mirror of https://github.com/ethereum/go-ethereum
parent
f8d98f7fcd
commit
0a1da69fac
@ -1,434 +0,0 @@ |
||||
// Copyright 2014 The Go Authors. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the names of its
|
||||
// contributors may be used to endorse or promote products derived from
|
||||
// this software without specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
package sha3 |
||||
|
||||
// rc stores the round constants for use in the ι step.
|
||||
var rc = [24]uint64{ |
||||
0x0000000000000001, |
||||
0x0000000000008082, |
||||
0x800000000000808A, |
||||
0x8000000080008000, |
||||
0x000000000000808B, |
||||
0x0000000080000001, |
||||
0x8000000080008081, |
||||
0x8000000000008009, |
||||
0x000000000000008A, |
||||
0x0000000000000088, |
||||
0x0000000080008009, |
||||
0x000000008000000A, |
||||
0x000000008000808B, |
||||
0x800000000000008B, |
||||
0x8000000000008089, |
||||
0x8000000000008003, |
||||
0x8000000000008002, |
||||
0x8000000000000080, |
||||
0x000000000000800A, |
||||
0x800000008000000A, |
||||
0x8000000080008081, |
||||
0x8000000000008080, |
||||
0x0000000080000001, |
||||
0x8000000080008008, |
||||
} |
||||
|
||||
// keccakF1600 applies the Keccak permutation to a 1600b-wide
|
||||
// state represented as a slice of 25 uint64s.
|
||||
func keccakF1600(a *[25]uint64) { |
||||
// Implementation translated from Keccak-inplace.c
|
||||
// in the keccak reference code.
|
||||
var t, bc0, bc1, bc2, bc3, bc4, d0, d1, d2, d3, d4 uint64 |
||||
|
||||
for i := 0; i < 24; i += 4 { |
||||
// Combines the 5 steps in each round into 2 steps.
|
||||
// Unrolls 4 rounds per loop and spreads some steps across rounds.
|
||||
|
||||
// Round 1
|
||||
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20] |
||||
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21] |
||||
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22] |
||||
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23] |
||||
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24] |
||||
d0 = bc4 ^ (bc1<<1 | bc1>>63) |
||||
d1 = bc0 ^ (bc2<<1 | bc2>>63) |
||||
d2 = bc1 ^ (bc3<<1 | bc3>>63) |
||||
d3 = bc2 ^ (bc4<<1 | bc4>>63) |
||||
d4 = bc3 ^ (bc0<<1 | bc0>>63) |
||||
|
||||
bc0 = a[0] ^ d0 |
||||
t = a[6] ^ d1 |
||||
bc1 = t<<44 | t>>(64-44) |
||||
t = a[12] ^ d2 |
||||
bc2 = t<<43 | t>>(64-43) |
||||
t = a[18] ^ d3 |
||||
bc3 = t<<21 | t>>(64-21) |
||||
t = a[24] ^ d4 |
||||
bc4 = t<<14 | t>>(64-14) |
||||
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i] |
||||
a[6] = bc1 ^ (bc3 &^ bc2) |
||||
a[12] = bc2 ^ (bc4 &^ bc3) |
||||
a[18] = bc3 ^ (bc0 &^ bc4) |
||||
a[24] = bc4 ^ (bc1 &^ bc0) |
||||
|
