|
|
|
// Copyright 2018 The go-ethereum Authors
|
|
|
|
// This file is part of the go-ethereum library.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
|
|
// (at your option) any later version.
|
|
|
|
//
|
|
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
// GNU Lesser General Public License for more details.
|
|
|
|
//
|
|
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
|
|
package storage
|
|
|
|
|
|
|
|
import (
|
|
|
|
"bytes"
|
|
|
|
"context"
|
|
|
|
"crypto/rand"
|
|
|
|
"errors"
|
|
|
|
"fmt"
|
|
|
|
"io/ioutil"
|
|
|
|
"sync"
|
|
|
|
"testing"
|
|
|
|
"time"
|
|
|
|
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.
Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.
The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.
* p2p/discover: port to p2p/enode
This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:
- Table.Lookup is not available anymore. It used to take a public key
as argument because v4 protocol requires one. Its replacement is
LookupRandom.
- Table.Resolve takes *enode.Node instead of NodeID. This is also for
v4 protocol compatibility because nodes cannot be looked up by ID
alone.
- Types Node and NodeID are gone. Further commits in the series will be
fixes all over the the codebase to deal with those removals.
* p2p: port to p2p/enode and discovery changes
This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.
New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.
* p2p/simulations, p2p/testing: port to p2p/enode
No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:
- testing.ProtocolSession tracks complete nodes, not just their IDs.
- adapters.NodeConfig has a new method to create a complete node.
These changes were needed to make swarm tests work.
Note that the NodeID change makes the code incompatible with old
simulation snapshots.
* whisper/whisperv5, whisper/whisperv6: port to p2p/enode
This port was easy because whisper uses []byte for node IDs and
URL strings in the API.
* eth: port to p2p/enode
Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.
* les: port to p2p/enode
Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.
* node: port to p2p/enode
This change simply replaces discover.Node and discover.NodeID with their
new equivalents.
* swarm/network: port to p2p/enode
Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).
There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.
Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
6 years ago
|
|
|
"github.com/ethereum/go-ethereum/p2p/enode"
|
|
|
|
ch "github.com/ethereum/go-ethereum/swarm/chunk"
|
|
|
|
)
|
|
|
|
|
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.
Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.
The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.
* p2p/discover: port to p2p/enode
This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:
- Table.Lookup is not available anymore. It used to take a public key
as argument because v4 protocol requires one. Its replacement is
LookupRandom.
- Table.Resolve takes *enode.Node instead of NodeID. This is also for
v4 protocol compatibility because nodes cannot be looked up by ID
alone.
- Types Node and NodeID are gone. Further commits in the series will be
fixes all over the the codebase to deal with those removals.
* p2p: port to p2p/enode and discovery changes
This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.
New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.
* p2p/simulations, p2p/testing: port to p2p/enode
No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:
- testing.ProtocolSession tracks complete nodes, not just their IDs.
- adapters.NodeConfig has a new method to create a complete node.
These changes were needed to make swarm tests work.
Note that the NodeID change makes the code incompatible with old
simulation snapshots.
* whisper/whisperv5, whisper/whisperv6: port to p2p/enode
This port was easy because whisper uses []byte for node IDs and
URL strings in the API.
* eth: port to p2p/enode
Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.
* les: port to p2p/enode
Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.
* node: port to p2p/enode
This change simply replaces discover.Node and discover.NodeID with their
new equivalents.
* swarm/network: port to p2p/enode
Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).
There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.
Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
6 years ago
|
|
|
var sourcePeerID = enode.HexID("99d8594b52298567d2ca3f4c441a5ba0140ee9245e26460d01102a52773c73b9")
|
|
|
|
|
|
|
|
type mockNetFetcher struct {
|
|
|
|
peers *sync.Map
|
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.
Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.
The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.
* p2p/discover: port to p2p/enode
This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:
- Table.Lookup is not available anymore. It used to take a public key
as argument because v4 protocol requires one. Its replacement is
LookupRandom.
- Table.Resolve takes *enode.Node instead of NodeID. This is also for
v4 protocol compatibility because nodes cannot be looked up by ID
alone.
- Types Node and NodeID are gone. Further commits in the series will be
fixes all over the the codebase to deal with those removals.
* p2p: port to p2p/enode and discovery changes
This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.
New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.
* p2p/simulations, p2p/testing: port to p2p/enode
No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:
- testing.ProtocolSession tracks complete nodes, not just their IDs.
- adapters.NodeConfig has a new method to create a complete node.
These changes were needed to make swarm tests work.
Note that the NodeID change makes the code incompatible with old
simulation snapshots.
* whisper/whisperv5, whisper/whisperv6: port to p2p/enode
This port was easy because whisper uses []byte for node IDs and
URL strings in the API.
* eth: port to p2p/enode
Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.
* les: port to p2p/enode
Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.
* node: port to p2p/enode
This change simply replaces discover.Node and discover.NodeID with their
new equivalents.
