core, eth, internal, miner: optimize txpool for quick ops

pull/2742/head
Péter Szilágyi 8 years ago
parent 795b70423e
commit 0ef327bbee
  1. 331
      core/tx_list.go
  2. 58
      core/tx_list_test.go
  3. 503
      core/tx_pool.go
  4. 226
      core/tx_pool_test.go
  5. 27
      core/types/transaction.go
  6. 7
      core/types/transaction_test.go
  7. 14
      eth/api_backend.go
  8. 2
      eth/handler.go
  9. 22
      eth/helper_test.go
  10. 8
      eth/protocol.go
  11. 2
      eth/protocol_test.go
  12. 5
      eth/sync.go
  13. 2
      internal/ethapi/backend.go
  14. 7
      miner/worker.go

@ -0,0 +1,331 @@
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"container/heap"
"math"
"math/big"
"sort"
"github.com/ethereum/go-ethereum/core/types"
)
// nonceHeap is a heap.Interface implementation over 64bit unsigned integers for
// retrieving sorted transactions from the possibly gapped future queue.
type nonceHeap []uint64
func (h nonceHeap) Len() int { return len(h) }
func (h nonceHeap) Less(i, j int) bool { return h[i] < h[j] }
func (h nonceHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *nonceHeap) Push(x interface{}) {
*h = append(*h, x.(uint64))
}
func (h *nonceHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
// txList is a "list" of transactions belonging to an account, sorted by account
// nonce. The same type can be used both for storing contiguous transactions for
// the executable/pending queue; and for storing gapped transactions for the non-
// executable/future queue, with minor behavoiral changes.
type txList struct {
strict bool // Whether nonces are strictly continuous or not
items map[uint64]*types.Transaction // Hash map storing the transaction data
cache types.Transactions // cache of the transactions already sorted
first uint64 // Nonce of the lowest stored transaction (strict mode)
last uint64 // Nonce of the highest stored transaction (strict mode)
index *nonceHeap // Heap of nonces of all teh stored transactions (non-strict mode)
costcap *big.Int // Price of the highest costing transaction (reset only if exceeds balance)
}
// newTxList create a new transaction list for maintaining nonce-indexable fast,
// gapped, sortable transaction lists.
func newTxList(strict bool) *txList {
return &txList{
strict: strict,
items: make(map[uint64]*types.Transaction),
first: math.MaxUint64,
index: &nonceHeap{},
costcap: new(big.Int),
}
}
// Add tries to inserts a new transaction into the list, returning whether the
// transaction was acceped, and if yes, any previous transaction it replaced.
//
// In case of strict lists (contiguous nonces) the nonce boundaries are updated
// appropriately with the new transaction. Otherwise (gapped nonces) the heap of
// nonces is expanded with the new transaction.
func (l *txList) Add(tx *types.Transaction) (bool, *types.Transaction) {
// If an existing transaction is better, discard new one
nonce := tx.Nonce()
old, ok := l.items[nonce]
if ok && old.GasPrice().Cmp(tx.GasPrice()) >= 0 {
return false, nil
}
// Otherwise insert the transaction and replace any previous one
l.items[nonce] = tx
if cost := tx.Cost(); l.costcap.Cmp(cost) < 0 {
l.costcap = cost
}
if l.strict {
// In strict mode, maintain the nonce sequence boundaries
if nonce < l.first {
l.first = nonce
}
if nonce > l.last {
l.last = nonce
}
} else {
// In gapped mode, maintain the nonce heap
heap.Push(l.index, nonce)
}
l.cache = nil
return true, old
}
// Forward removes all transactions from the list with a nonce lower than the
// provided threshold. Every removed transaction is returned for any post-removal
// maintenance.
func (l *txList) Forward(threshold uint64) types.Transactions {
var removed types.Transactions
if l.strict {
// In strict mode, push the lowest nonce forward to the threshold
for l.first < threshold {
if tx, ok := l.items[l.first]; ok {
removed = append(removed, tx)
}
delete(l.items, l.first)
l.first++
}
if l.first > l.last {
l.last = l.first
}
} else {
// In gapped mode, pop off heap items until the threshold is reached
for l.index.Len() > 0 && (*l.index)[0] < threshold {
nonce := heap.Pop(l.index).(uint64)
removed = append(removed, l.items[nonce])
delete(l.items, nonce)
}
}
l.cache = nil
return removed
}
// Filter removes all transactions from the list with a cost higher than the
// provided threshold. Every removed transaction is returned for any post-removal
// maintenance. Strict-mode invalidated transactions are also returned.
//
// This method uses the cached costcap to quickly decide if there's even a point
// in calculating all the costs or if the balance covers all. If the threshold is
// loewr than the costcap, the costcap will be reset to a new high after removing
// expensive the too transactions.
func (l *txList) Filter(threshold *big.Int) (types.Transactions, types.Transactions) {
// If all transactions are blow the threshold, short circuit
if l.costcap.Cmp(threshold) <= 0 {
return nil, nil
}
l.costcap = new(big.Int).Set(threshold) // Lower the cap to the threshold
// Gather all the transactions needing deletion
var removed types.Transactions
for _, tx := range l.items {
if cost := tx.Cost(); cost.Cmp(threshold) > 0 {
removed = append(removed, tx)
delete(l.items, tx.Nonce())
}
}
// Readjust the nonce boundaries/indexes and gather invalidate tranactions
var invalids types.Transactions
if l.strict {
// In strict mode iterate find the first gap and invalidate everything after it
for i := l.first; i <= l.last; i++ {
if _, ok := l.items[i]; !ok {
// Gap found, invalidate all subsequent transactions
for j := i + 1; j <= l.last; j++ {
if tx, ok := l.items[j]; ok {
invalids = append(invalids, tx)
delete(l.items, j)
}
}
// Reduce the highest transaction nonce and return
l.last = i - 1
break
}
}
} else {
// In gapped mode no transactions are invalid, but the heap is ruined
l.index = &nonceHeap{}
for nonce, _ := range l.items {
*l.index = append(*l.index, nonce)
}
heap.Init(l.index)
}
l.cache = nil
return removed, invalids
}
// Cap places a hard limit on the number of items, returning all transactions
// exceeding tht limit.
func (l *txList) Cap(threshold int) types.Transactions {
// Short circuit if the number of items is under the limit
if len(l.items) < threshold {
return nil
}
// Otherwise gather and drop the highest nonce'd transactions
var drops types.Transactions
if l.strict {
// In strict mode, just gather top down from last to first
for len(l.items) > threshold {
if tx, ok := l.items[l.last]; ok {
drops = append(drops, tx)
delete(l.items, l.last)
l.last--
}
}
} else {
// In gapped mode it's expensive: we need to sort and drop like that
sort.Sort(*l.index)
for size := len(l.items); size > threshold; size-- {
drops = append(drops, l.items[(*l.index)[size-1]])
delete(l.items, (*l.index)[size-1])
*l.index = (*l.index)[:size-1]
}
heap.Init(l.index)
}
l.cache = nil
return drops
}
// Remove deletes a transaction from the maintained list, returning whether the
// transaction was found, and also returning any transaction invalidated due to
// the deletion (strict mode only).
func (l *txList) Remove(tx *types.Transaction) (bool, types.Transactions) {
nonce := tx.Nonce()
if _, ok := l.items[nonce]; ok {
// Remove the item and invalidate the sorted cache
delete(l.items, nonce)
l.cache = nil
// Remove all invalidated transactions (strict mode only!)
invalids := make(types.Transactions, 0, l.last-nonce)
if l.strict {
for i := nonce + 1; i <= l.last; i++ {
invalids = append(invalids, l.items[i])
delete(l.items, i)
}
l.last = nonce - 1
} else {
// In gapped mode, remove the nonce from the index but honour the heap
for i := 0; i < l.index.Len(); i++ {
if (*l.index)[i] == nonce {
heap.Remove(l.index, i)
break
}
}
}
// Figure out the new highest nonce
return true, invalids
}
return false, nil
}
// Ready retrieves a sequentially increasing list of transactions starting at the
// provided nonce that is ready for processing. The returned transactions will be
// removed from the list.
//
// Note, all transactions with nonces lower that start will also be returned to
// prevent getting into and invalid state. This is not something that should ever
// happen but better to be self correcting than failing!
func (l *txList) Ready(start uint64) types.Transactions {
var txs types.Transactions
if l.strict {
// In strict mode make sure we have valid transaction, return all contiguous
if l.first > start {
return nil
}
for {
if tx, ok := l.items[l.first]; ok {
txs = append(txs, tx)
delete(l.items, l.first)
l.first++
continue
}
break
}
} else {
// In gapped mode, check the heap start and return all contiguous
if l.index.Len() == 0 || (*l.index)[0] > start {
return nil
}
next := (*l.index)[0]
for l.index.Len() > 0 && (*l.index)[0] == next {
txs = append(txs, l.items[next])
delete(l.items, next)
heap.Pop(l.index)
next++
}
}
l.cache = nil
return txs
}
// Len returns the length of the transaction list.
func (l *txList) Len() int {
return len(l.items)
}
// Empty returns whether the list of transactions is empty or not.
func (l *txList) Empty() bool {
return len(l.items) == 0
}
// Flatten creates a nonce-sorted slice of transactions based on the loosely
// sorted internal representation. The result of the sorting is cached in case
// it's requested again before any modifications are made to the contents.
func (l *txList) Flatten() types.Transactions {
// If the sorting was not cached yet, create and cache it
if l.cache == nil {
l.cache = make(types.Transactions, 0, len(l.items))
for _, tx := range l.items {
l.cache = append(l.cache, tx)
}
sort.Sort(types.TxByNonce(l.cache))
}
// Copy the cache to prevent accidental modifications
txs := make(types.Transactions, len(l.cache))
copy(txs, l.cache)
return txs
}

