|
|
|
@ -61,27 +61,30 @@ func ripemd160Func(in []byte) []byte { |
|
|
|
|
return common.LeftPadBytes(crypto.Ripemd160(in), 32) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const EcRecoverInputLength = 128 |
|
|
|
|
const ecRecoverInputLength = 128 |
|
|
|
|
|
|
|
|
|
func ecrecoverFunc(in []byte) []byte { |
|
|
|
|
// "in" is (hash, v, r, s), each 32 bytes
|
|
|
|
|
// but for ecrecover we want (r, s, v)
|
|
|
|
|
if len(in) < EcRecoverInputLength { |
|
|
|
|
if len(in) < ecRecoverInputLength { |
|
|
|
|
return nil |
|
|
|
|
} |
|
|
|
|
hash := in[:32] |
|
|
|
|
// v is only a bit, but comes as 32 bytes from vm. We only need least significant byte
|
|
|
|
|
encodedV := in[32:64] |
|
|
|
|
v := encodedV[31] - 27 |
|
|
|
|
if !(v == 0 || v == 1) { |
|
|
|
|
|
|
|
|
|
// Treat V as a 256bit integer
|
|
|
|
|
v := new(big.Int).Sub(common.Bytes2Big(in[32:64]), big.NewInt(27)) |
|
|
|
|
// Ethereum requires V to be either 0 or 1 => (27 || 28)
|
|
|
|
|
if !(v.Cmp(Zero) == 0 || v.Cmp(One) == 0) { |
|
|
|
|
return nil |
|
|
|
|
} |
|
|
|
|
sig := append(in[64:], v) |
|
|
|
|
pubKey := crypto.Ecrecover(append(hash, sig...)) |
|
|
|
|
// secp256.go returns either nil or 65 bytes
|
|
|
|
|
|
|
|
|
|
// v needs to be moved to the end
|
|
|
|
|
rsv := append(in[64:128], byte(v.Uint64())) |
|
|
|
|
pubKey := crypto.Ecrecover(in[:32], rsv) |
|
|
|
|
// make sure the public key is a valid one
|
|
|
|
|
if pubKey == nil || len(pubKey) != 65 { |
|
|
|
|
return nil |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// the first byte of pubkey is bitcoin heritage
|
|
|
|
|
return common.LeftPadBytes(crypto.Sha3(pubKey[1:])[12:], 32) |
|
|
|
|
} |
|
|
|
|