* swarm/network: port to p2p/enode
Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).
There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.
Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
6 years ago
|
|
|
sources []*enode.ID
|
|
|
|
peersPerRequest [][]Address
|
|
|
|
requestCalled bool
|
|
|
|
offerCalled bool
|
|
|
|
quit <-chan struct{}
|
|
|
|
ctx context.Context
|
|
|
|
hopCounts []uint8
|
|
|
|
mu sync.Mutex
|
|
|
|
}
|
|
|
|
|
all: new p2p node representation (#17643)
Package p2p/enode provides a generalized representation of p2p nodes
which can contain arbitrary information in key/value pairs. It is also
the new home for the node database. The "v4" identity scheme is also
moved here from p2p/enr to remove the dependency on Ethereum crypto from
that package.
Record signature handling is changed significantly. The identity scheme
registry is removed and acceptable schemes must be passed to any method
that needs identity. This means records must now be validated explicitly
after decoding.
The enode API is designed to make signature handling easy and safe: most
APIs around the codebase work with enode.Node, which is a wrapper around
a valid record. Going from enr.Record to enode.Node requires a valid
signature.
* p2p/discover: port to p2p/enode
This ports the discovery code to the new node representation in
p2p/enode. The wire protocol is unchanged, this can be considered a
refactoring change. The Kademlia table can now deal with nodes using an
arbitrary identity scheme. This requires a few incompatible API changes:
- Table.Lookup is not available anymore. It used to take a public key
as argument because v4 protocol requires one. Its replacement is
LookupRandom.
- Table.Resolve takes *enode.Node instead of NodeID. This is also for
v4 protocol compatibility because nodes cannot be looked up by ID
alone.
- Types Node and NodeID are gone. Further commits in the series will be
fixes all over the the codebase to deal with those removals.
* p2p: port to p2p/enode and discovery changes
This adapts package p2p to the changes in p2p/discover. All uses of
discover.Node and discover.NodeID are replaced by their equivalents from
p2p/enode.
New API is added to retrieve the enode.Node instance of a peer. The
behavior of Server.Self with discovery disabled is improved. It now
tries much harder to report a working IP address, falling back to
127.0.0.1 if no suitable address can be determined through other means.
These changes were needed for tests of other packages later in the
series.
* p2p/simulations, p2p/testing: port to p2p/enode
No surprises here, mostly replacements of discover.Node, discover.NodeID
with their new equivalents. The 'interesting' API changes are:
- testing.ProtocolSession tracks complete nodes, not just their IDs.
- adapters.NodeConfig has a new method to create a complete node.
These changes were needed to make swarm tests work.
Note that the NodeID change makes the code incompatible with old
simulation snapshots.
* whisper/whisperv5, whisper/whisperv6: port to p2p/enode
This port was easy because whisper uses []byte for node IDs and
URL strings in the API.
* eth: port to p2p/enode
Again, easy to port because eth uses strings for node IDs and doesn't
care about node information in any way.
* les: port to p2p/enode
Apart from replacing discover.NodeID with enode.ID, most changes are in
the server pool code. It now deals with complete nodes instead
of (Pubkey, IP, Port) triples. The database format is unchanged for now,
but we should probably change it to use the node database later.
* node: port to p2p/enode
This change simply replaces discover.Node and discover.NodeID with their
new equivalents.
* swarm/network: port to p2p/enode
Swarm has its own node address representation, BzzAddr, containing both
an overlay address (the hash of a secp256k1 public key) and an underlay
address (enode:// URL).
There are no changes to the BzzAddr format in this commit, but certain
operations such as creating a BzzAddr from a node ID are now impossible
because node IDs aren't public keys anymore.
Most swarm-related changes in the series remove uses of
NewAddrFromNodeID, replacing it with NewAddr which takes a complete node
as argument. ToOverlayAddr is removed because we can just use the node
ID directly.
