- r.data:
}
}
}
}()
return dataCh
}
// deliver is called by the request distributor when a reply to a request has
// arrived
func (f *fetcher) deliver(sectionIdxList []uint64, data [][]byte) {
f.requestLock.Lock()
defer f.requestLock.Unlock()
for i, sectionIdx := range sectionIdxList {
r := f.requestMap[sectionIdx]
if r.data != nil {
panic("BloomBits section data delivered twice")
}
r.data = data[i]
close(r.delivered)
f.requestMap[sectionIdx] = r
}
}
// Matcher is a pipelined structure of fetchers and logic matchers which perform
// binary AND/OR operations on the bitstreams, finally creating a stream of potential matches.
type Matcher struct {
addresses []types.BloomIndexList
topics [][]types.BloomIndexList
fetchers map[uint]*fetcher
sectionSize uint64
distCh chan distRequest
reqs map[uint][]uint64
freeQueues map[uint]struct{}
allocQueue []chan uint
running bool
stop chan struct{}
lock sync.Mutex
wg, distWg sync.WaitGroup
}
// NewMatcher creates a new Matcher instance
func NewMatcher(sectionSize uint64, addresses []common.Address, topics [][]common.Hash) *Matcher {
m := &Matcher{
fetchers: make(map[uint]*fetcher),
reqs: make(map[uint][]uint64),
freeQueues: make(map[uint]struct{}),
distCh: make(chan distRequest, channelCap),
sectionSize: sectionSize,
}
m.setAddresses(addresses)
m.setTopics(topics)
return m
}
// setAddresses matches only logs that are generated from addresses that are included
// in the given addresses.
func (m *Matcher) setAddresses(addresses []common.Address) {
m.addresses = make([]types.BloomIndexList, len(addresses))
for i, address := range addresses {
m.addresses[i] = types.BloomIndexes(address.Bytes())
}
for _, bloomIndexList := range m.addresses {
for _, bloomIndex := range bloomIndexList {
m.newFetcher(bloomIndex)
}
}
}
// setTopics matches only logs that have topics matching the given topics.
func (m *Matcher) setTopics(topics [][]common.Hash) {
m.topics = nil
loop:
for _, topicList := range topics {
t := make([]types.BloomIndexList, len(topicList))
for i, topic := range topicList {
if (topic == common.Hash{}) {
continue loop
}
t[i] = types.BloomIndexes(topic.Bytes())
}
m.topics = append(m.topics, t)
}
for _, bloomIndexLists := range m.topics {
for _, bloomIndexList := range bloomIndexLists {
for _, bloomIndex := range bloomIndexList {
m.newFetcher(bloomIndex)
}
}
}
}
// match creates a daisy-chain of sub-matchers, one for the address set and one for each topic set, each
// sub-matcher receiving a section only if the previous ones have all found a potential match in one of
// the blocks of the section, then binary AND-ing its own matches and forwaring the result to the next one
func (m *Matcher) match(processCh chan partialMatches) chan partialMatches {
indexLists := m.topics
if len(m.addresses) > 0 {
indexLists = append([][]types.BloomIndexList{m.addresses}, indexLists...)
}
m.distributeRequests()
for _, subIndexList := range indexLists {
processCh = m.subMatch(processCh, subIndexList)
}
return processCh
}
// partialMatches with a non-nil vector represents a section in which some sub-matchers have already
// found potential matches. Subsequent sub-matchers will binary AND their matches with this vector.
// If vector is nil, it represents a section to be processed by the first sub-matcher.
type partialMatches struct {
sectionIndex uint64
vector []byte
}
// newFetcher adds a fetcher for the given bit index if it has not existed before
func (m *Matcher) newFetcher(idx uint) {
if _, ok := m.fetchers[idx]; ok {
return
}
f := &fetcher{
bloomIndex: idx,
requestMap: make(map[uint64]fetchRequest),
}
m.fetchers[idx] = f
}
// subMatch creates a sub-matcher that filters for a set of addresses or topics, binary OR-s those matches, then
// binary AND-s the result to the daisy-chain input (processCh) and forwards it to the daisy-chain output.