||||
t = a[10] ^ d0 |
||||
bc2 = t<<3 | t>>(64-3) |
||||
t = a[16] ^ d1 |
||||
bc3 = t<<45 | t>>(64-45) |
||||
t = a[22] ^ d2 |
||||
bc4 = t<<61 | t>>(64-61) |
||||
t = a[3] ^ d3 |
||||
bc0 = t<<28 | t>>(64-28) |
||||
t = a[9] ^ d4 |
||||
bc1 = t<<20 | t>>(64-20) |
||||
a[10] = bc0 ^ (bc2 &^ bc1) |
||||
a[16] = bc1 ^ (bc3 &^ bc2) |
||||
a[22] = bc2 ^ (bc4 &^ bc3) |
||||
a[3] = bc3 ^ (bc0 &^ bc4) |
||||
a[9] = bc4 ^ (bc1 &^ bc0) |
||||
|
||||
t = a[20] ^ d0 |
||||
bc4 = t<<18 | t>>(64-18) |
||||
t = a[1] ^ d1 |
||||
bc0 = t<<1 | t>>(64-1) |
||||
t = a[7] ^ d2 |
||||
bc1 = t<<6 | t>>(64-6) |
||||
t = a[13] ^ d3 |
||||
bc2 = t<<25 | t>>(64-25) |
||||
t = a[19] ^ d4 |
||||
bc3 = t<<8 | t>>(64-8) |
||||
a[20] = bc0 ^ (bc2 &^ bc1) |
||||
a[1] = bc1 ^ (bc3 &^ bc2) |
||||
a[7] = bc2 ^ (bc4 &^ bc3) |
||||
a[13] = bc3 ^ (bc0 &^ bc4) |
||||
a[19] = bc4 ^ (bc1 &^ bc0) |
||||
|
||||
t = a[5] ^ d0 |
||||
bc1 = t<<36 | t>>(64-36) |
||||
t = a[11] ^ d1 |
||||
bc2 = t<<10 | t>>(64-10) |
||||
t = a[17] ^ d2 |
||||
bc3 = t<<15 | t>>(64-15) |
||||
t = a[23] ^ d3 |
||||
bc4 = t<<56 | t>>(64-56) |
||||
t = a[4] ^ d4 |
||||
bc0 = t<<27 | t>>(64-27) |
||||
a[5] = bc0 ^ (bc2 &^ bc1) |
||||
a[11] = bc1 ^ (bc3 &^ bc2) |
||||
a[17] = bc2 ^ (bc4 &^ bc3) |
||||
a[23] = bc3 ^ (bc0 &^ bc4) |
||||
a[4] = bc4 ^ (bc1 &^ bc0) |
||||
|
||||
t = a[15] ^ d0 |
||||
bc3 = t<<41 | t>>(64-41) |
||||
t = a[21] ^ d1 |
||||
bc4 = t<<2 | t>>(64-2) |
||||
t = a[2] ^ d2 |
||||
bc0 = t<<62 | t>>(64-62) |
||||
t = a[8] ^ d3 |
||||
bc1 = t<<55 | t>>(64-55) |
||||
t = a[14] ^ d4 |
||||
bc2 = t<<39 | t>>(64-39) |
||||
a[15] = bc0 ^ (bc2 &^ bc1) |
||||
a[21] = bc1 ^ (bc3 &^ bc2) |
||||
a[2] = bc2 ^ (bc4 &^ bc3) |
||||
a[8] = bc3 ^ (bc0 &^ bc4) |
||||
a[14] = bc4 ^ (bc1 &^ bc0) |
||||
|
||||
// Round 2
|
||||
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20] |
||||
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21] |
||||
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22] |
||||
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23] |
||||
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24] |
||||
d0 = bc4 ^ (bc1<<1 | bc1>>63) |
||||
d1 = bc0 ^ (bc2<<1 | bc2>>63) |
||||
d2 = bc1 ^ (bc3<<1 | bc3>>63) |
||||
d3 = bc2 ^ (bc4<<1 | bc4>>63) |
||||
d4 = bc3 ^ (bc0<<1 | bc0>>63) |
||||
|
||||
bc0 = a[0] ^ d0 |
||||
t = a[16] ^ d1 |
||||
bc1 = t<<44 | t>>(64-44) |
||||
t = a[7] ^ d2 |
||||
bc2 = t<<43 | t>>(64-43) |
||||
t = a[23] ^ d3 |
||||
bc3 = t<<21 | t>>(64-21) |
||||
t = a[14] ^ d4 |
||||
bc4 = t<<14 | t>>(64-14) |
||||
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+1] |
||||
a[16] = bc1 ^ (bc3 &^ bc2) |
||||