6 years ago
|
|
|
func (m *mockNetFetcher) Offer(ctx context.Context, source *enode.ID) {
|
|
|
|
m.offerCalled = true
|
|
|
|
m.sources = append(m.sources, source)
|
|
|
|
}
|
|
|
|
|
|
|
|
func (m *mockNetFetcher) Request(ctx context.Context, hopCount uint8) {
|
|
|
|
m.mu.Lock()
|
|
|
|
defer m.mu.Unlock()
|
|
|
|
|
|
|
|
m.requestCalled = true
|
|
|
|
var peers []Address
|
|
|
|
m.peers.Range(func(key interface{}, _ interface{}) bool {
|
|
|
|
peers = append(peers, common.FromHex(key.(string)))
|
|
|
|
return true
|
|
|
|
})
|
|
|
|
m.peersPerRequest = append(m.peersPerRequest, peers)
|
|
|
|
m.hopCounts = append(m.hopCounts, hopCount)
|
|
|
|
}
|
|
|
|
|
|
|
|
type mockNetFetchFuncFactory struct {
|
|
|
|
fetcher *mockNetFetcher
|
|
|
|
}
|
|
|
|
|
|
|
|
func (m *mockNetFetchFuncFactory) newMockNetFetcher(ctx context.Context, _ Address, peers *sync.Map) NetFetcher {
|
|
|
|
m.fetcher.peers = peers
|
|
|
|
m.fetcher.quit = ctx.Done()
|
|
|
|
m.fetcher.ctx = ctx
|
|
|
|
return m.fetcher
|
|
|
|
}
|
|
|
|
|
|
|
|
func mustNewNetStore(t *testing.T) *NetStore {
|
|
|
|
netStore, _ := mustNewNetStoreWithFetcher(t)
|
|
|
|
return netStore
|
|
|
|
}
|
|
|
|
|
|
|
|
func mustNewNetStoreWithFetcher(t *testing.T) (*NetStore, *mockNetFetcher) {
|
|
|
|
t.Helper()
|
|
|
|
|
|
|
|
datadir, err := ioutil.TempDir("", "netstore")
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
naddr := make([]byte, 32)
|
|
|
|
params := NewDefaultLocalStoreParams()
|
|
|
|
params.Init(datadir)
|
|
|
|
params.BaseKey = naddr
|
|
|
|
localStore, err := NewTestLocalStoreForAddr(params)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
fetcher := &mockNetFetcher{}
|
|
|
|
mockNetFetchFuncFactory := &mockNetFetchFuncFactory{
|
|
|
|
fetcher: fetcher,
|
|
|
|
}
|
|
|
|
netStore, err := NewNetStore(localStore, mockNetFetchFuncFactory.newMockNetFetcher)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
return netStore, fetcher
|
|
|
|
}
|
|
|
|
|
|
|
|
// TestNetStoreGetAndPut tests calling NetStore.Get which is blocked until the same chunk is Put.
|
|
|
|
// After the Put there should no active fetchers, and the context created for the fetcher should
|
|
|
|
// be cancelled.
|
|
|
|
func TestNetStoreGetAndPut(t *testing.T) {
|
|
|
|
netStore, fetcher := mustNewNetStoreWithFetcher(t)
|
|
|
|
|
|
|
|
chunk := GenerateRandomChunk(ch.DefaultSize)
|
|
|
|
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)
|
|
|
|
defer cancel()
|
|
|
|
|
|
|
|
c := make(chan struct{}) // this channel ensures that the gouroutine with the Put does not run earlier than the Get
|
|
|
|
putErrC := make(chan error)
|
|
|
|
go func() {
|
|
|
|
<-c // wait for the Get to be called
|
|
|
|
time.Sleep(200 * time.Millisecond) // and a little more so it is surely called
|
|
|
|
|
|
|
|
// check if netStore created a fetcher in the Get call for the unavailable chunk
|
|
|
|
if netStore.fetchers.Len() != 1 || netStore.getFetcher(chunk.Address()) == nil {
|
|
|
|
putErrC <- errors.New("Expected netStore to use a fetcher for the Get call")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
err := netStore.Put(ctx, chunk)
|
|
|
|
if err != nil {
|
|
|
|
putErrC <- fmt.Errorf("Expected no err got %v", err)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
putErrC <- nil
|
|
|
|
}()
|
|
|
|
|
|
|
|
close(c)
|
|
|
|
recChunk, err := netStore.Get(ctx, chunk.Address()) // this is blocked until the Put above is done
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("Expected no err got %v", err)
|
|
|
|
}
|
|
|
|
|
|
|
|
if err := <-putErrC; err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
// the retrieved chunk should be the same as what we Put
|
|
|
|
if !bytes.Equal(recChunk.Address(), chunk.Address()) || !bytes.Equal(recChunk.Data(), chunk.Data()) {
|
|
|
|
t.Fatalf("Different chunk received than what was put")
|
|
|
|
}
|
|
|
|
// the chunk is already available locally, so there should be no active fetchers waiting for it
|
|
|
|
if netStore.fetchers.Len() != 0 {
|
|
|
|
t.Fatal("Expected netStore to remove the fetcher after delivery")
|
|
|
|
}
|
|
|
|
|
|
|
|
// A fetcher was created when the Get was called (and the chunk was not available). The chunk
|
|
|
|
// was delivered with the Put call, so the fetcher should be cancelled now.
|
|
|
|
select {
|
|
|
|
case <-fetcher.ctx.Done():
|
|
|
|
default:
|
|
|
|
t.Fatal("Expected fetcher context to be cancelled")
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// TestNetStoreGetAndPut tests calling NetStore.Put and then NetStore.Get.
|
|
|
|
// After the Put the chunk is available locally, so the Get can just retrieve it from LocalStore,
|
|
|
|
// there is no need to create fetchers.
