Official Go implementation of the Ethereum protocol
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
go-ethereum/core/state/snapshot/difflayer_test.go

343 lines
9.8 KiB

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"math/big"
"math/rand"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/rlp"
)
func randomAccount() []byte {
root := randomHash()
a := Account{
Balance: big.NewInt(rand.Int63()),
Nonce: rand.Uint64(),
Root: root[:],
CodeHash: emptyCode[:],
}
data, _ := rlp.EncodeToBytes(a)
return data
}
// TestMergeBasics tests some simple merges
func TestMergeBasics(t *testing.T) {
var (
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
// Fill up a parent
for i := 0; i < 100; i++ {
h := randomHash()
data := randomAccount()
accounts[h] = data
if rand.Intn(20) < 10 {
accStorage := make(map[common.Hash][]byte)
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
storage[h] = accStorage
}
}
// Add some (identical) layers on top
parent := newDiffLayer(emptyLayer{}, 1, common.Hash{}, accounts, storage)
child := newDiffLayer(parent, 1, common.Hash{}, accounts, storage)
child = newDiffLayer(child, 1, common.Hash{}, accounts, storage)
child = newDiffLayer(child, 1, common.Hash{}, accounts, storage)
child = newDiffLayer(child, 1, common.Hash{}, accounts, storage)
// And flatten
merged := (child.flatten()).(*diffLayer)
{ // Check account lists
// Should be zero/nil first
if got, exp := len(merged.accountList), 0; got != exp {
t.Errorf("accountList wrong, got %v exp %v", got, exp)
}
// Then set when we call AccountList
if got, exp := len(merged.AccountList()), len(accounts); got != exp {
t.Errorf("AccountList() wrong, got %v exp %v", got, exp)
}
if got, exp := len(merged.accountList), len(accounts); got != exp {
t.Errorf("accountList [2] wrong, got %v exp %v", got, exp)
}
}
{ // Check storage lists
i := 0
for aHash, sMap := range storage {
if got, exp := len(merged.storageList), i; got != exp {
t.Errorf("[1] storageList wrong, got %v exp %v", got, exp)
}
if got, exp := len(merged.StorageList(aHash)), len(sMap); got != exp {
t.Errorf("[2] StorageList() wrong, got %v exp %v", got, exp)
}
if got, exp := len(merged.storageList[aHash]), len(sMap); got != exp {
t.Errorf("storageList wrong, got %v exp %v", got, exp)
}
i++
}
}
}
// TestMergeDelete tests some deletion
func TestMergeDelete(t *testing.T) {
var (
storage = make(map[common.Hash]map[common.Hash][]byte)
)
// Fill up a parent
h1 := common.HexToHash("0x01")
h2 := common.HexToHash("0x02")
flip := func() map[common.Hash][]byte {
accs := make(map[common.Hash][]byte)
accs[h1] = randomAccount()
accs[h2] = nil
return accs
}
flop := func() map[common.Hash][]byte {
accs := make(map[common.Hash][]byte)
accs[h1] = nil
accs[h2] = randomAccount()
return accs
}
// Add some flip-flopping layers on top
parent := newDiffLayer(emptyLayer{}, 1, common.Hash{}, flip(), storage)
child := parent.Update(common.Hash{}, flop(), storage)
child = child.Update(common.Hash{}, flip(), storage)
child = child.Update(common.Hash{}, flop(), storage)
child = child.Update(common.Hash{}, flip(), storage)
child = child.Update(common.Hash{}, flop(), storage)
child = child.Update(common.Hash{}, flip(), storage)
if data, _ := child.Account(h1); data == nil {
t.Errorf("last diff layer: expected %x to be non-nil", h1)
}
if data, _ := child.Account(h2); data != nil {
t.Errorf("last diff layer: expected %x to be nil", h2)
}
// And flatten
merged := (child.flatten()).(*diffLayer)
// check number
if got, exp := merged.number, child.number; got != exp {
t.Errorf("merged layer: wrong number - exp %d got %d", exp, got)
}
if data, _ := merged.Account(h1); data == nil {
t.Errorf("merged layer: expected %x to be non-nil", h1)
}
if data, _ := merged.Account(h2); data != nil {
t.Errorf("merged layer: expected %x to be nil", h2)
}
// If we add more granular metering of memory, we can enable this again,
// but it's not implemented for now
//if got, exp := merged.memory, child.memory; got != exp {
// t.Errorf("mem wrong, got %d, exp %d", got, exp)
//}
}
// This tests that if we create a new account, and set a slot, and then merge
// it, the lists will be correct.
