crypto/sha3: Delete old copied code

pull/2242/head
Ricardo Catalinas Jiménez 9 years ago
parent f8d98f7fcd
commit 0a1da69fac
  1. 434
      crypto/sha3/keccakf.go
  2. 237
      crypto/sha3/sha3.go

@ -1,434 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package sha3
// rc stores the round constants for use in the ι step.
var rc = [24]uint64{
0x0000000000000001,
0x0000000000008082,
0x800000000000808A,
0x8000000080008000,
0x000000000000808B,
0x0000000080000001,
0x8000000080008081,
0x8000000000008009,
0x000000000000008A,
0x0000000000000088,
0x0000000080008009,
0x000000008000000A,
0x000000008000808B,
0x800000000000008B,
0x8000000000008089,
0x8000000000008003,
0x8000000000008002,
0x8000000000000080,
0x000000000000800A,
0x800000008000000A,
0x8000000080008081,
0x8000000000008080,
0x0000000080000001,
0x8000000080008008,
}
// keccakF1600 applies the Keccak permutation to a 1600b-wide
// state represented as a slice of 25 uint64s.
func keccakF1600(a *[25]uint64) {
// Implementation translated from Keccak-inplace.c
// in the keccak reference code.
var t, bc0, bc1, bc2, bc3, bc4, d0, d1, d2, d3, d4 uint64
for i := 0; i < 24; i += 4 {
// Combines the 5 steps in each round into 2 steps.
// Unrolls 4 rounds per loop and spreads some steps across rounds.
// Round 1
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[6] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[12] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[18] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[24] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i]
a[6] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[16] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[22] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[3] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[10] = bc0 ^ (bc2 &^ bc1)
a[16] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[1] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[7] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[19] ^ d4
bc3 = t<<8 | t>>(64-8)
a[20] = bc0 ^ (bc2 &^ bc1)
a[1] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[11] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[23] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[4] ^ d4
bc0 = t<<27 | t>>(64-27)
a[5] = bc0 ^ (bc2 &^ bc1)
a[11] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[2] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[8] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[14] ^ d4
bc2 = t<<39 | t>>(64-39)
a[15] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
// Round 2
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[16] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[7] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[23] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[14] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+1]
a[16] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[11] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[2] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[18] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[20] = bc0 ^ (bc2 &^ bc1)
a[11] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[6] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[22] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[4] ^ d4
bc3 = t<<8 | t>>(64-8)
a[15] = bc0 ^ (bc2 &^ bc1)
a[6] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[1] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[8] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[24] ^ d4
bc0 = t<<27 | t>>(64-27)
a[10] = bc0 ^ (bc2 &^ bc1)
a[1] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[12] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[3] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[19] ^ d4
bc2 = t<<39 | t>>(64-39)
a[5] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
// Round 3