|
|
|
|
func TestNetStoreGetAfterPut(t *testing.T) {
|
|
|
|
netStore, fetcher := mustNewNetStoreWithFetcher(t)
|
|
|
|
|
|
|
|
chunk := GenerateRandomChunk(ch.DefaultSize)
|
|
|
|
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), 500*time.Millisecond)
|
|
|
|
defer cancel()
|
|
|
|
|
|
|
|
// First we Put the chunk, so the chunk will be available locally
|
|
|
|
err := netStore.Put(ctx, chunk)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("Expected no err got %v", err)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Get should retrieve the chunk from LocalStore, without creating fetcher
|
|
|
|
recChunk, err := netStore.Get(ctx, chunk.Address())
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("Expected no err got %v", err)
|
|
|
|
}
|
|
|
|
// the retrieved chunk should be the same as what we Put
|
|
|
|
if !bytes.Equal(recChunk.Address(), chunk.Address()) || !bytes.Equal(recChunk.Data(), chunk.Data()) {
|
|
|
|
t.Fatalf("Different chunk received than what was put")
|
|
|
|
}
|
|
|
|
// no fetcher offer or request should be created for a locally available chunk
|
|
|
|
if fetcher.offerCalled || fetcher.requestCalled {
|
|
|
|
t.Fatal("NetFetcher.offerCalled or requestCalled not expected to be called")
|
|
|
|
}
|
|
|
|
// no fetchers should be created for a locally available chunk
|
|
|
|
if netStore.fetchers.Len() != 0 {
|
|
|
|
t.Fatal("Expected netStore to not have fetcher")
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// TestNetStoreGetTimeout tests a Get call for an unavailable chunk and waits for timeout
|
|
|
|
func TestNetStoreGetTimeout(t *testing.T) {
|
|
|
|
netStore, fetcher := mustNewNetStoreWithFetcher(t)
|
|
|
|
|
|
|
|
chunk := GenerateRandomChunk(ch.DefaultSize)
|
|
|
|
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), 500*time.Millisecond)
|
|
|
|
defer cancel()
|
|
|
|
|
|
|
|
c := make(chan struct{}) // this channel ensures that the gouroutine does not run earlier than the Get
|
|
|
|
fetcherErrC := make(chan error)
|
|
|
|
go func() {
|
|
|
|
<-c // wait for the Get to be called
|
|
|
|
time.Sleep(200 * time.Millisecond) // and a little more so it is surely called
|
|
|
|
|
|
|
|
// check if netStore created a fetcher in the Get call for the unavailable chunk
|
|
|
|
if netStore.fetchers.Len() != 1 || netStore.getFetcher(chunk.Address()) == nil {
|
|
|
|
fetcherErrC <- errors.New("Expected netStore to use a fetcher for the Get call")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
fetcherErrC <- nil
|
|
|
|
}()
|
|
|
|
|
|
|
|
close(c)
|
|
|
|
// We call Get on this chunk, which is not in LocalStore. We don't Put it at all, so there will
|
|
|
|
// be a timeout
|
|
|
|
_, err := netStore.Get(ctx, chunk.Address())
|
|
|
|
|
|
|
|
// Check if the timeout happened
|
|
|
|
if err != context.DeadlineExceeded {
|
|
|
|
t.Fatalf("Expected context.DeadLineExceeded err got %v", err)
|
|
|
|
}
|
|
|
|
|
|
|
|
if err := <-fetcherErrC; err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
// A fetcher was created, check if it has been removed after timeout
|
|
|
|
if netStore.fetchers.Len() != 0 {
|
|
|
|
t.Fatal("Expected netStore to remove the fetcher after timeout")
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check if the fetcher context has been cancelled after the timeout
|
|
|
|
select {
|
|
|
|
case <-fetcher.ctx.Done():
|
|
|
|
default:
|
|
|
|
t.Fatal("Expected fetcher context to be cancelled")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TestNetStoreGetCancel tests a Get call for an unavailable chunk, then cancels the context and checks
|
|
|
|
// the errors
|
|
|
|
func TestNetStoreGetCancel(t *testing.T) {
|
|
|
|
netStore, fetcher := mustNewNetStoreWithFetcher(t)
|
|
|
|
|
|
|
|
chunk := GenerateRandomChunk(ch.DefaultSize)
|
|
|
|
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), 1*time.Second)
|
|
|
|
|
|
|
|
c := make(chan struct{}) // this channel ensures that the gouroutine with the cancel does not run earlier than the Get
|
|
|
|
fetcherErrC := make(chan error, 1)
|
|
|
|