a[7] = bc2 ^ (bc4 &^ bc3) |
||||
a[23] = bc3 ^ (bc0 &^ bc4) |
||||
a[14] = bc4 ^ (bc1 &^ bc0) |
||||
|
||||
t = a[20] ^ d0 |
||||
bc2 = t<<3 | t>>(64-3) |
||||
t = a[11] ^ d1 |
||||
bc3 = t<<45 | t>>(64-45) |
||||
t = a[2] ^ d2 |
||||
bc4 = t<<61 | t>>(64-61) |
||||
t = a[18] ^ d3 |
||||
bc0 = t<<28 | t>>(64-28) |
||||
t = a[9] ^ d4 |
||||
bc1 = t<<20 | t>>(64-20) |
||||
a[20] = bc0 ^ (bc2 &^ bc1) |
||||
a[11] = bc1 ^ (bc3 &^ bc2) |
||||
a[2] = bc2 ^ (bc4 &^ bc3) |
||||
a[18] = bc3 ^ (bc0 &^ bc4) |
||||
a[9] = bc4 ^ (bc1 &^ bc0) |
||||
|
||||
t = a[15] ^ d0 |
||||
bc4 = t<<18 | t>>(64-18) |
||||
t = a[6] ^ d1 |
||||
bc0 = t<<1 | t>>(64-1) |
||||
t = a[22] ^ d2 |
||||
bc1 = t<<6 | t>>(64-6) |
||||
t = a[13] ^ d3 |
||||
bc2 = t<<25 | t>>(64-25) |
||||
t = a[4] ^ d4 |
||||
bc3 = t<<8 | t>>(64-8) |
||||
a[15] = bc0 ^ (bc2 &^ bc1) |
||||
a[6] = bc1 ^ (bc3 &^ bc2) |
||||
a[22] = bc2 ^ (bc4 &^ bc3) |
||||
a[13] = bc3 ^ (bc0 &^ bc4) |
||||
a[4] = bc4 ^ (bc1 &^ bc0) |
||||
|
||||
t = a[10] ^ d0 |
||||
bc1 = t<<36 | t>>(64-36) |
||||
t = a[1] ^ d1 |
||||
bc2 = t<<10 | t>>(64-10) |
||||
t = a[17] ^ d2 |
||||
bc3 = t<<15 | t>>(64-15) |
||||
t = a[8] ^ d3 |
||||
bc4 = t<<56 | t>>(64-56) |
||||
t = a[24] ^ d4 |
||||
bc0 = t<<27 | t>>(64-27) |
||||
a[10] = bc0 ^ (bc2 &^ bc1) |
||||
a[1] = bc1 ^ (bc3 &^ bc2) |
||||
a[17] = bc2 ^ (bc4 &^ bc3) |
||||
a[8] = bc3 ^ (bc0 &^ bc4) |
||||
a[24] = bc4 ^ (bc1 &^ bc0) |
||||
|
||||
t = a[5] ^ d0 |
||||
bc3 = t<<41 | t>>(64-41) |
||||
t = a[21] ^ d1 |
||||
bc4 = t<<2 | t>>(64-2) |
||||
t = a[12] ^ d2 |
||||
bc0 = t<<62 | t>>(64-62) |
||||
t = a[3] ^ d3 |
||||
bc1 = t<<55 | t>>(64-55) |
||||
t = a[19] ^ d4 |
||||
bc2 = t<<39 | t>>(64-39) |
||||
a[5] = bc0 ^ (bc2 &^ bc1) |
||||
a[21] = bc1 ^ (bc3 &^ bc2) |
||||
a[12] = bc2 ^ (bc4 &^ bc3) |
||||
a[3] = bc3 ^ (bc0 &^ bc4) |
||||
a[19] = bc4 ^ (bc1 &^ bc0) |
||||
|
||||
// Round 3
|
||||
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20] |
||||
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21] |
||||
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22] |
||||
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23] |
||||
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24] |
||||
d0 = bc4 ^ (bc1<<1 | bc1>>63) |
||||
d1 = bc0 ^ (bc2<<1 | bc2>>63) |
||||
d2 = bc1 ^ (bc3<<1 | bc3>>63) |
||||
d3 = bc2 ^ (bc4<<1 | bc4>>63) |
||||
d4 = bc3 ^ (bc0<<1 | bc0>>63) |
||||
|
||||
bc0 = a[0] ^ d0 |
||||
t = a[11] ^ d1 |
||||
bc1 = t<<44 | t>>(64-44) |
||||
t = a[22] ^ d2 |
||||
bc2 = t<<43 | t>>(64-43) |
||||
t = a[8] ^ d3 |
||||
bc3 = t<<21 | t>>(64-21) |
||||
t = a[19] ^ d4 |
||||
bc4 = t<<14 | t>>(64-14) |
||||