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[11] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[22] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[8] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[19] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+2]
a[11] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[1] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[12] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[23] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[15] = bc0 ^ (bc2 &^ bc1)
a[1] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[16] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[2] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[24] ^ d4
bc3 = t<<8 | t>>(64-8)
a[5] = bc0 ^ (bc2 &^ bc1)
a[16] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[6] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[3] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[14] ^ d4
bc0 = t<<27 | t>>(64-27)
a[20] = bc0 ^ (bc2 &^ bc1)
a[6] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[7] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[18] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[4] ^ d4
bc2 = t<<39 | t>>(64-39)
a[10] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
// Round 4
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]
d0 = bc4 ^ (bc1<<1 | bc1>>63)
d1 = bc0 ^ (bc2<<1 | bc2>>63)
d2 = bc1 ^ (bc3<<1 | bc3>>63)
d3 = bc2 ^ (bc4<<1 | bc4>>63)
d4 = bc3 ^ (bc0<<1 | bc0>>63)
bc0 = a[0] ^ d0
t = a[1] ^ d1
bc1 = t<<44 | t>>(64-44)
t = a[2] ^ d2
bc2 = t<<43 | t>>(64-43)
t = a[3] ^ d3
bc3 = t<<21 | t>>(64-21)
t = a[4] ^ d4
bc4 = t<<14 | t>>(64-14)
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+3]
a[1] = bc1 ^ (bc3 &^ bc2)
a[2] = bc2 ^ (bc4 &^ bc3)
a[3] = bc3 ^ (bc0 &^ bc4)
a[4] = bc4 ^ (bc1 &^ bc0)
t = a[5] ^ d0
bc2 = t<<3 | t>>(64-3)
t = a[6] ^ d1
bc3 = t<<45 | t>>(64-45)
t = a[7] ^ d2
bc4 = t<<61 | t>>(64-61)
t = a[8] ^ d3
bc0 = t<<28 | t>>(64-28)
t = a[9] ^ d4
bc1 = t<<20 | t>>(64-20)
a[5] = bc0 ^ (bc2 &^ bc1)
a[6] = bc1 ^ (bc3 &^ bc2)
a[7] = bc2 ^ (bc4 &^ bc3)
a[8] = bc3 ^ (bc0 &^ bc4)
a[9] = bc4 ^ (bc1 &^ bc0)
t = a[10] ^ d0
bc4 = t<<18 | t>>(64-18)
t = a[11] ^ d1
bc0 = t<<1 | t>>(64-1)
t = a[12] ^ d2
bc1 = t<<6 | t>>(64-6)
t = a[13] ^ d3
bc2 = t<<25 | t>>(64-25)
t = a[14] ^ d4
bc3 = t<<8 | t>>(64-8)
a[10] = bc0 ^ (bc2 &^ bc1)
a[11] = bc1 ^ (bc3 &^ bc2)
a[12] = bc2 ^ (bc4 &^ bc3)
a[13] = bc3 ^ (bc0 &^ bc4)
a[14] = bc4 ^ (bc1 &^ bc0)
t = a[15] ^ d0
bc1 = t<<36 | t>>(64-36)
t = a[16] ^ d1
bc2 = t<<10 | t>>(64-10)
t = a[17] ^ d2
bc3 = t<<15 | t>>(64-15)
t = a[18] ^ d3
bc4 = t<<56 | t>>(64-56)
t = a[19] ^ d4
bc0 = t<<27 | t>>(64-27)
a[15] = bc0 ^ (bc2 &^ bc1)
a[16] = bc1 ^ (bc3 &^ bc2)
a[17] = bc2 ^ (bc4 &^ bc3)
a[18] = bc3 ^ (bc0 &^ bc4)
a[19] = bc4 ^ (bc1 &^ bc0)
t = a[20] ^ d0
bc3 = t<<41 | t>>(64-41)
t = a[21] ^ d1
bc4 = t<<2 | t>>(64-2)
t = a[22] ^ d2
bc0 = t<<62 | t>>(64-62)
t = a[23] ^ d3
bc1 = t<<55 | t>>(64-55)
t = a[24] ^ d4
bc2 = t<<39 | t>>(64-39)
a[20] = bc0 ^ (bc2 &^ bc1)
a[21] = bc1 ^ (bc3 &^ bc2)
a[22] = bc2 ^ (bc4 &^ bc3)
a[23] = bc3 ^ (bc0 &^ bc4)
a[24] = bc4 ^ (bc1 &^ bc0)
}
}

@ -1,237 +0,0 @@
// Copyright 2013 The Go Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Package sha3 implements the SHA3 hash algorithm (formerly called Keccak) chosen by NIST in 2012.
// This file provides a SHA3 implementation which implements the standard hash.Hash interface.
// Writing input data, including padding, and reading output data are computed in this file.
// Note that the current implementation can compute the hash of an integral number of bytes only.
// This is a consequence of the hash interface in which a buffer of bytes is passed in.
// The internals of the Keccak-f function are computed in keccakf.go.
// For the detailed specification, refer to the Keccak web site (http://keccak.noekeon.org/).
package sha3
import (
"encoding/binary"
"hash"
)
// laneSize is the size in bytes of each "lane" of the internal state of SHA3 (5 * 5 * 8).