// The matches of each address/topic are calculated by fetching the given sections of the three bloom bit indexes belonging to
// that address/topic, and binary AND-ing those vectors together.
func (m *Matcher) subMatch(processCh chan partialMatches, bloomIndexLists []types.BloomIndexList) chan partialMatches {
// set up fetchers
fetchIndexChannels := make([][3]chan uint64, len(bloomIndexLists))
fetchDataChannels := make([][3]chan []byte, len(bloomIndexLists))
for i, bloomIndexList := range bloomIndexLists {
for j, bloomIndex := range bloomIndexList {
fetchIndexChannels[i][j] = make(chan uint64, channelCap)
fetchDataChannels[i][j] = m.fetchers[bloomIndex].fetch(fetchIndexChannels[i][j], m.distCh, m.stop, &m.wg)
}
}
fetchedCh := make(chan partialMatches, channelCap) // entries from processCh are forwarded here after fetches have been initiated
resultsCh := make(chan partialMatches, channelCap)
m.wg.Add(2)
// goroutine for starting retrievals
go func() {
defer m.wg.Done()
for {
select {
case <-m.stop:
return
case s, ok := <-processCh:
if !ok {
close(fetchedCh)
for _, fetchIndexChs := range fetchIndexChannels {
for _, fetchIndexCh := range fetchIndexChs {
close(fetchIndexCh)
}
}
return
}
for _, fetchIndexChs := range fetchIndexChannels {
for _, fetchIndexCh := range fetchIndexChs {
select {
case <-m.stop:
return
case fetchIndexCh <- s.sectionIndex:
}
}
}
select {
case <-m.stop:
return
case fetchedCh <- s:
}
}
}
}()
// goroutine for processing retrieved data
go func() {
defer m.wg.Done()
for {
select {
case <-m.stop:
return
case s, ok := <-fetchedCh:
if !ok {
close(resultsCh)
return
}
var orVector []byte
for _, fetchDataChs := range fetchDataChannels {
var andVector []byte
for _, fetchDataCh := range fetchDataChs {
var data []byte
select {
case <-m.stop:
return
case data = <-fetchDataCh:
}
if andVector == nil {
andVector = make([]byte, int(m.sectionSize/8))
copy(andVector, data)
} else {
bitutil.ANDBytes(andVector, andVector, data)
}
}
if orVector == nil {
orVector = andVector
} else {
bitutil.ORBytes(orVector, orVector, andVector)
}
}
if orVector == nil {
orVector = make([]byte, int(m.sectionSize/8))
}
if s.vector != nil {
bitutil.ANDBytes(orVector, orVector, s.vector)
}
if bitutil.TestBytes(orVector) {
select {
case <-m.stop:
return
case resultsCh <- partialMatches{s.sectionIndex, orVector}:
}
}
}
}
}()
return resultsCh
}
// Start starts the matching process and returns a stream of bloom matches in
// a given range of blocks.
// It returns a results channel immediately and stops if Stop is called or there
// are no more matches in the range (in which case the results channel is closed).
// Start/Stop can be called multiple times for different ranges, in which case already
// delivered bit vectors are not requested again.
func (m *Matcher) Start(begin, end uint64) chan uint64 {
m.stop = make(chan struct{})
processCh := make(chan partialMatches, channelCap)
resultsCh := make(chan uint64, channelCap)
res := m.match(processCh)
startSection := begin / m.sectionSize
endSection := end / m.sectionSize
m.wg.Add(2)
go func() {
defer m.wg.Done()
defer close(processCh)
for i := startSection; i <= endSection; i++ {
select {
case processCh <- partialMatches{i, nil}:
case <-m.stop:
return
}
}
}()
go func() {
defer m.wg.Done()
defer close(resultsCh)
for {
select {
case r, ok := <-res:
if !ok {
return
}
sectionStart := r.sectionIndex * m.sectionSize
s := sectionStart
if begin > s {
s = begin
}
e := sectionStart + m.sectionSize - 1
if end < e {
e = end
}
for i := s; i <= e; i++ {
b := r.vector[(i-sectionStart)/8]
bit := 7 - i%8
if b != 0 {
if b&(1<<bit) != 0 {
select {
case <-m.stop:
return
case resultsCh <- i:
}
}
} else {
i += bit
}
}
case <-m.stop:
return
}
}
}()
return resultsCh
}
// Stop stops the matching process
func (m *Matcher) Stop() {
close(m.stop)
m.distWg.Wait()
}
// distributeRequests receives requests from the fetchers and either queues them
// or immediately forwards them to one of the waiting NextRequest functions.