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+2] |
||||
a[11] = bc1 ^ (bc3 &^ bc2) |
||||
a[22] = bc2 ^ (bc4 &^ bc3) |
||||
a[8] = bc3 ^ (bc0 &^ bc4) |
||||
a[19] = bc4 ^ (bc1 &^ bc0) |
||||
|
||||
t = a[15] ^ d0 |
||||
bc2 = t<<3 | t>>(64-3) |
||||
t = a[1] ^ d1 |
||||
bc3 = t<<45 | t>>(64-45) |
||||
t = a[12] ^ d2 |
||||
bc4 = t<<61 | t>>(64-61) |
||||
t = a[23] ^ d3 |
||||
bc0 = t<<28 | t>>(64-28) |
||||
t = a[9] ^ d4 |
||||
bc1 = t<<20 | t>>(64-20) |
||||
a[15] = bc0 ^ (bc2 &^ bc1) |
||||
a[1] = bc1 ^ (bc3 &^ bc2) |
||||
a[12] = bc2 ^ (bc4 &^ bc3) |
||||
a[23] = bc3 ^ (bc0 &^ bc4) |
||||
a[9] = bc4 ^ (bc1 &^ bc0) |
||||
|
||||
t = a[5] ^ d0 |
||||
bc4 = t<<18 | t>>(64-18) |
||||
t = a[16] ^ d1 |
||||
bc0 = t<<1 | t>>(64-1) |
||||
t = a[2] ^ d2 |
||||
bc1 = t<<6 | t>>(64-6) |
||||
t = a[13] ^ d3 |
||||
bc2 = t<<25 | t>>(64-25) |
||||
t = a[24] ^ d4 |
||||
bc3 = t<<8 | t>>(64-8) |
||||
a[5] = bc0 ^ (bc2 &^ bc1) |
||||
a[16] = bc1 ^ (bc3 &^ bc2) |
||||
a[2] = bc2 ^ (bc4 &^ bc3) |
||||
a[13] = bc3 ^ (bc0 &^ bc4) |
||||
a[24] = bc4 ^ (bc1 &^ bc0) |
||||
|
||||
t = a[20] ^ d0 |
||||
bc1 = t<<36 | t>>(64-36) |
||||
t = a[6] ^ d1 |
||||
bc2 = t<<10 | t>>(64-10) |
||||
t = a[17] ^ d2 |
||||
bc3 = t<<15 | t>>(64-15) |
||||
t = a[3] ^ d3 |
||||
bc4 = t<<56 | t>>(64-56) |
||||
t = a[14] ^ d4 |
||||
bc0 = t<<27 | t>>(64-27) |
||||
a[20] = bc0 ^ (bc2 &^ bc1) |
||||
a[6] = bc1 ^ (bc3 &^ bc2) |
||||
a[17] = bc2 ^ (bc4 &^ bc3) |
||||
a[3] = bc3 ^ (bc0 &^ bc4) |
||||
a[14] = bc4 ^ (bc1 &^ bc0) |
||||
|
||||
t = a[10] ^ d0 |
||||
bc3 = t<<41 | t>>(64-41) |
||||
t = a[21] ^ d1 |
||||
bc4 = t<<2 | t>>(64-2) |
||||
t = a[7] ^ d2 |
||||
bc0 = t<<62 | t>>(64-62) |
||||
t = a[18] ^ d3 |
||||
bc1 = t<<55 | t>>(64-55) |
||||
t = a[4] ^ d4 |
||||
bc2 = t<<39 | t>>(64-39) |
||||
a[10] = bc0 ^ (bc2 &^ bc1) |
||||
a[21] = bc1 ^ (bc3 &^ bc2) |
||||
a[7] = bc2 ^ (bc4 &^ bc3) |
||||
a[18] = bc3 ^ (bc0 &^ bc4) |
||||
a[4] = bc4 ^ (bc1 &^ bc0) |
||||
|
||||
// Round 4
|
||||
bc0 = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20] |
||||
bc1 = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21] |
||||
bc2 = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22] |
||||
bc3 = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23] |
||||
bc4 = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24] |
||||
d0 = bc4 ^ (bc1<<1 | bc1>>63) |
||||
d1 = bc0 ^ (bc2<<1 | bc2>>63) |
||||
d2 = bc1 ^ (bc3<<1 | bc3>>63) |
||||
d3 = bc2 ^ (bc4<<1 | bc4>>63) |
||||
d4 = bc3 ^ (bc0<<1 | bc0>>63) |
||||
|
||||
bc0 = a[0] ^ d0 |
||||
t = a[1] ^ d1 |
||||
bc1 = t<<44 | t>>(64-44) |
||||
t = a[2] ^ d2 |
||||
bc2 = t<<43 | t>>(64-43) |
||||
t = a[3] ^ d3 |