func TestInsertAndMerge(t *testing.T) {
// Fill up a parent
var (
acc = common.HexToHash("0x01")
slot = common.HexToHash("0x02")
parent *diffLayer
child *diffLayer
)
{
var accounts = make(map[common.Hash][]byte)
var storage = make(map[common.Hash]map[common.Hash][]byte)
parent = newDiffLayer(emptyLayer{}, 1, common.Hash{}, accounts, storage)
}
{
var accounts = make(map[common.Hash][]byte)
var storage = make(map[common.Hash]map[common.Hash][]byte)
accounts[acc] = randomAccount()
accstorage := make(map[common.Hash][]byte)
storage[acc] = accstorage
storage[acc][slot] = []byte{0x01}
child = newDiffLayer(parent, 2, common.Hash{}, accounts, storage)
}
// And flatten
merged := (child.flatten()).(*diffLayer)
{ // Check that slot value is present
got, _ := merged.Storage(acc, slot)
if exp := []byte{0x01}; bytes.Compare(got, exp) != 0 {
t.Errorf("merged slot value wrong, got %x, exp %x", got, exp)
}
}
}
type emptyLayer struct{}
func (emptyLayer) Update(blockRoot common.Hash, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte) *diffLayer {
panic("implement me")
}
func (emptyLayer) Journal() error {
panic("implement me")
}
func (emptyLayer) Info() (uint64, common.Hash) {
return 0, common.Hash{}
}
func (emptyLayer) Number() uint64 {
return 0
}
func (emptyLayer) Account(hash common.Hash) (*Account, error) {
return nil, nil
}
func (emptyLayer) AccountRLP(hash common.Hash) ([]byte, error) {
return nil, nil
}
func (emptyLayer) Storage(accountHash, storageHash common.Hash) ([]byte, error) {
return nil, nil
}
// BenchmarkSearch checks how long it takes to find a non-existing key
// BenchmarkSearch-6 200000 10481 ns/op (1K per layer)
// BenchmarkSearch-6 200000 10760 ns/op (10K per layer)
// BenchmarkSearch-6 100000 17866 ns/op
//
// BenchmarkSearch-6 500000 3723 ns/op (10k per layer, only top-level RLock()
func BenchmarkSearch(b *testing.B) {
// First, we set up 128 diff layers, with 1K items each
blocknum := uint64(0)
fill := func(parent snapshot) *diffLayer {
accounts := make(map[common.Hash][]byte)
storage := make(map[common.Hash]map[common.Hash][]byte)
for i := 0; i < 10000; i++ {
accounts[randomHash()] = randomAccount()
}
blocknum++
return newDiffLayer(parent, blocknum, common.Hash{}, accounts, storage)
}
var layer snapshot
layer = emptyLayer{}
for i := 0; i < 128; i++ {
layer = fill(layer)
}
key := common.Hash{}
b.ResetTimer()
for i := 0; i < b.N; i++ {
layer.AccountRLP(key)
}
}
// BenchmarkSearchSlot checks how long it takes to find a non-existing key
// - Number of layers: 128
// - Each layers contains the account, with a couple of storage slots
// BenchmarkSearchSlot-6 100000 14554 ns/op
// BenchmarkSearchSlot-6 100000 22254 ns/op (when checking parent root using mutex)
// BenchmarkSearchSlot-6 100000 14551 ns/op (when checking parent number using atomic)
func BenchmarkSearchSlot(b *testing.B) {
// First, we set up 128 diff layers, with 1K items each
blocknum := uint64(0)
accountKey := common.Hash{}
storageKey := common.HexToHash("0x1337")
accountRLP := randomAccount()
fill := func(parent snapshot) *diffLayer {
accounts := make(map[common.Hash][]byte)
accounts[accountKey] = accountRLP
storage := make(map[common.Hash]map[common.Hash][]byte)
accStorage := make(map[common.Hash][]byte)
for i := 0; i < 5; i++ {
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
storage[accountKey] = accStorage
}
blocknum++
return newDiffLayer(parent, blocknum, common.Hash{}, accounts, storage)
}
var layer snapshot
layer = emptyLayer{}
for i := 0; i < 128; i++ {
layer = fill(layer)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
layer.Storage(accountKey, storageKey)
}
}
// With accountList and sorting
//BenchmarkFlatten-6 50 29890856 ns/op
//
// Without sorting and tracking accountlist
// BenchmarkFlatten-6 300 5511511 ns/op
func BenchmarkFlatten(b *testing.B) {
fill := func(parent snapshot, blocknum int) *diffLayer {
accounts := make(map[common.Hash][]byte)
storage := make(map[common.Hash]map[common.Hash][]byte)
for i := 0; i < 100; i++ {
accountKey := randomHash()
accounts[accountKey] = randomAccount()
accStorage := make(map[common.Hash][]byte)
for i := 0; i < 20; i++ {
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
}
storage[accountKey] = accStorage
}
return newDiffLayer(parent, uint64(blocknum), common.Hash{}, accounts, storage)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
b.StopTimer()
var layer snapshot
layer = emptyLayer{}
for i := 1; i < 128; i++ {
layer = fill(layer, i)
}
b.StartTimer()
for i := 1; i < 128; i++ {
dl, ok := layer.(*diffLayer)
if !ok {
break
}
layer = dl.flatten()
}
b.StopTimer()
}
}