@ -0,0 +1,58 @@
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"math/big"
"math/rand"
"testing"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
)
// Tests that transactions can be added to strict lists and list contents and
// nonce boundaries are correctly maintained.
func TestStrictTxListAdd(t *testing.T) {
// Generate a list of transactions to insert
key, _ := crypto.GenerateKey()
txs := make(types.Transactions, 1024)
for i := 0; i < len(txs); i++ {
txs[i] = transaction(uint64(i), new(big.Int), key)
}
// Insert the transactions in a random order
list := newTxList(true)
for _, v := range rand.Perm(len(txs)) {
list.Add(txs[v])
}
// Verify internal state
if list.first != 0 {
t.Errorf("lowest nonce mismatch: have %d, want %d", list.first, 0)
}
if int(list.last) != len(txs)-1 {
t.Errorf("highest nonce mismatch: have %d, want %d", list.last, len(txs)-1)
}
if len(list.items) != len(txs) {
t.Errorf("transaction count mismatch: have %d, want %d", len(list.items), len(txs))
}
for i, tx := range txs {
if list.items[tx.Nonce()] != tx {
t.Errorf("item %d: transaction mismatch: have %v, want %v", i, list.items[tx.Nonce()], tx)
}
}
}

@ -20,7 +20,6 @@ import (
"errors"
"fmt"
"math/big"
"sort"
"sync"
"time"
@ -51,11 +50,6 @@ const (
type stateFn func() (*state.StateDB, error)
// TxList is a "list" of transactions belonging to an account, sorted by account
// nonce. To allow gaps and avoid constant copying, the list is represented as a
// hash map.
type TxList map[uint64]*types.Transaction
// TxPool contains all currently known transactions. Transactions
// enter the pool when they are received from the network or submitted
// locally. They exit the pool when they are included in the blockchain.
@ -74,8 +68,8 @@ type TxPool struct {
localTx *txSet
mu sync.RWMutex
pending map[common.Address]TxList // All currently processable transactions
queue map[common.Address]TxList // Queued but non-processable transactions
pending map[common.Address]*txList // All currently processable transactions
queue map[common.Address]*txList // Queued but non-processable transactions
all map[common.Hash]*types.Transaction // All transactions to allow lookups
wg sync.WaitGroup // for shutdown sync
@ -86,8 +80,8 @@ type TxPool struct {
func NewTxPool(config *ChainConfig, eventMux *event.TypeMux, currentStateFn stateFn, gasLimitFn func() *big.Int) *TxPool {
pool := &TxPool{
config: config,
pending: make(map[common.Address]TxList),
queue: make(map[common.Address]TxList),
pending: make(map[common.Address]*txList),
queue: make(map[common.Address]*txList),
all: make(map[common.Hash]*types.Transaction),
eventMux: eventMux,
currentState: currentStateFn,
@ -125,7 +119,7 @@ func (pool *TxPool) eventLoop() {
pool.minGasPrice = ev.Price
pool.mu.Unlock()
case RemovedTransactionEvent:
pool.AddTransactions(ev.Txs)
pool.AddBatch(ev.Txs)
}
}
}
@ -133,12 +127,12 @@ func (pool *TxPool) eventLoop() {
func (pool *TxPool) resetState() {
currentState, err := pool.currentState()
if err != nil {
glog.V(logger.Info).Infoln("failed to get current state: %v", err)
glog.V(logger.Error).Infof("Failed to get current state: %v", err)
return
}
managedState := state.ManageState(currentState)
if err != nil {
glog.V(logger.Info).Infoln("failed to get managed state: %v", err)
glog.V(logger.Error).Infof("Failed to get managed state: %v", err)
return
}
pool.pendingState = managedState
@ -147,22 +141,15 @@ func (pool *TxPool) resetState() {
// any transactions that have been included in the block or
// have been invalidated because of another transaction (e.g.
// higher gas price)
pool.validatePool()
// Loop over the pending transactions and base the nonce of the new
// pending transaction set.
for addr, txs := range pool.pending {
// Set the nonce. Transaction nonce can never be lower
// than the state nonce; validatePool took care of that.
for nonce, _ := range txs {
if pool.pendingState.GetNonce(addr) <= nonce {
pool.pendingState.SetNonce(addr, nonce+1)
}
}
pool.demoteUnexecutables()
// Update all accounts to the latest known pending nonce
for addr, list := range pool.pending {
pool.pendingState.SetNonce(addr, list.last+1)
}
// Check the queue and move transactions over to the pending if possible
// or remove those that have become invalid
pool.checkQueue()
pool.promoteExecutables()
}
func (pool *TxPool) Stop() {
@ -178,46 +165,58 @@ func (pool *TxPool) State() *state.ManagedState {
return pool.pendingState
}
// Stats retrieves the current pool stats, namely the number of pending and the
// number of queued (non-executable) transactions.
func (pool *TxPool) Stats() (pending int, queued int) {
pool.mu.RLock()
defer pool.mu.RUnlock()
for _, txs := range pool.pending {
pending += len(txs)
for _, list := range pool.pending {
pending += list.Len()
}
for _, txs := range pool.queue {
queued += len(txs)
for _, list := range pool.queue {
queued += list.Len()
}
return
}
// Content retrieves the data content of the transaction pool, returning all the
// pending as well as queued transactions, grouped by account and nonce.
func (pool *TxPool) Content() (map[common.Address]TxList, map[common.Address]TxList) {
// pending as well as queued transactions, grouped by account and sorted by nonce.
func (pool *TxPool) Content() (map[common.Address]types.Transactions, map[common.Address]types.Transactions) {
pool.mu.RLock()
defer pool.mu.RUnlock()
// Retrieve all the pending transactions and sort by account and by nonce
pending := make(map[common.Address]TxList)
for addr, txs := range pool.pending {
copy := make(TxList)
for nonce, tx := range txs {
copy[nonce] = tx
}
pending[addr] = copy
}
// Retrieve all the queued transactions and sort by account and by nonce
queued := make(map[common.Address]TxList)
for addr, txs := range pool.queue {
copy := make(TxList)
for nonce, tx := range txs {
copy[nonce] = tx
}
queued[addr] = copy
pending := make(map[common.Address]types.Transactions)
for addr, list := range pool.pending {
pending[addr] = list.Flatten()
}
queued := make(map[common.Address]types.Transactions)
for addr, list := range pool.queue {
queued[addr] = list.Flatten()
}
return pending, queued
}
// Pending retrieves all currently processable transactions, groupped by origin
// account and sorted by nonce. The returned transaction set is a copy and can be
// freely modified by calling code.
func (pool *TxPool) Pending() map[common.Address]types.Transactions {
pool.mu.Lock()
defer pool.mu.Unlock()
// check queue first
pool.promoteExecutables()
// invalidate any txs
pool.demoteUnexecutables()
pending := make(map[common.Address]types.Transactions)
for addr, list := range pool.pending {
pending[addr] = list.Flatten()
}
return pending
}
// SetLocal marks a transaction as local, skipping gas price
// check against local miner minimum in the future
func (pool *TxPool) SetLocal(tx *types.Transaction) {
@ -283,340 +282,268 @@ func (pool *TxPool) validateTx(tx *types.Transaction) error {
return nil
}
// validate and queue transactions.
func (self *TxPool) add(tx *types.Transaction) error {
// add validates a transaction and inserts it into the non-executable queue for
// later pending promotion and execution.
func (pool *TxPool) add(tx *types.Transaction) error {
// If the transaction is alreayd known, discard it
hash := tx.Hash()
if self.all[hash] != nil {
return fmt.Errorf("Known transaction (%x)", hash[:4])
if pool.all[hash] != nil {
return fmt.Errorf("Known transaction: %x", hash[:4])
}
err := self.validateTx(tx)
if err != nil {
// Otherwise ensure basic validation passes nd queue it up
if err := pool.validateTx(tx); err != nil {
return err
}
self.queueTx(hash, tx)
pool.enqueueTx(hash, tx)
// Print a log message if low enough level is set
if glog.V(logger.Debug) {
var toname string
rcpt := "[NEW_CONTRACT]"
if to := tx.To(); to != nil {
toname = common.Bytes2Hex(to[:4])
} else {
toname = "[NEW_CONTRACT]"
rcpt = common.Bytes2Hex(to[:4])
}
// we can ignore the error here because From is
// verified in ValidateTransaction.
f, _ := tx.From()
from := common.Bytes2Hex(f[:4])
glog.Infof("(t) %x => %s (%v) %x\n", from, toname, tx.Value, hash)
from, _ := tx.From() // from already verified during tx validation
glog.Infof("(t) 0x%x => %s (%v) %x\n", from[:4], rcpt, tx.Value, hash)
}
return nil
}
// queueTx will queue an unknown transaction.
func (self *TxPool) queueTx(hash common.Hash, tx *types.Transaction) {
addr, _ := tx.From() // already validated
if self.queue[addr] == nil {
self.queue[addr] = make(TxList)
// enqueueTx inserts a new transction into the non-executable transaction queue.
//
// Note, this method assumes the pool lock is held!
func (pool *TxPool) enqueueTx(hash common.Hash, tx *types.Transaction) {
// Try to insert the transaction into the future queue
from, _ := tx.From() // already validated
if pool.queue[from] == nil {
pool.queue[from] = newTxList(false)
}
// If the nonce is already used, discard the lower priced transaction
nonce := tx.Nonce()
if old, ok := self.queue[addr][nonce]; ok {
if old.GasPrice().Cmp(tx.GasPrice()) >= 0 {
return // Old was better, discard this
}
delete(self.all, old.Hash()) // New is better, drop and overwrite old one
inserted, old := pool.queue[from].Add(tx)
if !inserted {
return // An older transaction was better, discard this
}
// Discard any previous transaction and mark this
if old != nil {
delete(pool.all, old.Hash())
}
self.queue[addr][nonce] = tx
self.all[hash] = tx
pool.all[hash] = tx
}
// addTx will moves a transaction from the non-executable queue to the pending
// (processable) list of transactions.
func (pool *TxPool) addTx(addr common.Address, tx *types.Transaction) {
// promoteTx adds a transaction to the pending (processable) list of transactions.
//
// Note, this method assumes the pool lock is held!
func (pool *TxPool) promoteTx(addr common.Address, hash common.Hash, tx *types.Transaction) {
// Init delayed since tx pool could have been started before any state sync
if pool.pendingState == nil {
pool.resetState()
}
// If the nonce is already used, discard the lower priced transaction
hash, nonce := tx.Hash(), tx.Nonce()
if old, ok := pool.pending[addr][nonce]; ok {
oldHash := old.Hash()
// Try to insert the transaction into the pending queue
if pool.pending[addr] == nil {
pool.pending[addr] = newTxList(true)
}
list := pool.pending[addr]
switch {
case oldHash == hash: // Nothing changed, noop
return
case old.GasPrice().Cmp(tx.GasPrice()) >= 0: // Old was better, discard this
delete(pool.all, hash)
return
default: // New is better, discard old
delete(pool.all, oldHash)
}
inserted, old := list.Add(tx)
if !inserted {
// An older transaction was better, discard this
delete(pool.all, hash)
return
}
// The transaction is being kept, insert it into the tx pool
if _, ok := pool.pending[addr]; !ok {
pool.pending[addr] = make(TxList)
// Otherwise discard any previous transaction and mark this
if old != nil {
delete(pool.all, old.Hash())
}
pool.pending[addr][nonce] = tx
pool.all[hash] = tx
// Increment the nonce on the pending state. This can only happen if
// the nonce is +1 to the previous one.
pool.pendingState.SetNonce(addr, nonce+1)
pool.all[hash] = tx // Failsafe to work around direct pending inserts (tests)
// Notify the subscribers. This event is posted in a goroutine
// because it's possible that somewhere during the post "Remove transaction"