||||
bc3 = t<<21 | t>>(64-21) |
||||
t = a[4] ^ d4 |
||||
bc4 = t<<14 | t>>(64-14) |
||||
a[0] = bc0 ^ (bc2 &^ bc1) ^ rc[i+3] |
||||
a[1] = bc1 ^ (bc3 &^ bc2) |
||||
a[2] = bc2 ^ (bc4 &^ bc3) |
||||
a[3] = bc3 ^ (bc0 &^ bc4) |
||||
a[4] = bc4 ^ (bc1 &^ bc0) |
||||
|
||||
t = a[5] ^ d0 |
||||
bc2 = t<<3 | t>>(64-3) |
||||
t = a[6] ^ d1 |
||||
bc3 = t<<45 | t>>(64-45) |
||||
t = a[7] ^ d2 |
||||
bc4 = t<<61 | t>>(64-61) |
||||
t = a[8] ^ d3 |
||||
bc0 = t<<28 | t>>(64-28) |
||||
t = a[9] ^ d4 |
||||
bc1 = t<<20 | t>>(64-20) |
||||
a[5] = bc0 ^ (bc2 &^ bc1) |
||||
a[6] = bc1 ^ (bc3 &^ bc2) |
||||
a[7] = bc2 ^ (bc4 &^ bc3) |
||||
a[8] = bc3 ^ (bc0 &^ bc4) |
||||
a[9] = bc4 ^ (bc1 &^ bc0) |
||||
|
||||
t = a[10] ^ d0 |
||||
bc4 = t<<18 | t>>(64-18) |
||||
t = a[11] ^ d1 |
||||
bc0 = t<<1 | t>>(64-1) |
||||
t = a[12] ^ d2 |
||||
bc1 = t<<6 | t>>(64-6) |
||||
t = a[13] ^ d3 |
||||
bc2 = t<<25 | t>>(64-25) |
||||
t = a[14] ^ d4 |
||||
bc3 = t<<8 | t>>(64-8) |
||||
a[10] = bc0 ^ (bc2 &^ bc1) |
||||
a[11] = bc1 ^ (bc3 &^ bc2) |
||||
a[12] = bc2 ^ (bc4 &^ bc3) |
||||
a[13] = bc3 ^ (bc0 &^ bc4) |
||||
a[14] = bc4 ^ (bc1 &^ bc0) |
||||
|
||||
t = a[15] ^ d0 |
||||
bc1 = t<<36 | t>>(64-36) |
||||
t = a[16] ^ d1 |
||||
bc2 = t<<10 | t>>(64-10) |
||||
t = a[17] ^ d2 |
||||
bc3 = t<<15 | t>>(64-15) |
||||
t = a[18] ^ d3 |
||||
bc4 = t<<56 | t>>(64-56) |
||||
t = a[19] ^ d4 |
||||
bc0 = t<<27 | t>>(64-27) |
||||
a[15] = bc0 ^ (bc2 &^ bc1) |
||||
a[16] = bc1 ^ (bc3 &^ bc2) |
||||
a[17] = bc2 ^ (bc4 &^ bc3) |
||||
a[18] = bc3 ^ (bc0 &^ bc4) |
||||
a[19] = bc4 ^ (bc1 &^ bc0) |
||||
|
||||
t = a[20] ^ d0 |
||||
bc3 = t<<41 | t>>(64-41) |
||||
t = a[21] ^ d1 |
||||
bc4 = t<<2 | t>>(64-2) |
||||
t = a[22] ^ d2 |
||||
bc0 = t<<62 | t>>(64-62) |
||||
t = a[23] ^ d3 |
||||
bc1 = t<<55 | t>>(64-55) |
||||
t = a[24] ^ d4 |
||||
bc2 = t<<39 | t>>(64-39) |
||||
a[20] = bc0 ^ (bc2 &^ bc1) |
||||
a[21] = bc1 ^ (bc3 &^ bc2) |
||||
a[22] = bc2 ^ (bc4 &^ bc3) |
||||
a[23] = bc3 ^ (bc0 &^ bc4) |
||||
a[24] = bc4 ^ (bc1 &^ bc0) |
||||
} |
||||
} |
@ -1,237 +0,0 @@ |
||||
// Copyright 2013 The Go Authors. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the names of its
|
||||
// contributors may be used to endorse or promote products derived from
|
||||
// this software without specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
// Package sha3 implements the SHA3 hash algorithm (formerly called Keccak) chosen by NIST in 2012.
|
||||
// This file provides a SHA3 implementation which implements the standard hash.Hash interface.
|
||||
// Writing input data, including padding, and reading output data are computed in this file.
