|
|
|
// Copyright 2016 The go-ethereum Authors
|
|
|
|
// This file is part of the go-ethereum library.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
|
|
// (at your option) any later version.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
// GNU Lesser General Public License for more details.
|
|
|
|
//
|
|
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
package kademlia
|
|
|
|
|
|
|
|
import (
|
|
|
|
"fmt"
|
|
|
|
"math/rand"
|
|
|
|
"strings"
|
|
|
|
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
|
|
)
|
|
|
|
|
|
|
|
type Address common.Hash
|
|
|
|
|
|
|
|
func (a Address) String() string {
|
|
|
|
return fmt.Sprintf("%x", a[:])
|
|
|
|
}
|
|
|
|
|
|
|
|
func (a *Address) MarshalJSON() (out []byte, err error) {
|
|
|
|
return []byte(`"` + a.String() + `"`), nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func (a *Address) UnmarshalJSON(value []byte) error {
|
|
|
|
*a = Address(common.HexToHash(string(value[1 : len(value)-1])))
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// the string form of the binary representation of an address (only first 8 bits)
|
|
|
|
func (a Address) Bin() string {
|
|
|
|
var bs []string
|
|
|
|
for _, b := range a[:] {
|
|
|
|
bs = append(bs, fmt.Sprintf("%08b", b))
|
|
|
|
}
|
|
|
|
return strings.Join(bs, "")
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
Proximity(x, y) returns the proximity order of the MSB distance between x and y
|
|
|
|
|
|
|
|
The distance metric MSB(x, y) of two equal length byte sequences x an y is the
|
|
|
|
value of the binary integer cast of the x^y, ie., x and y bitwise xor-ed.
|
|
|
|
the binary cast is big endian: most significant bit first (=MSB).
|
|
|
|
|
|
|
|
Proximity(x, y) is a discrete logarithmic scaling of the MSB distance.
|
|
|
|
It is defined as the reverse rank of the integer part of the base 2
|
|
|
|
logarithm of the distance.
|
|
|
|
It is calculated by counting the number of common leading zeros in the (MSB)
|
|
|
|
binary representation of the x^y.
|
|
|
|
|
|
|
|
(0 farthest, 255 closest, 256 self)
|
|
|
|
*/
|
|
|
|
func proximity(one, other Address) (ret int) {
|
|
|
|
for i := 0; i < len(one); i++ {
|
|
|
|
oxo := one[i] ^ other[i]
|
|
|
|
for j := 0; j < 8; j++ {
|
|
|
|
if (oxo>>uint8(7-j))&0x01 != 0 {
|
|
|
|
return i*8 + j
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return len(one) * 8
|
|
|
|
}
|
|
|
|
|
|
|
|
// Address.ProxCmp compares the distances a->target and b->target.
|
|
|
|
// Returns -1 if a is closer to target, 1 if b is closer to target
|
|
|
|
// and 0 if they are equal.
|
|
|
|
func (target Address) ProxCmp(a, b Address) int {
|
|
|
|
for i := range target {
|
|
|
|
da := a[i] ^ target[i]
|
|
|
|
db := b[i] ^ target[i]
|
|
|
|
if da > db {
|
|
|
|
return 1
|
|
|
|
} else if da < db {
|
|
|
|
return -1
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0
|
|
|
|
}
|
|
|
|
|
|
|
|
// randomAddressAt(address, prox) generates a random address
|
|
|
|
// at proximity order prox relative to address
|
|
|
|
// if prox is negative a random address is generated
|
|
|
|
func RandomAddressAt(self Address, prox int) (addr Address) {
|
|
|
|
addr = self
|
|
|
|
var pos int
|
|
|
|
if prox >= 0 {
|
|
|
|
pos = prox / 8
|
|
|
|
trans := prox % 8
|
|
|
|
transbytea := byte(0)
|
|
|
|
for j := 0; j <= trans; j++ {
|
|
|
|
transbytea |= 1 << uint8(7-j)
|
|
|
|
}
|
|
|
|
flipbyte := byte(1 << uint8(7-trans))
|
|
|
|
transbyteb := transbytea ^ byte(255)
|
|
|
|
randbyte := byte(rand.Intn(255))
|
|
|
|
addr[pos] = ((addr[pos] & transbytea) ^ flipbyte) | randbyte&transbyteb
|
|
|
|
}
|
|
|
|
for i := pos + 1; i < len(addr); i++ {
|
|
|
|
addr[i] = byte(rand.Intn(255))
|
|
|
|
}
|
|
|
|
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// KeyRange(a0, a1, proxLimit) returns the address inclusive address
|
|
|
|
// range that contain addresses closer to one than other
|
|
|
|
func KeyRange(one, other Address, proxLimit int) (start, stop Address) {
|
|
|
|
prox := proximity(one, other)
|
|
|
|
if prox >= proxLimit {
|
|
|
|
prox = proxLimit
|
|
|
|
}
|
|
|
|
start = CommonBitsAddrByte(one, other, byte(0x00), prox)
|
|
|
|
stop = CommonBitsAddrByte(one, other, byte(0xff), prox)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
func CommonBitsAddrF(self, other Address, f func() byte, p int) (addr Address) {
|
|
|
|
prox := proximity(self, other)
|
|
|
|
var pos int
|
|
|
|
if p <= prox {
|
|
|
|
prox = p
|
|
|
|
}
|
|
|
|
pos = prox / 8
|
|
|
|
addr = self
|
|
|
|
trans := byte(prox % 8)
|
|
|
|
var transbytea byte
|
|
|
|
if p > prox {
|
|
|
|
transbytea = byte(0x7f)
|
|
|
|
} else {
|
|
|
|
transbytea = byte(0xff)
|
|
|
|
}
|
|
|
|
transbytea >>= trans
|
|
|
|
transbyteb := transbytea ^ byte(0xff)
|
|
|
|
addrpos := addr[pos]
|
|
|
|
addrpos &= transbyteb
|
|
|
|
if p > prox {
|
|
|
|
addrpos ^= byte(0x80 >> trans)
|
|
|
|
}
|
|
|
|
addrpos |= transbytea & f()
|
|
|
|
addr[pos] = addrpos
|
|
|
|
for i := pos + 1; i < len(addr); i++ {
|
|
|
|
addr[i] = f()
|
|
|
|
}
|
|
|
|
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
func CommonBitsAddr(self, other Address, prox int) (addr Address) {
|
|
|
|
return CommonBitsAddrF(self, other, func() byte { return byte(rand.Intn(255)) }, prox)
|
|
|
|
}
|
|
|
|
|
|
|
|
func CommonBitsAddrByte(self, other Address, b byte, prox int) (addr Address) {
|
|
|
|
return CommonBitsAddrF(self, other, func() byte { return b }, prox)
|
|
|
|
}
|
|
|
|
|
|
|
|
// randomAddressAt() generates a random address
|
|
|
|
func RandomAddress() Address {
|
|
|
|
return RandomAddressAt(Address{}, -1)
|
|
|
|
}
|