| **`geth`** | Our main Ethereum CLI client. It is the entry point into the Ethereum network (main-, test- or private net), capable of running as a full node (default) archive node (retaining all historical state) or a light node (retrieving data live). It can be used by other processes as a gateway into the Ethereum network via JSON RPC endpoints exposed on top of HTTP, WebSocket and/or IPC transports. `geth --help` and the [CLI Wiki page](https://github.com/ethereum/go-ethereum/wiki/Command-Line-Options) for command line options. |
| `abigen` | Source code generator to convert Ethereum contract definitions into easy to use, compile-time type-safe Go packages. It operates on plain [Ethereum contract ABIs](https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI) with expanded functionality if the contract bytecode is also available. However it also accepts Solidity source files, making development much more streamlined. Please see our [Native DApps](https://github.com/ethereum/go-ethereum/wiki/Native-DApps:-Go-bindings-to-Ethereum-contracts) wiki page for details. |
| `bootnode` | Stripped down version of our Ethereum client implementation that only takes part in the network node discovery protocol, but does not run any of the higher level application protocols. It can be used as a lightweight bootstrap node to aid in finding peers in private networks. |
| `evm` | Developer utility version of the EVM (Ethereum Virtual Machine) that is capable of running bytecode snippets within a configurable environment and execution mode. Its purpose is to allow isolated, fine-grained debugging of EVM opcodes (e.g. `evm --code 60ff60ff --debug`). |
| `gethrpctest` | Developer utility tool to support our [ethereum/rpc-test](https://github.com/ethereum/rpc-tests) test suite which validates baseline conformity to the [Ethereum JSON RPC](https://github.com/ethereum/wiki/wiki/JSON-RPC) specs. Please see the [test suite's readme](https://github.com/ethereum/rpc-tests/blob/master/README.md) for details. |
| `rlpdump` | Developer utility tool to convert binary RLP ([Recursive Length Prefix](https://github.com/ethereum/wiki/wiki/RLP)) dumps (data encoding used by the Ethereum protocol both network as well as consensus wise) to user friendlier hierarchical representation (e.g. `rlpdump --hex CE0183FFFFFFC4C304050583616263`). |
| `swarm` | swarm daemon and tools. This is the entrypoint for the swarm network. `swarm --help` for command line options and subcommands. See https://swarm-guide.readthedocs.io for swarm documentation. |
Going through all the possible command line flags is out of scope here (please consult our
[CLI Wiki page](https://github.com/ethereum/go-ethereum/wiki/Command-Line-Options)), but we've
enumerated a few common parameter combos to get you up to speed quickly on how you can run your
own Geth instance.
### Full node on the main Ethereum network
By far the most common scenario is people wanting to simply interact with the Ethereum network:
create accounts; transfer funds; deploy and interact with contracts. For this particular use-case
the user doesn't care about years-old historical data, so we can fast-sync quickly to the current
state of the network. To do so:
```
$ geth --fast --cache=512 console
```
This command will:
* Start geth in fast sync mode (`--fast`), causing it to download more data in exchange for avoiding
processing the entire history of the Ethereum network, which is very CPU intensive.
* Bump the memory allowance of the database to 512MB (`--cache=512`), which can help significantly in
sync times especially for HDD users. This flag is optional and you can set it as high or as low as
you'd like, though we'd recommend the 512MB - 2GB range.
* Start up Geth's built-in interactive [JavaScript console](https://github.com/ethereum/go-ethereum/wiki/JavaScript-Console),
(via the trailing `console` subcommand) through which you can invoke all official [`web3` methods](https://github.com/ethereum/wiki/wiki/JavaScript-API)
as well as Geth's own [management APIs](https://github.com/ethereum/go-ethereum/wiki/Management-APIs).
This too is optional and if you leave it out you can always attach to an already running Geth instance
One of the quickest ways to get Ethereum up and running on your machine is by using Docker:
```
docker run -d --name ethereum-node -v /Users/alice/ethereum:/root \
-p 8545:8545 -p 30303:30303 \
ethereum/client-go --fast --cache=512
```
This will start geth in fast sync mode with a DB memory allowance of 512MB just as the above command does. It will also create a persistent volume in your home directory for saving your blockchain as well as map the default ports. There is also an `alpine` tag available for a slim version of the image.
* Code must adhere to the official Go [formatting](https://golang.org/doc/effective_go.html#formatting) guidelines (i.e. uses [gofmt](https://golang.org/cmd/gofmt/)).