// Note that changing this size would requires using a type other than uint64 to store each lane.
const laneSize = 8
// sliceSize represents the dimensions of the internal state, a square matrix of
// sliceSize ** 2 lanes. This is the size of both the "rows" and "columns" dimensions in the
// terminology of the SHA3 specification.
const sliceSize = 5
// numLanes represents the total number of lanes in the state.
const numLanes = sliceSize * sliceSize
// stateSize is the size in bytes of the internal state of SHA3 (5 * 5 * WSize).
const stateSize = laneSize * numLanes
// digest represents the partial evaluation of a checksum.
// Note that capacity, and not outputSize, is the critical security parameter, as SHA3 can output
// an arbitrary number of bytes for any given capacity. The Keccak proposal recommends that
// capacity = 2*outputSize to ensure that finding a collision of size outputSize requires
// O(2^{outputSize/2}) computations (the birthday lower bound). Future standards may modify the
// capacity/outputSize ratio to allow for more output with lower cryptographic security.
type digest struct {
a [numLanes]uint64 // main state of the hash
outputSize int // desired output size in bytes
capacity int // number of bytes to leave untouched during squeeze/absorb
absorbed int // number of bytes absorbed thus far
}
// minInt returns the lesser of two integer arguments, to simplify the absorption routine.
func minInt(v1, v2 int) int {
if v1 <= v2 {
return v1
}
return v2
}
// rate returns the number of bytes of the internal state which can be absorbed or squeezed
// in between calls to the permutation function.
func (d *digest) rate() int {
return stateSize - d.capacity
}
// Reset clears the internal state by zeroing bytes in the state buffer.
// This can be skipped for a newly-created hash state; the default zero-allocated state is correct.
func (d *digest) Reset() {
d.absorbed = 0
for i := range d.a {
d.a[i] = 0
}
}
// BlockSize, required by the hash.Hash interface, does not have a standard intepretation
// for a sponge-based construction like SHA3. We return the data rate: the number of bytes which
// can be absorbed per invocation of the permutation function. For Merkle-Damgård based hashes
// (ie SHA1, SHA2, MD5) the output size of the internal compression function is returned.
// We consider this to be roughly equivalent because it represents the number of bytes of output
// produced per cryptographic operation.
func (d *digest) BlockSize() int { return d.rate() }
// Size returns the output size of the hash function in bytes.
func (d *digest) Size() int {
return d.outputSize
}
// unalignedAbsorb is a helper function for Write, which absorbs data that isn't aligned with an
// 8-byte lane. This requires shifting the individual bytes into position in a uint64.
func (d *digest) unalignedAbsorb(p []byte) {
var t uint64
for i := len(p) - 1; i >= 0; i-- {
t <<= 8
t |= uint64(p[i])
}
offset := (d.absorbed) % d.rate()
t <<= 8 * uint(offset%laneSize)
d.a[offset/laneSize] ^= t
d.absorbed += len(p)
}
// Write "absorbs" bytes into the state of the SHA3 hash, updating as needed when the sponge
// "fills up" with rate() bytes. Since lanes are stored internally as type uint64, this requires
// converting the incoming bytes into uint64s using a little endian interpretation. This
// implementation is optimized for large, aligned writes of multiples of 8 bytes (laneSize).
// Non-aligned or uneven numbers of bytes require shifting and are slower.
func (d *digest) Write(p []byte) (int, error) {
// An initial offset is needed if the we aren't absorbing to the first lane initially.
offset := d.absorbed % d.rate()
toWrite := len(p)
// The first lane may need to absorb unaligned and/or incomplete data.
if (offset%laneSize != 0 || len(p) < 8) && len(p) > 0 {
toAbsorb := minInt(laneSize-(offset%laneSize), len(p))
d.unalignedAbsorb(p[:toAbsorb])
p = p[toAbsorb:]
offset = (d.absorbed) % d.rate()
// For every rate() bytes absorbed, the state must be permuted via the F Function.
if (d.absorbed)%d.rate() == 0 {
keccakF1600(&d.a)
}
}
// This loop should absorb the bulk of the data into full, aligned lanes.