|
||||
// Note that the current implementation can compute the hash of an integral number of bytes only.
|
||||
// This is a consequence of the hash interface in which a buffer of bytes is passed in.
|
||||
// The internals of the Keccak-f function are computed in keccakf.go.
|
||||
// For the detailed specification, refer to the Keccak web site (http://keccak.noekeon.org/).
|
||||
package sha3 |
||||
|
||||
import ( |
||||
"encoding/binary" |
||||
"hash" |
||||
) |
||||
|
||||
// laneSize is the size in bytes of each "lane" of the internal state of SHA3 (5 * 5 * 8).
|
||||
// Note that changing this size would requires using a type other than uint64 to store each lane.
|
||||
const laneSize = 8 |
||||
|
||||
// sliceSize represents the dimensions of the internal state, a square matrix of
|
||||
// sliceSize ** 2 lanes. This is the size of both the "rows" and "columns" dimensions in the
|
||||
// terminology of the SHA3 specification.
|
||||
const sliceSize = 5 |
||||
|
||||
// numLanes represents the total number of lanes in the state.
|
||||
const numLanes = sliceSize * sliceSize |
||||
|
||||
// stateSize is the size in bytes of the internal state of SHA3 (5 * 5 * WSize).
|
||||
const stateSize = laneSize * numLanes |
||||
|
||||
// digest represents the partial evaluation of a checksum.
|
||||
// Note that capacity, and not outputSize, is the critical security parameter, as SHA3 can output
|
||||
// an arbitrary number of bytes for any given capacity. The Keccak proposal recommends that
|
||||
// capacity = 2*outputSize to ensure that finding a collision of size outputSize requires
|
||||
// O(2^{outputSize/2}) computations (the birthday lower bound). Future standards may modify the
|
||||
// capacity/outputSize ratio to allow for more output with lower cryptographic security.
|
||||
type digest struct { |
||||
a [numLanes]uint64 // main state of the hash
|
||||
outputSize int // desired output size in bytes
|
||||
capacity int // number of bytes to leave untouched during squeeze/absorb
|
||||
absorbed int // number of bytes absorbed thus far
|
||||
} |
||||
|
||||
// minInt returns the lesser of two integer arguments, to simplify the absorption routine.
|
||||
func minInt(v1, v2 int) int { |
||||
if v1 <= v2 { |
||||
return v1 |
||||
} |
||||
return v2 |
||||
} |
||||
|
||||
// rate returns the number of bytes of the internal state which can be absorbed or squeezed
|
||||
// in between calls to the permutation function.
|
||||
func (d *digest) rate() int { |
||||
return stateSize - d.capacity |
||||
} |
||||
|
||||
// Reset clears the internal state by zeroing bytes in the state buffer.