// gets called which will then wait for the global tx pool lock and deadlock.
// Set the potentially new pending nonce and notify any subsystems of the new tx
pool.pendingState.SetNonce(addr, list.last+1)
go pool.eventMux.Post(TxPreEvent{tx})
}
// Add queues a single transaction in the pool if it is valid.
func (self *TxPool) Add(tx *types.Transaction) error {
self.mu.Lock()
defer self.mu.Unlock()
func (pool *TxPool) Add(tx *types.Transaction) error {
pool.mu.Lock()
defer pool.mu.Unlock()
if err := self.add(tx); err != nil {
if err := pool.add(tx); err != nil {
return err
}
self.checkQueue()
pool.promoteExecutables()
return nil
}
// AddTransactions attempts to queue all valid transactions in txs.
func (self *TxPool) AddTransactions(txs []*types.Transaction) {
self.mu.Lock()
defer self.mu.Unlock()
// AddBatch attempts to queue a batch of transactions.
func (pool *TxPool) AddBatch(txs []*types.Transaction) {
pool.mu.Lock()
defer pool.mu.Unlock()
for _, tx := range txs {
if err := self.add(tx); err != nil {
if err := pool.add(tx); err != nil {
glog.V(logger.Debug).Infoln("tx error:", err)
} else {
h := tx.Hash()
glog.V(logger.Debug).Infof("tx %x\n", h[:4])
}
}
// check and validate the queue
self.checkQueue()
pool.promoteExecutables()
}
// GetTransaction returns a transaction if it is contained in the pool
// Get returns a transaction if it is contained in the pool
// and nil otherwise.
func (tp *TxPool) GetTransaction(hash common.Hash) *types.Transaction {
tp.mu.RLock()
defer tp.mu.RUnlock()
return tp.all[hash]
}
// GetTransactions returns all currently processable transactions.
// The returned slice may be modified by the caller.
func (self *TxPool) GetTransactions() types.Transactions {
self.mu.Lock()
defer self.mu.Unlock()
// check queue first
self.checkQueue()
// invalidate any txs
self.validatePool()
func (pool *TxPool) Get(hash common.Hash) *types.Transaction {
pool.mu.RLock()
defer pool.mu.RUnlock()
count := 0
for _, txs := range self.pending {
count += len(txs)
}
pending := make(types.Transactions, 0, count)
for _, txs := range self.pending {
for _, tx := range txs {
pending = append(pending, tx)
}
}
return pending
return pool.all[hash]
}
// RemoveTransactions removes all given transactions from the pool.
func (self *TxPool) RemoveTransactions(txs types.Transactions) {
self.mu.Lock()
defer self.mu.Unlock()
// Remove removes the transaction with the given hash from the pool.
func (pool *TxPool) Remove(hash common.Hash) {
pool.mu.Lock()
defer pool.mu.Unlock()
for _, tx := range txs {
self.removeTx(tx.Hash())
}
pool.removeTx(hash)
}
// RemoveTx removes the transaction with the given hash from the pool.
func (pool *TxPool) RemoveTx(hash common.Hash) {
// RemoveBatch removes all given transactions from the pool.
func (pool *TxPool) RemoveBatch(txs types.Transactions) {
pool.mu.Lock()
defer pool.mu.Unlock()
pool.removeTx(hash)
for _, tx := range txs {
pool.removeTx(tx.Hash())
}
}
// removeTx iterates removes a single transaction from the queue, moving all
// subsequent transactions back to the future queue.
func (pool *TxPool) removeTx(hash common.Hash) {
// Fetch the transaction we wish to delete
tx, ok := pool.all[hash]
if !ok {
return
}
addr, _ := tx.From()
addr, _ := tx.From() // already validated during insertion
// Remove it from all internal lists
// Remove it from the list of known transactions
delete(pool.all, hash)
delete(pool.pending[addr], tx.Nonce())
if len(pool.pending[addr]) == 0 {
delete(pool.pending, addr)
// Remove the transaction from the pending lists and reset the account nonce
if pending := pool.pending[addr]; pending != nil {
if removed, invalids := pending.Remove(tx); removed {
// If no more transactions are left, remove the list and reset the nonce
if pending.Empty() {
delete(pool.pending, addr)
pool.pendingState.SetNonce(addr, tx.Nonce())
} else {
// Otherwise update the nonce and postpone any invalidated transactions
pool.pendingState.SetNonce(addr, pending.last)
for _, tx := range invalids {
pool.enqueueTx(tx.Hash(), tx)
}
}
}
}
delete(pool.queue[addr], tx.Nonce())
if len(pool.queue[addr]) == 0 {
delete(pool.queue, addr)
// Transaction is in the future queue
if future := pool.queue[addr]; future != nil {
future.Remove(tx)
if future.Empty() {
delete(pool.queue, addr)
}
}
}
// checkQueue moves transactions that have become processable from the pool's
// queue to the set of pending transactions.
func (pool *TxPool) checkQueue() {
// promoteExecutables moves transactions that have become processable from the
// future queue to the set of pending transactions. During this process, all
// invalidated transactions (low nonce, low balance) are deleted.
func (pool *TxPool) promoteExecutables() {
// Init delayed since tx pool could have been started before any state sync
if pool.pendingState == nil {
pool.resetState()
}
var promote txQueue
for address, txs := range pool.queue {
currentState, err := pool.currentState()
if err != nil {
glog.Errorf("could not get current state: %v", err)
return
// Retrieve the current state to allow nonce and balance checking
state, err := pool.currentState()
if err != nil {
glog.Errorf("Could not get current state: %v", err)
return
}
// Iterate over all accounts and promote any executable transactions
for addr, list := range pool.queue {
// Drop all transactions that are deemed too old (low nonce)
for _, tx := range list.Forward(state.GetNonce(addr)) {
if glog.V(logger.Core) {
glog.Infof("Removed old queued transaction: %v", tx)
}
delete(pool.all, tx.Hash())
}
balance := currentState.GetBalance(address)
var (
guessedNonce = pool.pendingState.GetNonce(address) // nonce currently kept by the tx pool (pending state)
trueNonce = currentState.GetNonce(address) // nonce known by the last state
)
promote = promote[:0]
for nonce, tx := range txs {
// Drop processed or out of fund transactions
if nonce < trueNonce || balance.Cmp(tx.Cost()) < 0 {
if glog.V(logger.Core) {
glog.Infof("removed tx (%v) from pool queue: low tx nonce or out of funds\n", tx)
}
delete(txs, nonce)
delete(pool.all, tx.Hash())
continue
// Drop all transactions that are too costly (low balance)
drops, _ := list.Filter(state.GetBalance(addr))
for _, tx := range drops {
if glog.V(logger.Core) {
glog.Infof("Removed unpayable queued transaction: %v", tx)
}
// Collect the remaining transactions for the next pass.
promote = append(promote, txQueueEntry{address, tx})
delete(pool.all, tx.Hash())
}
// Find the next consecutive nonce range starting at the current account nonce,
// pushing the guessed nonce forward if we add consecutive transactions.
sort.Sort(promote)
for i, entry := range promote {
// If we reached a gap in the nonces, enforce transaction limit and stop
if entry.Nonce() > guessedNonce {
if len(promote)-i > maxQueued {
if glog.V(logger.Debug) {
glog.Infof("Queued tx limit exceeded for %s. Tx %s removed\n", common.PP(address[:]), common.PP(entry.Hash().Bytes()))
}
for _, drop := range promote[i+maxQueued:] {
delete(txs, drop.Nonce())
delete(pool.all, drop.Hash())
}
}
break
// Gather all executable transactions and promote them
for _, tx := range list.Ready(pool.pendingState.GetNonce(addr)) {
if glog.V(logger.Core) {
glog.Infof("Promoting queued transaction: %v", tx)
}
// Otherwise promote the transaction and move the guess nonce if needed
pool.addTx(address, entry.Transaction)
delete(txs, entry.Nonce())
if entry.Nonce() == guessedNonce {
guessedNonce++
pool.promoteTx(addr, tx.Hash(), tx)
}
// Drop all transactions over the allowed limit
for _, tx := range list.Cap(maxQueued) {
if glog.V(logger.Core) {
glog.Infof("Removed cap-exceeding queued transaction: %v", tx)
}
delete(pool.all, tx.Hash())
}
// Delete the entire queue entry if it became empty.
if len(txs) == 0 {
delete(pool.queue, address)
if list.Empty() {
delete(pool.queue, addr)
}
}
}
// validatePool removes invalid and processed transactions from the main pool.
// If a transaction is removed for being invalid (e.g. out of funds), all sub-
// sequent (Still valid) transactions are moved back into the future queue. This
// is important to prevent a drained account from DOSing the network with non
// executable transactions.
func (pool *TxPool) validatePool() {
// demoteUnexecutables removes invalid and processed transactions from the pools
// executable/pending queue and any subsequent transactions that become unexecutable
// are moved back into the future queue.
func (pool *TxPool) demoteUnexecutables() {
// Retrieve the current state to allow nonce and balance checking
state, err := pool.currentState()
if err != nil {
glog.V(logger.Info).Infoln("failed to get current state: %v", err)
return
}
balanceCache := make(map[common.Address]*big.Int)
// Clean up the pending pool, accumulating invalid nonces
gaps := make(map[common.Address]uint64)
// Iterate over all accounts and demote any non-executable transactions
for addr, list := range pool.pending {
nonce := state.GetNonce(addr)
for addr, txs := range pool.pending {
for nonce, tx := range txs {
// Perform light nonce and balance validation
balance := balanceCache[addr]
if balance == nil {
balance = state.GetBalance(addr)
balanceCache[addr] = balance
// Drop all transactions that are deemed too old (low nonce)
for _, tx := range list.Forward(nonce) {
if glog.V(logger.Core) {
glog.Infof("Removed old pending transaction: %v", tx)
}
if past := state.GetNonce(addr) > nonce; past || balance.Cmp(tx.Cost()) < 0 {
// Remove an already past it invalidated transaction
if glog.V(logger.Core) {
glog.Infof("removed tx (%v) from pool: low tx nonce or out of funds\n", tx)
}
delete(pool.pending[addr], nonce)
if len(pool.pending[addr]) == 0 {
delete(pool.pending, addr)
}
delete(pool.all, tx.Hash())
// Track the smallest invalid nonce to postpone subsequent transactions
if !past {
if prev, ok := gaps[addr]; !ok || nonce < prev {
gaps[addr] = nonce
}
}
delete(pool.all, tx.Hash())
}
// Drop all transactions that are too costly (low balance), and queue any invalids back for later
drops, invalids := list.Filter(state.GetBalance(addr))
for _, tx := range drops {
if glog.V(logger.Core) {
glog.Infof("Removed unpayable pending transaction: %v", tx)
}
delete(pool.all, tx.Hash())
}
}
// Move all transactions after a gap back to the future queue
if len(gaps) > 0 {
for addr, txs := range pool.pending {
for nonce, tx := range txs {
if gap, ok := gaps[addr]; ok && nonce >= gap {
if glog.V(logger.Core) {
glog.Infof("postponed tx (%v) due to introduced gap\n", tx)
}
delete(pool.pending[addr], nonce)
if len(pool.pending[addr]) == 0 {
delete(pool.pending, addr)
}
pool.queueTx(tx.Hash(), tx)
}
for _, tx := range invalids {
if glog.V(logger.Core) {
glog.Infof("Demoting pending transaction: %v", tx)
}
pool.enqueueTx(tx.Hash(), tx)
}
// Delete the entire queue entry if it became empty.
if list.Empty() {
delete(pool.pending, addr)
}
}
}
type txQueue []txQueueEntry
type txQueueEntry struct {
addr common.Address
*types.Transaction
}
func (q txQueue) Len() int { return len(q) }
func (q txQueue) Swap(i, j int) { q[i], q[j] = q[j], q[i] }
func (q txQueue) Less(i, j int) bool { return q[i].Nonce() < q[j].Nonce() }
// txSet represents a set of transaction hashes in which entries
// are automatically dropped after txSetDuration time
type txSet struct {