// Requests with a lower section idx are always prioritized.
func (m *Matcher) distributeRequests() {
m.distWg.Add(1)
stopDist := make(chan struct{})
go func() {
<-m.stop
m.wg.Wait()
close(stopDist)
}()
m.running = true
go func() {
for {
select {
case r := <-m.distCh:
m.lock.Lock()
queue := m.reqs[r.bloomIndex]
i := 0
for i < len(queue) && r.sectionIndex > queue[i] {
i++
}
queue = append(queue, 0)
copy(queue[i+1:], queue[i:len(queue)-1])
queue[i] = r.sectionIndex
m.reqs[r.bloomIndex] = queue
if len(queue) == 1 {
m.freeQueue(r.bloomIndex)
}
m.lock.Unlock()
case <-stopDist:
m.lock.Lock()
for _, ch := range m.allocQueue {
close(ch)
}
m.allocQueue = nil
m.running = false
m.lock.Unlock()
m.distWg.Done()
return
}
}
}()
}
// freeQueue marks a queue as free if there are no AllocSectionQueue functions
// waiting for allocation. If there is someone waiting, the queue is immediately
// allocated.
func (m *Matcher) freeQueue(bloomIndex uint) {
if len(m.allocQueue) > 0 {
m.allocQueue[0] <- bloomIndex
m.allocQueue = m.allocQueue[1:]
} else {
m.freeQueues[bloomIndex] = struct{}{}
}
}
// AllocSectionQueue allocates a queue of requested section indexes belonging to the same
// bloom bit index for a client process that can either immediately fetch the contents
// of the queue or wait a little while for more section indexes to be requested.
func (m *Matcher) AllocSectionQueue() (uint, bool) {
m.lock.Lock()
if !m.running {
m.lock.Unlock()
return 0, false
}
var allocCh chan uint
if len(m.freeQueues) > 0 {
var (
found bool
bestSection uint64
bestIndex uint
)
for bloomIndex, _ := range m.freeQueues {
if !found || m.reqs[bloomIndex][0] < bestSection {
found = true
bestIndex = bloomIndex
bestSection = m.reqs[bloomIndex][0]
}
}
delete(m.freeQueues, bestIndex)
m.lock.Unlock()
return bestIndex, true
} else {
allocCh = make(chan uint)
m.allocQueue = append(m.allocQueue, allocCh)
}
m.lock.Unlock()
bloomIndex, ok := <-allocCh
return bloomIndex, ok
}
// SectionCount returns the length of the section index queue belonging to the given bloom bit index
func (m *Matcher) SectionCount(bloomIndex uint) int {
m.lock.Lock()
defer m.lock.Unlock()
return len(m.reqs[bloomIndex])
}
// FetchSections fetches all or part of an already allocated queue and deallocates it
func (m *Matcher) FetchSections(bloomIndex uint, maxCount int) []uint64 {
m.lock.Lock()
defer m.lock.Unlock()
queue := m.reqs[bloomIndex]
if maxCount < len(queue) {
// return only part of the existing queue, mark the rest as free
m.reqs[bloomIndex] = queue[maxCount:]
m.freeQueue(bloomIndex)
return queue[:maxCount]
} else {
// return the entire queue
delete(m.reqs, bloomIndex)
return queue
}
}
// Deliver delivers a bit vector to the appropriate fetcher.
// It is possible to deliver data even after Stop has been called. Once a vector has been
// requested, the matcher will keep waiting for delivery.
func (m *Matcher) Deliver(bloomIndex uint, sectionIdxList []uint64, data [][]byte) {
m.fetchers[bloomIndex].deliver(sectionIdxList, data)
}