|
||||
// This can be skipped for a newly-created hash state; the default zero-allocated state is correct.
|
||||
func (d *digest) Reset() { |
||||
d.absorbed = 0 |
||||
for i := range d.a { |
||||
d.a[i] = 0 |
||||
} |
||||
} |
||||
|
||||
// BlockSize, required by the hash.Hash interface, does not have a standard intepretation
|
||||
// for a sponge-based construction like SHA3. We return the data rate: the number of bytes which
|
||||
// can be absorbed per invocation of the permutation function. For Merkle-Damgård based hashes
|
||||
// (ie SHA1, SHA2, MD5) the output size of the internal compression function is returned.
|
||||
// We consider this to be roughly equivalent because it represents the number of bytes of output
|
||||
// produced per cryptographic operation.
|
||||
func (d *digest) BlockSize() int { return d.rate() } |
||||
|
||||
// Size returns the output size of the hash function in bytes.
|
||||
func (d *digest) Size() int { |
||||
return d.outputSize |
||||
} |
||||
|
||||
// unalignedAbsorb is a helper function for Write, which absorbs data that isn't aligned with an
|
||||
// 8-byte lane. This requires shifting the individual bytes into position in a uint64.
|
||||
func (d *digest) unalignedAbsorb(p []byte) { |
||||
var t uint64 |
||||
for i := len(p) - 1; i >= 0; i-- { |
||||
t <<= 8 |
||||
t |= uint64(p[i]) |
||||
} |
||||
offset := (d.absorbed) % d.rate() |
||||
t <<= 8 * uint(offset%laneSize) |
||||
d.a[offset/laneSize] ^= t |
||||
d.absorbed += len(p) |
||||
} |
||||
|
||||
// Write "absorbs" bytes into the state of the SHA3 hash, updating as needed when the sponge
|
||||
// "fills up" with rate() bytes. Since lanes are stored internally as type uint64, this requires
|
||||
// converting the incoming bytes into uint64s using a little endian interpretation. This
|
||||
// implementation is optimized for large, aligned writes of multiples of 8 bytes (laneSize).
|
||||
// Non-aligned or uneven numbers of bytes require shifting and are slower.
|
||||
func (d *digest) Write(p []byte) (int, error) { |
||||
// An initial offset is needed if the we aren't absorbing to the first lane initially.
|
||||
offset := d.absorbed % d.rate() |
||||
toWrite := len(p) |
||||
|
||||
// The first lane may need to absorb unaligned and/or incomplete data.
|
||||
if (offset%laneSize != 0 || len(p) < 8) && len(p) > 0 { |
||||
toAbsorb := minInt(laneSize-(offset%laneSize), len(p)) |
||||
d.unalignedAbsorb(p[:toAbsorb]) |
||||
p = p[toAbsorb:] |
||||
offset = (d.absorbed) % d.rate() |
||||
|
||||
// For every rate() bytes absorbed, the state must be permuted via the F Function.
|
||||
if (d.absorbed)%d.rate() == 0 { |
||||
keccakF1600(&d.a) |
||||
} |
||||
} |
||||
|
||||
// This loop should absorb the bulk of the data into full, aligned lanes.
|
||||
// It will call the update function as necessary.
|
||||
for len(p) > 7 { |
||||
firstLane := offset / laneSize |
||||
lastLane := minInt(d.rate()/laneSize, firstLane+len(p)/laneSize) |
||||
|
||||
// This inner loop absorbs input bytes into the state in groups of 8, converted to uint64s.
|
||||
for lane := firstLane; lane < lastLane; lane++ { |
||||
d.a[lane] ^= binary.LittleEndian.Uint64(p[:laneSize]) |
||||
p = p[laneSize:] |
||||
} |
||||
d.absorbed += (lastLane - firstLane) * laneSize |
||||
// For every rate() bytes absorbed, the state must be permuted via the F Function.
|
||||
if (d.absorbed)%d.rate() == 0 { |
||||
keccakF1600(&d.a) |
||||
} |
||||
|
||||
offset = 0 |
||||
} |
||||
|
||||
// If there are insufficient bytes to fill the final lane, an unaligned absorption.