@ -91,9 +91,9 @@ func TestTransactionQueue(t *testing.T) {
from, _ := tx.From()
currentState, _ := pool.currentState()
currentState.AddBalance(from, big.NewInt(1000))
pool.queueTx(tx.Hash(), tx)
pool.enqueueTx(tx.Hash(), tx)
pool.checkQueue()
pool.promoteExecutables()
if len(pool.pending) != 1 {
t.Error("expected valid txs to be 1 is", len(pool.pending))
}
@ -101,14 +101,14 @@ func TestTransactionQueue(t *testing.T) {
tx = transaction(1, big.NewInt(100), key)
from, _ = tx.From()
currentState.SetNonce(from, 2)
pool.queueTx(tx.Hash(), tx)
pool.checkQueue()
if _, ok := pool.pending[from][tx.Nonce()]; ok {
pool.enqueueTx(tx.Hash(), tx)
pool.promoteExecutables()
if _, ok := pool.pending[from].items[tx.Nonce()]; ok {
t.Error("expected transaction to be in tx pool")
}
if len(pool.queue[from]) > 0 {
t.Error("expected transaction queue to be empty. is", len(pool.queue[from]))
if len(pool.queue) > 0 {
t.Error("expected transaction queue to be empty. is", len(pool.queue))
}
pool, key = setupTxPool()
@ -118,17 +118,17 @@ func TestTransactionQueue(t *testing.T) {
from, _ = tx1.From()
currentState, _ = pool.currentState()
currentState.AddBalance(from, big.NewInt(1000))
pool.queueTx(tx1.Hash(), tx1)
pool.queueTx(tx2.Hash(), tx2)
pool.queueTx(tx3.Hash(), tx3)
pool.enqueueTx(tx1.Hash(), tx1)
pool.enqueueTx(tx2.Hash(), tx2)
pool.enqueueTx(tx3.Hash(), tx3)
pool.checkQueue()
pool.promoteExecutables()
if len(pool.pending) != 1 {
t.Error("expected tx pool to be 1, got", len(pool.pending))
}
if len(pool.queue[from]) != 2 {
t.Error("expected len(queue) == 2, got", len(pool.queue[from]))
if pool.queue[from].Len() != 2 {
t.Error("expected len(queue) == 2, got", pool.queue[from].Len())
}
}
@ -138,24 +138,21 @@ func TestRemoveTx(t *testing.T) {
from, _ := tx.From()
currentState, _ := pool.currentState()
currentState.AddBalance(from, big.NewInt(1))
pool.queueTx(tx.Hash(), tx)
pool.addTx(from, tx)
pool.enqueueTx(tx.Hash(), tx)
pool.promoteTx(from, tx.Hash(), tx)
if len(pool.queue) != 1 {
t.Error("expected queue to be 1, got", len(pool.queue))
}
if len(pool.pending) != 1 {
t.Error("expected txs to be 1, got", len(pool.pending))
t.Error("expected pending to be 1, got", len(pool.pending))
}
pool.RemoveTx(tx.Hash())
pool.Remove(tx.Hash())
if len(pool.queue) > 0 {
t.Error("expected queue to be 0, got", len(pool.queue))
}
if len(pool.pending) > 0 {
t.Error("expected txs to be 0, got", len(pool.pending))
t.Error("expected pending to be 0, got", len(pool.pending))
}
}
@ -188,7 +185,7 @@ func TestTransactionChainFork(t *testing.T) {
if err := pool.add(tx); err != nil {
t.Error("didn't expect error", err)
}
pool.RemoveTransactions([]*types.Transaction{tx})
pool.RemoveBatch([]*types.Transaction{tx})
// reset the pool's internal state
resetState()
@ -221,22 +218,22 @@ func TestTransactionDoubleNonce(t *testing.T) {
if err := pool.add(tx2); err != nil {
t.Error("didn't expect error", err)
}
pool.checkQueue()
if len(pool.pending[addr]) != 1 {
t.Error("expected 1 pending transactions, got", len(pool.pending))
pool.promoteExecutables()
if pool.pending[addr].Len() != 1 {
t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
}
if tx := pool.pending[addr][0]; tx.Hash() != tx2.Hash() {
if tx := pool.pending[addr].items[0]; tx.Hash() != tx2.Hash() {
t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
}
// Add the thid transaction and ensure it's not saved (smaller price)
if err := pool.add(tx3); err != nil {
t.Error("didn't expect error", err)
}
pool.checkQueue()
if len(pool.pending[addr]) != 1 {
t.Error("expected 1 pending transactions, got", len(pool.pending))
pool.promoteExecutables()
if pool.pending[addr].Len() != 1 {
t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
}
if tx := pool.pending[addr][0]; tx.Hash() != tx2.Hash() {
if tx := pool.pending[addr].items[0]; tx.Hash() != tx2.Hash() {
t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
}
// Ensure the total transaction count is correct
@ -254,11 +251,11 @@ func TestMissingNonce(t *testing.T) {
if err := pool.add(tx); err != nil {
t.Error("didn't expect error", err)
}
if len(pool.pending[addr]) != 0 {
t.Error("expected 0 pending transactions, got", len(pool.pending[addr]))
if len(pool.pending) != 0 {
t.Error("expected 0 pending transactions, got", len(pool.pending))
}
if len(pool.queue[addr]) != 1 {
t.Error("expected 1 queued transaction, got", len(pool.queue[addr]))
if pool.queue[addr].Len() != 1 {
t.Error("expected 1 queued transaction, got", pool.queue[addr].Len())
}
if len(pool.all) != 1 {
t.Error("expected 1 total transactions, got", len(pool.all))
@ -293,8 +290,8 @@ func TestRemovedTxEvent(t *testing.T) {
currentState.AddBalance(from, big.NewInt(1000000000000))
pool.eventMux.Post(RemovedTransactionEvent{types.Transactions{tx}})
pool.eventMux.Post(ChainHeadEvent{nil})
if len(pool.pending[from]) != 1 {
t.Error("expected 1 pending tx, got", len(pool.pending[from]))
if pool.pending[from].Len() != 1 {
t.Error("expected 1 pending tx, got", pool.pending[from].Len())
}
if len(pool.all) != 1 {
t.Error("expected 1 total transactions, got", len(pool.all))
@ -318,27 +315,27 @@ func TestTransactionDropping(t *testing.T) {
tx10 = transaction(10, big.NewInt(100), key)
tx11 = transaction(11, big.NewInt(200), key)
)
pool.addTx(account, tx0)
pool.addTx(account, tx1)
pool.queueTx(tx10.Hash(), tx10)
pool.queueTx(tx11.Hash(), tx11)
pool.promoteTx(account, tx0.Hash(), tx0)
pool.promoteTx(account, tx1.Hash(), tx1)
pool.enqueueTx(tx10.Hash(), tx10)
pool.enqueueTx(tx11.Hash(), tx11)
// Check that pre and post validations leave the pool as is
if len(pool.pending[account]) != 2 {
t.Errorf("pending transaction mismatch: have %d, want %d", len(pool.pending[account]), 2)
if pool.pending[account].Len() != 2 {
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 2)
}
if len(pool.queue[account]) != 2 {
t.Errorf("queued transaction mismatch: have %d, want %d", len(pool.queue[account]), 2)
if pool.queue[account].Len() != 2 {
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 2)
}
if len(pool.all) != 4 {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 4)
}
pool.resetState()
if len(pool.pending[account]) != 2 {
t.Errorf("pending transaction mismatch: have %d, want %d", len(pool.pending[account]), 2)
if pool.pending[account].Len() != 2 {
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 2)
}
if len(pool.queue[account]) != 2 {
t.Errorf("queued transaction mismatch: have %d, want %d", len(pool.queue[account]), 2)
if pool.queue[account].Len() != 2 {
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 2)
}
if len(pool.all) != 4 {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 4)
@ -347,16 +344,16 @@ func TestTransactionDropping(t *testing.T) {
state.AddBalance(account, big.NewInt(-750))
pool.resetState()
if _, ok := pool.pending[account][tx0.Nonce()]; !ok {
if _, ok := pool.pending[account].items[tx0.Nonce()]; !ok {
t.Errorf("funded pending transaction missing: %v", tx0)
}
if _, ok := pool.pending[account][tx1.Nonce()]; ok {
if _, ok := pool.pending[account].items[tx1.Nonce()]; ok {
t.Errorf("out-of-fund pending transaction present: %v", tx1)
}
if _, ok := pool.queue[account][tx10.Nonce()]; !ok {
if _, ok := pool.queue[account].items[tx10.Nonce()]; !ok {
t.Errorf("funded queued transaction missing: %v", tx10)
}
if _, ok := pool.queue[account][tx11.Nonce()]; ok {
if _, ok := pool.queue[account].items[tx11.Nonce()]; ok {
t.Errorf("out-of-fund queued transaction present: %v", tx11)
}
if len(pool.all) != 2 {
@ -384,25 +381,25 @@ func TestTransactionPostponing(t *testing.T) {
} else {
tx = transaction(uint64(i), big.NewInt(500), key)
}
pool.addTx(account, tx)
pool.promoteTx(account, tx.Hash(), tx)
txns = append(txns, tx)
}
// Check that pre and post validations leave the pool as is
if len(pool.pending[account]) != len(txns) {
t.Errorf("pending transaction mismatch: have %d, want %d", len(pool.pending[account]), len(txns))
if pool.pending[account].Len() != len(txns) {
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), len(txns))
}
if len(pool.queue[account]) != 0 {
t.Errorf("queued transaction mismatch: have %d, want %d", len(pool.queue[account]), 0)
if len(pool.queue) != 0 {
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 0)
}
if len(pool.all) != len(txns) {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns))
}
pool.resetState()