go func() {
|
|
|
|
<-c // wait for the Get to be called
|
|
|
|
time.Sleep(200 * time.Millisecond) // and a little more so it is surely called
|
|
|
|
// check if netStore created a fetcher in the Get call for the unavailable chunk
|
|
|
|
if netStore.fetchers.Len() != 1 || netStore.getFetcher(chunk.Address()) == nil {
|
|
|
|
fetcherErrC <- errors.New("Expected netStore to use a fetcher for the Get call")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
fetcherErrC <- nil
|
|
|
|
cancel()
|
|
|
|
}()
|
|
|
|
|
|
|
|
close(c)
|
|
|
|
|
|
|
|
// We call Get with an unavailable chunk, so it will create a fetcher and wait for delivery
|
|
|
|
_, err := netStore.Get(ctx, chunk.Address())
|
|
|
|
|
|
|
|
if err := <-fetcherErrC; err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
// After the context is cancelled above Get should return with an error
|
|
|
|
if err != context.Canceled {
|
|
|
|
t.Fatalf("Expected context.Canceled err got %v", err)
|
|
|
|
}
|
|
|
|
|
|
|
|
// A fetcher was created, check if it has been removed after cancel
|
|
|
|
if netStore.fetchers.Len() != 0 {
|
|
|
|
t.Fatal("Expected netStore to remove the fetcher after cancel")
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check if the fetcher context has been cancelled after the request context cancel
|
|
|
|
select {
|
|
|
|
case <-fetcher.ctx.Done():
|
|
|
|
default:
|
|
|
|
t.Fatal("Expected fetcher context to be cancelled")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TestNetStoreMultipleGetAndPut tests four Get calls for the same unavailable chunk. The chunk is
|
|
|
|
// delivered with a Put, we have to make sure all Get calls return, and they use a single fetcher
|
|
|
|
// for the chunk retrieval
|
|
|
|
func TestNetStoreMultipleGetAndPut(t *testing.T) {
|
|
|
|
netStore, fetcher := mustNewNetStoreWithFetcher(t)
|
|
|
|
|
|
|
|
chunk := GenerateRandomChunk(ch.DefaultSize)
|
|
|
|
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)
|
|
|
|
defer cancel()
|
|
|
|
|
|
|
|
putErrC := make(chan error)
|
|
|
|
go func() {
|
|
|
|
// sleep to make sure Put is called after all the Get
|
|
|
|
time.Sleep(500 * time.Millisecond)
|
|
|
|
// check if netStore created exactly one fetcher for all Get calls
|
|
|
|
if netStore.fetchers.Len() != 1 {
|
|
|
|
putErrC <- errors.New("Expected netStore to use one fetcher for all Get calls")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
err := netStore.Put(ctx, chunk)
|
|
|
|
if err != nil {
|
|
|
|
putErrC <- fmt.Errorf("Expected no err got %v", err)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
putErrC <- nil
|
|
|
|
}()
|
|
|
|
|
|
|
|
count := 4
|
|
|
|
// call Get 4 times for the same unavailable chunk. The calls will be blocked until the Put above.
|
|
|
|
errC := make(chan error)
|
|
|
|
for i := 0; i < count; i++ {
|
|
|
|
go func() {
|
|
|
|
recChunk, err := netStore.Get(ctx, chunk.Address())
|
|
|
|
if err != nil {
|
|
|
|
errC <- fmt.Errorf("Expected no err got %v", err)
|
|
|
|
}
|
|
|
|
if !bytes.Equal(recChunk.Address(), chunk.Address()) || !bytes.Equal(recChunk.Data(), chunk.Data()) {
|
|
|
|
errC <- errors.New("Different chunk received than what was put")
|
|
|
|
}
|
|
|
|
errC <- nil
|
|
|
|
}()
|
|
|
|
}
|
|
|
|
|
|
|
|
if err := <-putErrC; err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
timeout := time.After(1 * time.Second)
|
|
|
|
|
|
|
|
// The Get calls should return after Put, so no timeout expected
|
|
|
|
for i := 0; i < count; i++ {
|
|
|
|
select {
|
|
|
|
case err := <-errC:
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
case <-timeout:
|
|
|
|
t.Fatalf("Timeout waiting for Get calls to return")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// A fetcher was created, check if it has been removed after cancel
|
|
|
|
if netStore.fetchers.Len() != 0 {
|
|
|
|
t.Fatal("Expected netStore to remove the fetcher after delivery")
|
|
|
|
}
|
|
|
|
|
|
|
|
// A fetcher was created, check if it has been removed after delivery
|
|
|
|
select {
|
|
|
|
case <-fetcher.ctx.Done():
|
|
|
|
