mirror of https://github.com/ethereum/go-ethereum
crypto, tests/fuzzers: add gnark bn254 precompile methods for fuzzing (#30585)
Makes the gnark precompile methods more amenable to fuzzingrelease/1.14
parent
d7434facba
commit
cba2e77fe2
@ -0,0 +1,51 @@ |
||||
package bn256 |
||||
|
||||
import ( |
||||
"math/big" |
||||
|
||||
"github.com/consensys/gnark-crypto/ecc/bn254" |
||||
) |
||||
|
||||
// G1 is the affine representation of a G1 group element.
|
||||
//
|
||||
// Since this code is used for precompiles, using Jacobian
|
||||
// points are not beneficial because there are no intermediate
|
||||
// points to allow us to save on inversions.
|
||||
//
|
||||
// Note: We also use this struct so that we can conform to the existing API
|
||||
// that the precompiles want.
|
||||
type G1 struct { |
||||
inner bn254.G1Affine |
||||
} |
||||
|
||||
// Add adds `a` and `b` together, storing the result in `g`
|
||||
func (g *G1) Add(a, b *G1) { |
||||
g.inner.Add(&a.inner, &b.inner) |
||||
} |
||||
|
||||
// ScalarMult computes the scalar multiplication between `a` and
|
||||
// `scalar`, storing the result in `g`
|
||||
func (g *G1) ScalarMult(a *G1, scalar *big.Int) { |
||||
g.inner.ScalarMultiplication(&a.inner, scalar) |
||||
} |
||||
|
||||
// Unmarshal deserializes `buf` into `g`
|
||||
//
|
||||
// Note: whether the deserialization is of a compressed
|
||||
// or an uncompressed point, is encoded in the bytes.
|
||||
//
|
||||
// For our purpose, the point will always be serialized
|
||||
// as uncompressed, ie 64 bytes.
|
||||
//
|
||||
// This method also checks whether the point is on the
|
||||
// curve and in the prime order subgroup.
|
||||
func (g *G1) Unmarshal(buf []byte) (int, error) { |
||||
return g.inner.SetBytes(buf) |
||||
} |
||||
|
||||
// Marshal serializes the point into a byte slice.
|
||||
//
|
||||
// Note: The point is serialized as uncompressed.
|
||||
func (p *G1) Marshal() []byte { |
||||
return p.inner.Marshal() |
||||
} |
@ -0,0 +1,38 @@ |
||||
package bn256 |
||||
|
||||
import ( |
||||
"github.com/consensys/gnark-crypto/ecc/bn254" |
||||
) |
||||
|
||||
// G2 is the affine representation of a G2 group element.
|
||||
//
|
||||
// Since this code is used for precompiles, using Jacobian
|
||||
// points are not beneficial because there are no intermediate
|
||||
// points and G2 in particular is only used for the pairing input.
|
||||
//
|
||||
// Note: We also use this struct so that we can conform to the existing API
|
||||
// that the precompiles want.
|
||||
type G2 struct { |
||||
inner bn254.G2Affine |
||||
} |
||||
|
||||
// Unmarshal deserializes `buf` into `g`
|
||||
//
|
||||
// Note: whether the deserialization is of a compressed
|
||||
// or an uncompressed point, is encoded in the bytes.
|
||||
//
|
||||
// For our purpose, the point will always be serialized
|
||||
// as uncompressed, ie 128 bytes.
|
||||
//
|
||||
// This method also checks whether the point is on the
|
||||
// curve and in the prime order subgroup.
|
||||
func (g *G2) Unmarshal(buf []byte) (int, error) { |
||||
return g.inner.SetBytes(buf) |
||||
} |
||||
|
||||
// Marshal serializes the point into a byte slice.
|
||||
//
|
||||
// Note: The point is serialized as uncompressed.
|
||||
func (g *G2) Marshal() []byte { |
||||
return g.inner.Marshal() |
||||
} |
@ -0,0 +1,65 @@ |
||||
package bn256 |
||||
|
||||
import ( |
||||
"fmt" |
||||
"math/big" |
||||
|
||||
"github.com/consensys/gnark-crypto/ecc/bn254" |
||||
) |
||||
|
||||
// GT is the affine representation of a GT field element.
|
||||
//
|
||||
// Note: GT is not explicitly used in mainline code.
|
||||
// It is needed for fuzzing.
|
||||
type GT struct { |
||||
inner bn254.GT |
||||
} |
||||
|
||||
// Pair compute the optimal Ate pairing between a G1 and
|
||||
// G2 element.
|
||||
//
|
||||
// Note: This method is not explicitly used in mainline code.