if len(pool.pending[account]) != len(txns) {
t.Errorf("pending transaction mismatch: have %d, want %d", len(pool.pending[account]), len(txns))
if pool.pending[account].Len() != len(txns) {
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), len(txns))
}
if len(pool.queue[account]) != 0 {
t.Errorf("queued transaction mismatch: have %d, want %d", len(pool.queue[account]), 0)
if len(pool.queue) != 0 {
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 0)
}
if len(pool.all) != len(txns) {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns))
@ -411,25 +408,25 @@ func TestTransactionPostponing(t *testing.T) {
state.AddBalance(account, big.NewInt(-750))
pool.resetState()
if _, ok := pool.pending[account][txns[0].Nonce()]; !ok {
if _, ok := pool.pending[account].items[txns[0].Nonce()]; !ok {
t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txns[0])
}
if _, ok := pool.queue[account][txns[0].Nonce()]; ok {
if _, ok := pool.queue[account].items[txns[0].Nonce()]; ok {
t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txns[0])
}
for i, tx := range txns[1:] {
if i%2 == 1 {
if _, ok := pool.pending[account][tx.Nonce()]; ok {
if _, ok := pool.pending[account].items[tx.Nonce()]; ok {
t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx)
}
if _, ok := pool.queue[account][tx.Nonce()]; !ok {
if _, ok := pool.queue[account].items[tx.Nonce()]; !ok {
t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx)
}
} else {
if _, ok := pool.pending[account][tx.Nonce()]; ok {
if _, ok := pool.pending[account].items[tx.Nonce()]; ok {
t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx)
}
if _, ok := pool.queue[account][tx.Nonce()]; ok {
if _, ok := pool.queue[account].items[tx.Nonce()]; ok {
t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx)
}
}
@ -458,12 +455,12 @@ func TestTransactionQueueLimiting(t *testing.T) {
t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0)
}
if i <= maxQueued {
if len(pool.queue[account]) != int(i) {
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, len(pool.queue[account]), i)
if pool.queue[account].Len() != int(i) {
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), i)
}
} else {
if len(pool.queue[account]) != maxQueued {
t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, len(pool.queue[account]), maxQueued)
if pool.queue[account].Len() != maxQueued {
t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, pool.queue[account].Len(), maxQueued)
}
}
}
@ -488,11 +485,11 @@ func TestTransactionPendingLimiting(t *testing.T) {
if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
}
if len(pool.pending[account]) != int(i)+1 {
t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending[account]), i+1)
if pool.pending[account].Len() != int(i)+1 {
t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, pool.pending[account].Len(), i+1)
}
if len(pool.queue[account]) != 0 {
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, len(pool.queue[account]), 0)
if len(pool.queue) != 0 {
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), 0)
}
}
if len(pool.all) != maxQueued+5 {
@ -517,7 +514,7 @@ func testTransactionLimitingEquivalency(t *testing.T, origin uint64) {
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
}
}
// Add a batch of transactions to a pool in one bit batch
// Add a batch of transactions to a pool in one big batch
pool2, key2 := setupTxPool()
account2, _ := transaction(0, big.NewInt(0), key2).From()
state2, _ := pool2.currentState()
@ -527,14 +524,14 @@ func testTransactionLimitingEquivalency(t *testing.T, origin uint64) {
for i := uint64(0); i < maxQueued+5; i++ {
txns = append(txns, transaction(origin+i, big.NewInt(100000), key2))
}
pool2.AddTransactions(txns)
pool2.AddBatch(txns)
// Ensure the batch optimization honors the same pool mechanics
if len(pool1.pending) != len(pool2.pending) {
t.Errorf("pending transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.pending), len(pool2.pending))
}
if len(pool1.queue[account1]) != len(pool2.queue[account2]) {
t.Errorf("queued transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.queue[account1]), len(pool2.queue[account2]))
if len(pool1.queue) != len(pool2.queue) {
t.Errorf("queued transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.queue), len(pool2.queue))
}
if len(pool1.all) != len(pool2.all) {
t.Errorf("total transaction count mismatch: one-by-one algo %d, batch algo %d", len(pool1.all), len(pool2.all))
@ -543,11 +540,11 @@ func testTransactionLimitingEquivalency(t *testing.T, origin uint64) {
// Benchmarks the speed of validating the contents of the pending queue of the
// transaction pool.
func BenchmarkValidatePool100(b *testing.B) { benchmarkValidatePool(b, 100) }
func BenchmarkValidatePool1000(b *testing.B) { benchmarkValidatePool(b, 1000) }
func BenchmarkValidatePool10000(b *testing.B) { benchmarkValidatePool(b, 10000) }
func BenchmarkPendingDemotion100(b *testing.B) { benchmarkPendingDemotion(b, 100) }
func BenchmarkPendingDemotion1000(b *testing.B) { benchmarkPendingDemotion(b, 1000) }
func BenchmarkPendingDemotion10000(b *testing.B) { benchmarkPendingDemotion(b, 10000) }
func benchmarkValidatePool(b *testing.B, size int) {
func benchmarkPendingDemotion(b *testing.B, size int) {
// Add a batch of transactions to a pool one by one
pool, key := setupTxPool()
account, _ := transaction(0, big.NewInt(0), key).From()
@ -556,22 +553,22 @@ func benchmarkValidatePool(b *testing.B, size int) {
for i := 0; i < size; i++ {
tx := transaction(uint64(i), big.NewInt(100000), key)
pool.addTx(account, tx)
pool.promoteTx(account, tx.Hash(), tx)
}
// Benchmark the speed of pool validation
b.ResetTimer()
for i := 0; i < b.N; i++ {
pool.validatePool()
pool.demoteUnexecutables()
}
}
// Benchmarks the speed of scheduling the contents of the future queue of the
// transaction pool.
func BenchmarkCheckQueue100(b *testing.B) { benchmarkCheckQueue(b, 100) }
func BenchmarkCheckQueue1000(b *testing.B) { benchmarkCheckQueue(b, 1000) }
func BenchmarkCheckQueue10000(b *testing.B) { benchmarkCheckQueue(b, 10000) }
func BenchmarkFuturePromotion100(b *testing.B) { benchmarkFuturePromotion(b, 100) }
func BenchmarkFuturePromotion1000(b *testing.B) { benchmarkFuturePromotion(b, 1000) }
func BenchmarkFuturePromotion10000(b *testing.B) { benchmarkFuturePromotion(b, 10000) }
func benchmarkCheckQueue(b *testing.B, size int) {
func benchmarkFuturePromotion(b *testing.B, size int) {
// Add a batch of transactions to a pool one by one
pool, key := setupTxPool()
account, _ := transaction(0, big.NewInt(0), key).From()
@ -580,11 +577,56 @@ func benchmarkCheckQueue(b *testing.B, size int) {
for i := 0; i < size; i++ {
tx := transaction(uint64(1+i), big.NewInt(100000), key)
pool.queueTx(tx.Hash(), tx)
pool.enqueueTx(tx.Hash(), tx)
}
// Benchmark the speed of pool validation
b.ResetTimer()
for i := 0; i < b.N; i++ {
pool.checkQueue()
pool.promoteExecutables()
}
}
// Benchmarks the speed of iterative transaction insertion.
func BenchmarkPoolInsert(b *testing.B) {
// Generate a batch of transactions to enqueue into the pool
pool, key := setupTxPool()
account, _ := transaction(0, big.NewInt(0), key).From()
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
txs := make(types.Transactions, b.N)
for i := 0; i < b.N; i++ {
txs[i] = transaction(uint64(i), big.NewInt(100000), key)
}
// Benchmark importing the transactions into the queue
b.ResetTimer()
for _, tx := range txs {
pool.Add(tx)
}
}
// Benchmarks the speed of batched transaction insertion.
func BenchmarkPoolBatchInsert100(b *testing.B) { benchmarkPoolBatchInsert(b, 100) }
func BenchmarkPoolBatchInsert1000(b *testing.B) { benchmarkPoolBatchInsert(b, 1000) }
func BenchmarkPoolBatchInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000) }
func benchmarkPoolBatchInsert(b *testing.B, size int) {
// Generate a batch of transactions to enqueue into the pool
pool, key := setupTxPool()
account, _ := transaction(0, big.NewInt(0), key).From()
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
batches := make([]types.Transactions, b.N)
for i := 0; i < b.N; i++ {
batches[i] = make(types.Transactions, size)
for j := 0; j < size; j++ {
batches[i][j] = transaction(uint64(size*i+j), big.NewInt(100000), key)
}
}
// Benchmark importing the transactions into the queue
b.ResetTimer()
for _, batch := range batches {
pool.AddBatch(batch)
}
}