|
||||
// This should always start at a correct lane boundary though, or else it would be caught
|
||||
// by the uneven opening lane case above.
|
||||
if len(p) > 0 { |
||||
d.unalignedAbsorb(p) |
||||
} |
||||
|
||||
return toWrite, nil |
||||
} |
||||
|
||||
// pad computes the SHA3 padding scheme based on the number of bytes absorbed.
|
||||
// The padding is a 1 bit, followed by an arbitrary number of 0s and then a final 1 bit, such that
|
||||
// the input bits plus padding bits are a multiple of rate(). Adding the padding simply requires
|
||||
// xoring an opening and closing bit into the appropriate lanes.
|
||||
func (d *digest) pad() { |
||||
offset := d.absorbed % d.rate() |
||||
// The opening pad bit must be shifted into position based on the number of bytes absorbed
|
||||
padOpenLane := offset / laneSize |
||||
d.a[padOpenLane] ^= 0x0000000000000001 << uint(8*(offset%laneSize)) |
||||
// The closing padding bit is always in the last position
|
||||
padCloseLane := (d.rate() / laneSize) - 1 |
||||
d.a[padCloseLane] ^= 0x8000000000000000 |
||||
} |
||||
|
||||
// finalize prepares the hash to output data by padding and one final permutation of the state.
|
||||
func (d *digest) finalize() { |
||||
d.pad() |
||||
keccakF1600(&d.a) |
||||
} |
||||
|
||||
// squeeze outputs an arbitrary number of bytes from the hash state.
|
||||
// Squeezing can require multiple calls to the F function (one per rate() bytes squeezed),
|
||||
// although this is not the case for standard SHA3 parameters. This implementation only supports
|
||||
// squeezing a single time, subsequent squeezes may lose alignment. Future implementations
|
||||
// may wish to support multiple squeeze calls, for example to support use as a PRNG.
|
||||
func (d *digest) squeeze(in []byte, toSqueeze int) []byte { |
||||
// Because we read in blocks of laneSize, we need enough room to read
|
||||
// an integral number of lanes
|
||||
needed := toSqueeze + (laneSize-toSqueeze%laneSize)%laneSize |
||||
if cap(in)-len(in) < needed { |
||||
newIn := make([]byte, len(in), len(in)+needed) |
||||
copy(newIn, in) |
||||
in = newIn |
||||
} |
||||
out := in[len(in) : len(in)+needed] |
||||
|
||||
for len(out) > 0 { |
||||
for i := 0; i < d.rate() && len(out) > 0; i += laneSize { |
||||
binary.LittleEndian.PutUint64(out[:], d.a[i/laneSize]) |
||||
out = out[laneSize:] |
||||
} |
||||
if len(out) > 0 { |
||||
keccakF1600(&d.a) |
||||
} |
||||
} |
||||
return in[:len(in)+toSqueeze] // Re-slice in case we wrote extra data.
|
||||
} |
||||
|
||||
// Sum applies padding to the hash state and then squeezes out the desired nubmer of output bytes.
|
||||
func (d *digest) Sum(in []byte) []byte { |
||||
// Make a copy of the original hash so that caller can keep writing and summing.
|
||||
dup := *d |
||||
dup.finalize() |
||||
return dup.squeeze(in, dup.outputSize) |
||||
} |
||||
|
||||
// The NewKeccakX constructors enable initializing a hash in any of the four recommend sizes
|
||||
// from the Keccak specification, all of which set capacity=2*outputSize. Note that the final
|
||||
// NIST standard for SHA3 may specify different input/output lengths.
|
||||
// The output size is indicated in bits but converted into bytes internally.
|
||||
func NewKeccak224() hash.Hash { return &digest{outputSize: 224 / 8, capacity: 2 * 224 / 8} } |
||||
func NewKeccak256() hash.Hash { return &digest{outputSize: 256 / 8, capacity: 2 * 256 / 8} } |
||||
func NewKeccak384() hash.Hash { return &digest{outputSize: 384 / 8, capacity: 2 * 384 / 8} } |
||||
func NewKeccak512() hash.Hash { return &digest{outputSize: 512 / 8, capacity: 2 * 512 / 8} } |
Loading…
Reference in new issue