default:
|
|
|
|
t.Fatal("Expected fetcher context to be cancelled")
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// TestNetStoreFetchFuncTimeout tests a FetchFunc call for an unavailable chunk and waits for timeout
|
|
|
|
func TestNetStoreFetchFuncTimeout(t *testing.T) {
|
|
|
|
netStore, fetcher := mustNewNetStoreWithFetcher(t)
|
|
|
|
|
|
|
|
chunk := GenerateRandomChunk(ch.DefaultSize)
|
|
|
|
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), 200*time.Millisecond)
|
|
|
|
defer cancel()
|
|
|
|
|
|
|
|
// FetchFunc is called for an unavaible chunk, so the returned wait function should not be nil
|
|
|
|
wait := netStore.FetchFunc(ctx, chunk.Address())
|
|
|
|
if wait == nil {
|
|
|
|
t.Fatal("Expected wait function to be not nil")
|
|
|
|
}
|
|
|
|
|
|
|
|
// There should an active fetcher for the chunk after the FetchFunc call
|
|
|
|
if netStore.fetchers.Len() != 1 || netStore.getFetcher(chunk.Address()) == nil {
|
|
|
|
t.Fatalf("Expected netStore to have one fetcher for the requested chunk")
|
|
|
|
}
|
|
|
|
|
|
|
|
// wait function should timeout because we don't deliver the chunk with a Put
|
|
|
|
err := wait(ctx)
|
|
|
|
if err != context.DeadlineExceeded {
|
|
|
|
t.Fatalf("Expected context.DeadLineExceeded err got %v", err)
|
|
|
|
}
|
|
|
|
|
|
|
|
// the fetcher should be removed after timeout
|
|
|
|
if netStore.fetchers.Len() != 0 {
|
|
|
|
t.Fatal("Expected netStore to remove the fetcher after timeout")
|
|
|
|
}
|
|
|
|
|
|
|
|
// the fetcher context should be cancelled after timeout
|
|
|
|
select {
|
|
|
|
case <-fetcher.ctx.Done():
|
|
|
|
default:
|
|
|
|
t.Fatal("Expected fetcher context to be cancelled")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TestNetStoreFetchFuncAfterPut tests that the FetchFunc should return nil for a locally available chunk
|
|
|
|
func TestNetStoreFetchFuncAfterPut(t *testing.T) {
|
|
|
|
netStore := mustNewNetStore(t)
|
|
|
|
|
|
|
|
chunk := GenerateRandomChunk(ch.DefaultSize)
|
|
|
|
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), 1*time.Second)
|
|
|
|
defer cancel()
|
|
|
|
|
|
|
|
// We deliver the created the chunk with a Put
|
|
|
|
err := netStore.Put(ctx, chunk)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("Expected no err got %v", err)
|
|
|
|
}
|
|
|
|
|
|
|
|
// FetchFunc should return nil, because the chunk is available locally, no need to fetch it
|
|
|
|
wait := netStore.FetchFunc(ctx, chunk.Address())
|
|
|
|
if wait != nil {
|
|
|
|
t.Fatal("Expected wait to be nil")
|
|
|
|
}
|
|
|
|
|
|
|
|
// No fetchers should be created at all
|
|
|
|
if netStore.fetchers.Len() != 0 {
|
|
|
|
t.Fatal("Expected netStore to not have fetcher")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TestNetStoreGetCallsRequest tests if Get created a request on the NetFetcher for an unavailable chunk
|
|
|
|
func TestNetStoreGetCallsRequest(t *testing.T) {
|
|
|
|
netStore, fetcher := mustNewNetStoreWithFetcher(t)
|
|
|
|
|
|
|
|
chunk := GenerateRandomChunk(ch.DefaultSize)
|
|
|
|
|
|
|
|
ctx := context.WithValue(context.Background(), "hopcount", uint8(5))
|
|
|
|
ctx, cancel := context.WithTimeout(ctx, 200*time.Millisecond)
|
|
|
|
defer cancel()
|
|
|
|
|
|
|
|
// We call get for a not available chunk, it will timeout because the chunk is not delivered
|
|
|
|
_, err := netStore.Get(ctx, chunk.Address())
|
|
|
|
|
|
|
|
if err != context.DeadlineExceeded {
|
|
|
|
t.Fatalf("Expected context.DeadlineExceeded err got %v", err)
|
|
|
|
}
|
|
|
|
|
|
|
|
// NetStore should call NetFetcher.Request and wait for the chunk
|
|
|
|
if !fetcher.requestCalled {
|
|
|
|
t.Fatal("Expected NetFetcher.Request to be called")
|
|
|
|
}
|
|
|
|
|
|
|
|
if fetcher.hopCounts[0] != 5 {
|
|
|
|
t.Fatalf("Expected NetFetcher.Request be called with hopCount 5, got %v", fetcher.hopCounts[0])
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TestNetStoreGetCallsOffer tests if Get created a request on the NetFetcher for an unavailable chunk
|
|
|
|
// in case of a source peer provided in the context.