@ -24,7 +24,6 @@ import (
"fmt"
"io"
"math/big"
"sort"
"sync/atomic"
"github.com/ethereum/go-ethereum/common"
@ -439,37 +438,29 @@ func (s *TxByPrice) Pop() interface{} {
// sender accounts and sorts them by nonce. After the account nonce ordering is
// satisfied, the results are merged back together by price, always comparing only
// the head transaction from each account. This is done via a heap to keep it fast.
func SortByPriceAndNonce(txs []*Transaction) {
// Separate the transactions by account and sort by nonce
byNonce := make(map[common.Address][]*Transaction)
for _, tx := range txs {
acc, _ := tx.From() // we only sort valid txs so this cannot fail
byNonce[acc] = append(byNonce[acc], tx)
}
for _, accTxs := range byNonce {
sort.Sort(TxByNonce(accTxs))
}
func SortByPriceAndNonce(txs map[common.Address]Transactions) Transactions {
// Initialize a price based heap with the head transactions
byPrice := make(TxByPrice, 0, len(byNonce))
for acc, accTxs := range byNonce {
byPrice := make(TxByPrice, 0, len(txs))
for acc, accTxs := range txs {
byPrice = append(byPrice, accTxs[0])
byNonce[acc] = accTxs[1:]
txs[acc] = accTxs[1:]
}
heap.Init(&byPrice)
// Merge by replacing the best with the next from the same account
txs = txs[:0]
var sorted Transactions
for len(byPrice) > 0 {
// Retrieve the next best transaction by price
best := heap.Pop(&byPrice).(*Transaction)
// Push in its place the next transaction from the same account
acc, _ := best.From() // we only sort valid txs so this cannot fail
if accTxs, ok := byNonce[acc]; ok && len(accTxs) > 0 {
if accTxs, ok := txs[acc]; ok && len(accTxs) > 0 {
heap.Push(&byPrice, accTxs[0])
byNonce[acc] = accTxs[1:]
txs[acc] = accTxs[1:]
}
// Accumulate the best priced transaction
txs = append(txs, best)
sorted = append(sorted, best)
}
return sorted
}