// It will call the update function as necessary.
for len(p) > 7 {
firstLane := offset / laneSize
lastLane := minInt(d.rate()/laneSize, firstLane+len(p)/laneSize)
// This inner loop absorbs input bytes into the state in groups of 8, converted to uint64s.
for lane := firstLane; lane < lastLane; lane++ {
d.a[lane] ^= binary.LittleEndian.Uint64(p[:laneSize])
p = p[laneSize:]
}
d.absorbed += (lastLane - firstLane) * laneSize
// For every rate() bytes absorbed, the state must be permuted via the F Function.
if (d.absorbed)%d.rate() == 0 {
keccakF1600(&d.a)
}
offset = 0
}
// If there are insufficient bytes to fill the final lane, an unaligned absorption.
// This should always start at a correct lane boundary though, or else it would be caught
// by the uneven opening lane case above.
if len(p) > 0 {
d.unalignedAbsorb(p)
}
return toWrite, nil
}
// pad computes the SHA3 padding scheme based on the number of bytes absorbed.
// The padding is a 1 bit, followed by an arbitrary number of 0s and then a final 1 bit, such that
// the input bits plus padding bits are a multiple of rate(). Adding the padding simply requires
// xoring an opening and closing bit into the appropriate lanes.
func (d *digest) pad() {
offset := d.absorbed % d.rate()
// The opening pad bit must be shifted into position based on the number of bytes absorbed
padOpenLane := offset / laneSize
d.a[padOpenLane] ^= 0x0000000000000001 << uint(8*(offset%laneSize))
// The closing padding bit is always in the last position
padCloseLane := (d.rate() / laneSize) - 1
d.a[padCloseLane] ^= 0x8000000000000000
}
// finalize prepares the hash to output data by padding and one final permutation of the state.
func (d *digest) finalize() {
d.pad()
keccakF1600(&d.a)
}
// squeeze outputs an arbitrary number of bytes from the hash state.
// Squeezing can require multiple calls to the F function (one per rate() bytes squeezed),
// although this is not the case for standard SHA3 parameters. This implementation only supports
// squeezing a single time, subsequent squeezes may lose alignment. Future implementations
// may wish to support multiple squeeze calls, for example to support use as a PRNG.
func (d *digest) squeeze(in []byte, toSqueeze int) []byte {
// Because we read in blocks of laneSize, we need enough room to read
// an integral number of lanes
needed := toSqueeze + (laneSize-toSqueeze%laneSize)%laneSize
if cap(in)-len(in) < needed {
newIn := make([]byte, len(in), len(in)+needed)
copy(newIn, in)
in = newIn
}
out := in[len(in) : len(in)+needed]
for len(out) > 0 {
for i := 0; i < d.rate() && len(out) > 0; i += laneSize {
binary.LittleEndian.PutUint64(out[:], d.a[i/laneSize])
out = out[laneSize:]
}
if len(out) > 0 {
keccakF1600(&d.a)
}
}
return in[:len(in)+toSqueeze] // Re-slice in case we wrote extra data.
}
// Sum applies padding to the hash state and then squeezes out the desired nubmer of output bytes.
func (d *digest) Sum(in []byte) []byte {
// Make a copy of the original hash so that caller can keep writing and summing.
dup := *d
dup.finalize()
return dup.squeeze(in, dup.outputSize)
}
// The NewKeccakX constructors enable initializing a hash in any of the four recommend sizes
// from the Keccak specification, all of which set capacity=2*outputSize. Note that the final
// NIST standard for SHA3 may specify different input/output lengths.
// The output size is indicated in bits but converted into bytes internally.
func NewKeccak224() hash.Hash { return &digest{outputSize: 224 / 8, capacity: 2 * 224 / 8} }
func NewKeccak256() hash.Hash { return &digest{outputSize: 256 / 8, capacity: 2 * 256 / 8} }
func NewKeccak384() hash.Hash { return &digest{outputSize: 384 / 8, capacity: 2 * 384 / 8} }
func NewKeccak512() hash.Hash { return &digest{outputSize: 512 / 8, capacity: 2 * 512 / 8} }
Loading…
Cancel
Save