|
|
|
|
func TestNetStoreGetCallsOffer(t *testing.T) {
|
|
|
|
netStore, fetcher := mustNewNetStoreWithFetcher(t)
|
|
|
|
|
|
|
|
chunk := GenerateRandomChunk(ch.DefaultSize)
|
|
|
|
|
|
|
|
// If a source peer is added to the context, NetStore will handle it as an offer
|
|
|
|
ctx := context.WithValue(context.Background(), "source", sourcePeerID.String())
|
|
|
|
ctx, cancel := context.WithTimeout(ctx, 200*time.Millisecond)
|
|
|
|
defer cancel()
|
|
|
|
|
|
|
|
// We call get for a not available chunk, it will timeout because the chunk is not delivered
|
|
|
|
_, err := netStore.Get(ctx, chunk.Address())
|
|
|
|
|
|
|
|
if err != context.DeadlineExceeded {
|
|
|
|
t.Fatalf("Expect error %v got %v", context.DeadlineExceeded, err)
|
|
|
|
}
|
|
|
|
|
|
|
|
// NetStore should call NetFetcher.Offer with the source peer
|
|
|
|
if !fetcher.offerCalled {
|
|
|
|
t.Fatal("Expected NetFetcher.Request to be called")
|
|
|
|
}
|
|
|
|
|
|
|
|
if len(fetcher.sources) != 1 {
|
|
|
|
t.Fatalf("Expected fetcher sources length 1 got %v", len(fetcher.sources))
|
|
|
|
}
|
|
|
|
|
|
|
|
if fetcher.sources[0].String() != sourcePeerID.String() {
|
|
|
|
t.Fatalf("Expected fetcher source %v got %v", sourcePeerID, fetcher.sources[0])
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// TestNetStoreFetcherCountPeers tests multiple NetStore.Get calls with peer in the context.
|
|
|
|
// There is no Put call, so the Get calls timeout
|
|
|
|
func TestNetStoreFetcherCountPeers(t *testing.T) {
|
|
|
|
|
|
|
|
netStore, fetcher := mustNewNetStoreWithFetcher(t)
|
|
|
|
|
|
|
|
addr := randomAddr()
|
|
|
|
peers := []string{randomAddr().Hex(), randomAddr().Hex(), randomAddr().Hex()}
|
|
|
|
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), 1*time.Second)
|
|
|
|
defer cancel()
|
|
|
|
errC := make(chan error)
|
|
|
|
nrGets := 3
|
|
|
|
|
|
|
|
// Call Get 3 times with a peer in context
|
|
|
|
for i := 0; i < nrGets; i++ {
|
|
|
|
peer := peers[i]
|
|
|
|
go func() {
|
|
|
|
ctx := context.WithValue(ctx, "peer", peer)
|
|
|
|
_, err := netStore.Get(ctx, addr)
|
|
|
|
errC <- err
|
|
|
|
}()
|
|
|
|
}
|
|
|
|
|
|
|
|
// All 3 Get calls should timeout
|
|
|
|
for i := 0; i < nrGets; i++ {
|
|
|
|
err := <-errC
|
|
|
|
if err != context.DeadlineExceeded {
|
|
|
|
t.Fatalf("Expected \"%v\" error got \"%v\"", context.DeadlineExceeded, err)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// fetcher should be closed after timeout
|
|
|
|
select {
|
|
|
|
case <-fetcher.quit:
|
|
|
|
case <-time.After(3 * time.Second):
|
|
|
|
t.Fatalf("mockNetFetcher not closed after timeout")
|
|
|
|
}
|
|
|
|
|
|
|
|
// All 3 peers should be given to NetFetcher after the 3 Get calls
|
|
|
|
if len(fetcher.peersPerRequest) != nrGets {
|
|
|
|
t.Fatalf("Expected 3 got %v", len(fetcher.peersPerRequest))
|
|
|
|
}
|
|
|
|
|
|
|
|
for i, peers := range fetcher.peersPerRequest {
|
|
|
|
if len(peers) < i+1 {
|
|
|
|
t.Fatalf("Expected at least %v got %v", i+1, len(peers))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TestNetStoreFetchFuncCalledMultipleTimes calls the wait function given by FetchFunc three times,
|
|
|
|
// and checks there is still exactly one fetcher for one chunk. Afthe chunk is delivered, it checks
|
|
|
|
// if the fetcher is closed.