@ -128,15 +128,16 @@ func TestTransactionPriceNonceSort(t *testing.T) {
keys[i], _ = crypto.GenerateKey()
}
// Generate a batch of transactions with overlapping values, but shifted nonces
txs := []*Transaction{}
groups := map[common.Address]Transactions{}
for start, key := range keys {
addr := crypto.PubkeyToAddress(key.PublicKey)
for i := 0; i < 25; i++ {
tx, _ := NewTransaction(uint64(start+i), common.Address{}, big.NewInt(100), big.NewInt(100), big.NewInt(int64(start+i)), nil).SignECDSA(key)
txs = append(txs, tx)
groups[addr] = append(groups[addr], tx)
}
}
// Sort the transactions and cross check the nonce ordering
SortByPriceAndNonce(txs)
txs := SortByPriceAndNonce(groups)
for i, txi := range txs {
fromi, _ := txi.From()

@ -118,21 +118,25 @@ func (b *EthApiBackend) RemoveTx(txHash common.Hash) {
b.eth.txMu.Lock()
defer b.eth.txMu.Unlock()
b.eth.txPool.RemoveTx(txHash)
b.eth.txPool.Remove(txHash)
}
func (b *EthApiBackend) GetPoolTransactions() types.Transactions {
b.eth.txMu.Lock()
defer b.eth.txMu.Unlock()
return b.eth.txPool.GetTransactions()
var txs types.Transactions
for _, batch := range b.eth.txPool.Pending() {
txs = append(txs, batch...)
}
return txs
}
func (b *EthApiBackend) GetPoolTransaction(txHash common.Hash) *types.Transaction {
func (b *EthApiBackend) GetPoolTransaction(hash common.Hash) *types.Transaction {
b.eth.txMu.Lock()
defer b.eth.txMu.Unlock()
return b.eth.txPool.GetTransaction(txHash)
return b.eth.txPool.Get(hash)
}
func (b *EthApiBackend) GetPoolNonce(ctx context.Context, addr common.Address) (uint64, error) {
@ -149,7 +153,7 @@ func (b *EthApiBackend) Stats() (pending int, queued int) {
return b.eth.txPool.Stats()
}
func (b *EthApiBackend) TxPoolContent() (map[common.Address]core.TxList, map[common.Address]core.TxList) {
func (b *EthApiBackend) TxPoolContent() (map[common.Address]types.Transactions, map[common.Address]types.Transactions) {
b.eth.txMu.Lock()
defer b.eth.txMu.Unlock()

