crypto: add DecompressPubkey, VerifySignature (#15615)

We need those operations for p2p/enr.

Also upgrade github.com/btcsuite/btcd/btcec to the latest version
and improve BenchmarkSha3. The benchmark printed extra output 
that confused tools like benchstat and ignored N.
pull/15619/head
Felix Lange 7 years ago committed by GitHub
parent 6e613cf3de
commit e85b68ef53
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 8
      crypto/crypto_test.go
  2. 49
      crypto/secp256k1/ext.h
  3. 29
      crypto/secp256k1/secp256.go
  4. 18
      crypto/signature_cgo.go
  5. 31
      crypto/signature_nocgo.go
  6. 92
      crypto/signature_test.go
  7. 20
      vendor/github.com/btcsuite/btcd/btcec/README.md
  8. 12
      vendor/github.com/btcsuite/btcd/btcec/btcec.go
  9. 203
      vendor/github.com/btcsuite/btcd/btcec/field.go
  10. 63
      vendor/github.com/btcsuite/btcd/btcec/genprecomps.go
  11. 9
      vendor/github.com/btcsuite/btcd/btcec/pubkey.go
  12. 2
      vendor/github.com/btcsuite/btcd/btcec/secp256k1.go
  13. 15
      vendor/github.com/btcsuite/btcd/btcec/signature.go
  14. 6
      vendor/vendor.json

@ -20,12 +20,10 @@ import (
"bytes"
"crypto/ecdsa"
"encoding/hex"
"fmt"
"io/ioutil"
"math/big"
"os"
"testing"
"time"
"github.com/ethereum/go-ethereum/common"
)
@ -44,13 +42,9 @@ func TestKeccak256Hash(t *testing.T) {
func BenchmarkSha3(b *testing.B) {
a := []byte("hello world")
amount := 1000000
start := time.Now()
for i := 0; i < amount; i++ {
for i := 0; i < b.N; i++ {
Keccak256(a)
}
fmt.Println(amount, ":", time.Since(start))
}
func TestSign(t *testing.T) {

@ -46,6 +46,55 @@ static int secp256k1_ecdsa_recover_pubkey(
return secp256k1_ec_pubkey_serialize(ctx, pubkey_out, &outputlen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
}
// secp256k1_ecdsa_verify_enc verifies an encoded compact signature.
//
// Returns: 1: signature is valid
// 0: signature is invalid
// Args: ctx: pointer to a context object (cannot be NULL)
// In: sigdata: pointer to a 64-byte signature (cannot be NULL)
// msgdata: pointer to a 32-byte message (cannot be NULL)
// pubkeydata: pointer to public key data (cannot be NULL)
// pubkeylen: length of pubkeydata
static int secp256k1_ecdsa_verify_enc(
const secp256k1_context* ctx,
const unsigned char *sigdata,
const unsigned char *msgdata,
const unsigned char *pubkeydata,
size_t pubkeylen
) {
secp256k1_ecdsa_signature sig;
secp256k1_pubkey pubkey;
if (!secp256k1_ecdsa_signature_parse_compact(ctx, &sig, sigdata)) {
return 0;
}
if (!secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeydata, pubkeylen)) {
return 0;
}
return secp256k1_ecdsa_verify(ctx, &sig, msgdata, &pubkey);
}
// secp256k1_decompress_pubkey decompresses a public key.
//
// Returns: 1: public key is valid
// 0: public key is invalid
// Args: ctx: pointer to a context object (cannot be NULL)
// Out: pubkey_out: the serialized 65-byte public key (cannot be NULL)
// In: pubkeydata: pointer to 33 bytes of compressed public key data (cannot be NULL)
static int secp256k1_decompress_pubkey(
const secp256k1_context* ctx,
unsigned char *pubkey_out,
const unsigned char *pubkeydata
) {
secp256k1_pubkey pubkey;
if (!secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeydata, 33)) {
return 0;
}
size_t outputlen = 65;
return secp256k1_ec_pubkey_serialize(ctx, pubkey_out, &outputlen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
}
// secp256k1_pubkey_scalar_mul multiplies a point by a scalar in constant time.
//
// Returns: 1: multiplication was successful