|
|
|
|
func TestNetStoreFetchFuncCalledMultipleTimes(t *testing.T) {
|
|
|
|
netStore, fetcher := mustNewNetStoreWithFetcher(t)
|
|
|
|
|
|
|
|
chunk := GenerateRandomChunk(ch.DefaultSize)
|
|
|
|
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), 500*time.Millisecond)
|
|
|
|
defer cancel()
|
|
|
|
|
|
|
|
// FetchFunc should return a non-nil wait function, because the chunk is not available
|
|
|
|
wait := netStore.FetchFunc(ctx, chunk.Address())
|
|
|
|
if wait == nil {
|
|
|
|
t.Fatal("Expected wait function to be not nil")
|
|
|
|
}
|
|
|
|
|
|
|
|
// There should be exactly one fetcher for the chunk
|
|
|
|
if netStore.fetchers.Len() != 1 || netStore.getFetcher(chunk.Address()) == nil {
|
|
|
|
t.Fatalf("Expected netStore to have one fetcher for the requested chunk")
|
|
|
|
}
|
|
|
|
|
|
|
|
// Call wait three times in parallel
|
|
|
|
count := 3
|
|
|
|
errC := make(chan error)
|
|
|
|
for i := 0; i < count; i++ {
|
|
|
|
go func() {
|
|
|
|
errC <- wait(ctx)
|
|
|
|
}()
|
|
|
|
}
|
|
|
|
|
|
|
|
// sleep a little so the wait functions are called above
|
|
|
|
time.Sleep(100 * time.Millisecond)
|
|
|
|
|
|
|
|
// there should be still only one fetcher, because all wait calls are for the same chunk
|
|
|
|
if netStore.fetchers.Len() != 1 || netStore.getFetcher(chunk.Address()) == nil {
|
|
|
|
t.Fatal("Expected netStore to have one fetcher for the requested chunk")
|
|
|
|
}
|
|
|
|
|
|
|
|
// Deliver the chunk with a Put
|
|
|
|
err := netStore.Put(ctx, chunk)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("Expected no err got %v", err)
|
|
|
|
}
|
|
|
|
|
|
|
|
// wait until all wait calls return (because the chunk is delivered)
|
|
|
|
for i := 0; i < count; i++ {
|
|
|
|
err := <-errC
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// There should be no more fetchers for the delivered chunk
|
|
|
|
if netStore.fetchers.Len() != 0 {
|
|
|
|
t.Fatal("Expected netStore to remove the fetcher after delivery")
|
|
|
|
}
|
|
|
|
|
|
|
|
// The context for the fetcher should be cancelled after delivery
|
|
|
|
select {
|
|
|
|
case <-fetcher.ctx.Done():
|
|
|
|
default:
|
|
|
|
t.Fatal("Expected fetcher context to be cancelled")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// TestNetStoreFetcherLifeCycleWithTimeout is similar to TestNetStoreFetchFuncCalledMultipleTimes,
|
|
|
|
// the only difference is that we don't deilver the chunk, just wait for timeout
|
|
|
|
func TestNetStoreFetcherLifeCycleWithTimeout(t *testing.T) {
|
|
|
|
netStore, fetcher := mustNewNetStoreWithFetcher(t)
|
|
|
|
|
|
|
|
chunk := GenerateRandomChunk(ch.DefaultSize)
|
|
|
|
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), 1*time.Second)
|
|
|
|
defer cancel()
|
|
|
|
|
|
|
|
// FetchFunc should return a non-nil wait function, because the chunk is not available
|
|
|
|
wait := netStore.FetchFunc(ctx, chunk.Address())
|
|
|
|
if wait == nil {
|
|
|
|
t.Fatal("Expected wait function to be not nil")
|
|
|
|
}
|
|
|
|
|
|
|
|
// There should be exactly one fetcher for the chunk
|
|
|
|
if netStore.fetchers.Len() != 1 || netStore.getFetcher(chunk.Address()) == nil {
|
|
|
|
t.Fatalf("Expected netStore to have one fetcher for the requested chunk")
|
|
|
|
}
|
|
|
|
|
|
|
|
// Call wait three times in parallel
|
|
|
|
count := 3
|
|
|
|
errC := make(chan error)
|
|
|
|
for i := 0; i < count; i++ {
|
|
|
|
go func() {
|
|
|
|
rctx, rcancel := context.WithTimeout(context.Background(), 100*time.Millisecond)
|
|
|
|
defer rcancel()
|
|
|
|
err := wait(rctx)
|
|
|
|
if err != context.DeadlineExceeded {
|
|
|
|
errC <- fmt.Errorf("Expected err %v got %v", context.DeadlineExceeded, err)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
errC <- nil
|
|
|
|
}()
|
|
|
|
}
|
|
|
|
|
|
|
|
// wait until all wait calls timeout
|
|
|
|
for i := 0; i < count; i++ {
|
|
|
|
err := <-errC
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// There should be no more fetchers after timeout
|
|
|
|
if netStore.fetchers.Len() != 0 {
|
|
|
|
t.Fatal("Expected netStore to remove the fetcher after delivery")
|
|
|
|
}
|
|
|
|
|
|
|
|
// The context for the fetcher should be cancelled after timeout
|
|
|
|
select {
|
|
|
|
case <-fetcher.ctx.Done():
|
|
|
|
default:
|
|
|
|
t.Fatal("Expected fetcher context to be cancelled")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func randomAddr() Address {
|
|
|
|
addr := make([]byte, 32)
|
|
|
|
rand.Read(addr)
|
|
|
|
return Address(addr)
|
|
|
|
}
|