@ -677,7 +677,7 @@ func (pm *ProtocolManager) handleMsg(p *peer) error {
}
p.MarkTransaction(tx.Hash())
}
pm.txpool.AddTransactions(txs)
pm.txpool.AddBatch(txs)
default:
return errResp(ErrInvalidMsgCode, "%v", msg.Code)

@ -23,6 +23,7 @@ import (
"crypto/ecdsa"
"crypto/rand"
"math/big"
"sort"
"sync"
"testing"
@ -89,9 +90,9 @@ type testTxPool struct {
lock sync.RWMutex // Protects the transaction pool
}
// AddTransactions appends a batch of transactions to the pool, and notifies any
// AddBatch appends a batch of transactions to the pool, and notifies any
// listeners if the addition channel is non nil
func (p *testTxPool) AddTransactions(txs []*types.Transaction) {
func (p *testTxPool) AddBatch(txs []*types.Transaction) {
p.lock.Lock()
defer p.lock.Unlock()
@ -101,15 +102,20 @@ func (p *testTxPool) AddTransactions(txs []*types.Transaction) {
}
}
// GetTransactions returns all the transactions known to the pool
func (p *testTxPool) GetTransactions() types.Transactions {
// Pending returns all the transactions known to the pool
func (p *testTxPool) Pending() map[common.Address]types.Transactions {
p.lock.RLock()
defer p.lock.RUnlock()
txs := make([]*types.Transaction, len(p.pool))
copy(txs, p.pool)
return txs
batches := make(map[common.Address]types.Transactions)
for _, tx := range p.pool {
from, _ := tx.From()
batches[from] = append(batches[from], tx)
}
for _, batch := range batches {
sort.Sort(types.TxByNonce(batch))
}
return batches
}
// newTestTransaction create a new dummy transaction.

@ -97,12 +97,12 @@ var errorToString = map[int]string{
}
type txPool interface {
// AddTransactions should add the given transactions to the pool.
AddTransactions([]*types.Transaction)
// AddBatch should add the given transactions to the pool.
AddBatch([]*types.Transaction)
// GetTransactions should return pending transactions.
// Pending should return pending transactions.
// The slice should be modifiable by the caller.
GetTransactions() types.Transactions
Pending() map[common.Address]types.Transactions
}
// statusData is the network packet for the status message.

@ -130,7 +130,7 @@ func testSendTransactions(t *testing.T, protocol int) {
for nonce := range alltxs {
alltxs[nonce] = newTestTransaction(testAccount, uint64(nonce), txsize)
}
pm.txpool.AddTransactions(alltxs)
pm.txpool.AddBatch(alltxs)
// Connect several peers. They should all receive the pending transactions.
var wg sync.WaitGroup

@ -45,7 +45,10 @@ type txsync struct {
// syncTransactions starts sending all currently pending transactions to the given peer.
func (pm *ProtocolManager) syncTransactions(p *peer) {
txs := pm.txpool.GetTransactions()
var txs types.Transactions
for _, batch := range pm.txpool.Pending() {
txs = append(txs, batch...)
}
if len(txs) == 0 {
return
}

@ -58,7 +58,7 @@ type Backend interface {
GetPoolTransaction(txHash common.Hash) *types.Transaction
GetPoolNonce(ctx context.Context, addr common.Address) (uint64, error)
Stats() (pending int, queued int)
TxPoolContent() (map[common.Address]core.TxList, map[common.Address]core.TxList)
TxPoolContent() (map[common.Address]types.Transactions, map[common.Address]types.Transactions)
}
type State interface {

@ -501,8 +501,7 @@ func (self *worker) commitNewWork() {
*/
//approach 2
transactions := self.eth.TxPool().GetTransactions()
types.SortByPriceAndNonce(transactions)
transactions := types.SortByPriceAndNonce(self.eth.TxPool().Pending())
/* // approach 3
// commit transactions for this run.
@ -533,8 +532,8 @@ func (self *worker) commitNewWork() {
work.commitTransactions(self.mux, transactions, self.gasPrice, self.chain)
self.eth.TxPool().RemoveTransactions(work.lowGasTxs)
self.eth.TxPool().RemoveTransactions(work.failedTxs)
self.eth.TxPool().RemoveBatch(work.lowGasTxs)
self.eth.TxPool().RemoveBatch(work.failedTxs)
// compute uncles for the new block.
var (

Loading…
Cancel
Save