|
||||
// It is needed for fuzzing. It should also be noted,
|
||||
// that the output of this function may not match other
|
||||
func Pair(a_ *G1, b_ *G2) *GT { |
||||
a := a_.inner |
||||
b := b_.inner |
||||
|
||||
pairingOutput, err := bn254.Pair([]bn254.G1Affine{a}, []bn254.G2Affine{b}) |
||||
|
||||
if err != nil { |
||||
// Since this method is only called during fuzzing, it is okay to panic here.
|
||||
// We do not return an error to match the interface of the other bn256 libraries.
|
||||
panic(fmt.Sprintf("gnark/bn254 encountered error: %v", err)) |
||||
} |
||||
|
||||
return >{ |
||||
inner: pairingOutput, |
||||
} |
||||
} |
||||
|
||||
// Unmarshal deserializes `buf` into `g`
|
||||
//
|
||||
// Note: This method is not explicitly used in mainline code.
|
||||
// It is needed for fuzzing.
|
||||
func (g *GT) Unmarshal(buf []byte) error { |
||||
return g.inner.SetBytes(buf) |
||||
} |
||||
|
||||
// Marshal serializes the point into a byte slice.
|
||||
//
|
||||
// Note: This method is not explicitly used in mainline code.
|
||||
// It is needed for fuzzing.
|
||||
func (g *GT) Marshal() []byte { |
||||
bytes := g.inner.Bytes() |
||||
return bytes[:] |
||||
} |
||||
|
||||
// Exp raises `base` to the power of `exponent`
|
||||
//
|
||||
// Note: This method is not explicitly used in mainline code.
|
||||
// It is needed for fuzzing.
|
||||
func (g *GT) Exp(base GT, exponent *big.Int) *GT { |
||||
g.inner.Exp(base.inner, exponent) |
||||
return g |
||||
} |
@ -0,0 +1,73 @@ |
||||
package bn256 |
||||
|
||||
import ( |
||||
"github.com/consensys/gnark-crypto/ecc/bn254" |
||||
) |
||||
|
||||
// Computes the following relation: ∏ᵢ e(Pᵢ, Qᵢ) =? 1
|
||||
//
|
||||
// To explain why gnark returns a (bool, error):
|
||||
//
|
||||
// - If the function `e` does not return a result then internally
|
||||
// an error is returned.
|
||||
// - If `e` returns a result, then error will be nil,
|
||||
// but if this value is not `1` then the boolean value will be false
|
||||
//
|
||||
// We therefore check for an error, and return false if its non-nil and
|
||||
// then return the value of the boolean if not.
|
||||
func PairingCheck(a_ []*G1, b_ []*G2) bool { |
||||
a := getInnerG1s(a_) |
||||
b := getInnerG2s(b_) |
||||
|
||||
// Assume that len(a) == len(b)
|
||||
//
|
||||
// The pairing function will return
|
||||
// false, if this is not the case.
|
||||
size := len(a) |
||||
|
||||
// Check if input is empty -- gnark will
|
||||
// return false on an empty input, however
|
||||
// the ossified behavior is to return true
|
||||
// on an empty input, so we add this if statement.
|
||||
if size == 0 { |
||||
return true |
||||
} |
||||
|
||||
ok, err := bn254.PairingCheck(a, b) |
||||
if err != nil { |
||||
return false |
||||
} |
||||
return ok |
||||
} |
||||
|
||||
// getInnerG1s gets the inner gnark G1 elements.
|
||||
//
|
||||
// These methods are used for two reasons:
|
||||
//
|
||||
// - We use a new type `G1`, so we need to convert from
|
||||
// []*G1 to []*bn254.G1Affine
|
||||
// - The gnark API accepts slices of values and not slices of
|
||||
// pointers to values, so we need to return []bn254.G1Affine
|
||||
// instead of []*bn254.G1Affine.
|
||||
func getInnerG1s(pointerSlice []*G1) []bn254.G1Affine { |
||||
gnarkValues := make([]bn254.G1Affine, 0, len(pointerSlice)) |
||||
for _, ptr := range pointerSlice { |
||||
if ptr != nil { |
||||
gnarkValues = append(gnarkValues, ptr.inner) |
||||
} |
||||
} |
||||
return gnarkValues |
||||
} |
||||
|
||||
// getInnerG2s gets the inner gnark G2 elements.
|
||||
//
|
||||
// The rationale for this method is the same as `getInnerG1s`.
|
||||
func getInnerG2s(pointerSlice []*G2) []bn254.G2Affine { |
||||
gnarkValues := make([]bn254.G2Affine, 0, len(pointerSlice)) |
||||
for _, ptr := range pointerSlice { |
||||
if ptr != nil { |
||||
gnarkValues = append(gnarkValues, ptr.inner) |
||||
} |
||||
} |
||||
return gnarkValues |
||||
} |
Loading…
Reference in new issue