@ -38,6 +38,7 @@ import "C"
import (
"errors"
"math/big"
"unsafe"
)
@ -55,6 +56,7 @@ var (
ErrInvalidSignatureLen = errors.New("invalid signature length")
ErrInvalidRecoveryID = errors.New("invalid signature recovery id")
ErrInvalidKey = errors.New("invalid private key")
ErrInvalidPubkey = errors.New("invalid public key")
ErrSignFailed = errors.New("signing failed")
ErrRecoverFailed = errors.New("recovery failed")
)
@ -119,6 +121,33 @@ func RecoverPubkey(msg []byte, sig []byte) ([]byte, error) {
return pubkey, nil
}
// VerifySignature checks that the given pubkey created signature over message.
// The signature should be in [R || S] format.
func VerifySignature(pubkey, msg, signature []byte) bool {
if len(msg) != 32 || len(signature) != 64 || len(pubkey) == 0 {
return false
}
sigdata := (*C.uchar)(unsafe.Pointer(&signature[0]))
msgdata := (*C.uchar)(unsafe.Pointer(&msg[0]))
keydata := (*C.uchar)(unsafe.Pointer(&pubkey[0]))
return C.secp256k1_ecdsa_verify_enc(context, sigdata, msgdata, keydata, C.size_t(len(pubkey))) != 0
}
// DecompressPubkey parses a public key in the 33-byte compressed format.
// It returns non-nil coordinates if the public key is valid.
func DecompressPubkey(pubkey []byte) (X, Y *big.Int) {
if len(pubkey) != 33 {
return nil, nil
}
buf := make([]byte, 65)
bufdata := (*C.uchar)(unsafe.Pointer(&buf[0]))
pubkeydata := (*C.uchar)(unsafe.Pointer(&pubkey[0]))
if C.secp256k1_decompress_pubkey(context, bufdata, pubkeydata) == 0 {
return nil, nil
}
return new(big.Int).SetBytes(buf[1:33]), new(big.Int).SetBytes(buf[33:])
}
func checkSignature(sig []byte) error {
if len(sig) != 65 {
return ErrInvalidSignatureLen

@ -27,10 +27,12 @@ import (
"github.com/ethereum/go-ethereum/crypto/secp256k1"
)
// Ecrecover returns the uncompressed public key that created the given signature.
func Ecrecover(hash, sig []byte) ([]byte, error) {
return secp256k1.RecoverPubkey(hash, sig)
}
// SigToPub returns the public key that created the given signature.
func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
s, err := Ecrecover(hash, sig)
if err != nil {
@ -58,6 +60,22 @@ func Sign(hash []byte, prv *ecdsa.PrivateKey) (sig []byte, err error) {
return secp256k1.Sign(hash, seckey)
}
// VerifySignature checks that the given public key created signature over hash.
// The public key should be in compressed (33 bytes) or uncompressed (65 bytes) format.
// The signature should have the 64 byte [R || S] format.
func VerifySignature(pubkey, hash, signature []byte) bool {
return secp256k1.VerifySignature(pubkey, hash, signature)
}
// DecompressPubkey parses a public key in the 33-byte compressed format.
func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) {
x, y := secp256k1.DecompressPubkey(pubkey)
if x == nil {
return nil, fmt.Errorf("invalid public key")
}
return &ecdsa.PublicKey{X: x, Y: y, Curve: S256()}, nil
}
// S256 returns an instance of the secp256k1 curve.
func S256() elliptic.Curve {
return secp256k1.S256()

@ -21,11 +21,14 @@ package crypto
import (
"crypto/ecdsa"
"crypto/elliptic"
"errors"
"fmt"
"math/big"
"github.com/btcsuite/btcd/btcec"
)
// Ecrecover returns the uncompressed public key that created the given signature.
func Ecrecover(hash, sig []byte) ([]byte, error) {
pub, err := SigToPub(hash, sig)
if err != nil {
@ -35,6 +38,7 @@ func Ecrecover(hash, sig []byte) ([]byte, error) {
return bytes, err
}
// SigToPub returns the public key that created the given signature.
func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) {
// Convert to btcec input format with 'recovery id' v at the beginning.
btcsig := make([]byte, 65)
@ -71,6 +75,33 @@ func Sign(hash []byte, prv *ecdsa.PrivateKey) ([]byte, error) {
return sig, nil
}
// VerifySignature checks that the given public key created signature over hash.
// The public key should be in compressed (33 bytes) or uncompressed (65 bytes) format.
// The signature should have the 64 byte [R || S] format.
func VerifySignature(pubkey, hash, signature []byte) bool {
if len(signature) != 64 {
return false
}
sig := &btcec.Signature{R: new(big.Int).SetBytes(signature[:32]), S: new(big.Int).SetBytes(signature[32:])}
key, err := btcec.ParsePubKey(pubkey, btcec.S256())
if err != nil {
return false
}
return sig.Verify(hash, key)
}
// DecompressPubkey parses a public key in the 33-byte compressed format.
func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) {
if len(pubkey) != 33 {
return nil, errors.New("invalid compressed public key length")
}
key, err := btcec.ParsePubKey(pubkey, btcec.S256())
if err != nil {
return nil, err
}
return key.ToECDSA(), nil
}
// S256 returns an instance of the secp256k1 curve.
func S256() elliptic.Curve {
return btcec.S256()

@ -18,19 +18,95 @@ package crypto
import (
"bytes"
"encoding/hex"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/hexutil"
)
var (
testmsg = hexutil.MustDecode("0xce0677bb30baa8cf067c88db9811f4333d131bf8bcf12fe7065d211dce971008")
testsig = hexutil.MustDecode("0x90f27b8b488db00b00606796d2987f6a5f59ae62ea05effe84fef5b8b0e549984a691139ad57a3f0b906637673aa2f63d1f55cb1a69199d4009eea23ceaddc9301")
testpubkey = hexutil.MustDecode("0x04e32df42865e97135acfb65f3bae71bdc86f4d49150ad6a440b6f15878109880a0a2b2667f7e725ceea70c673093bf67663e0312623c8e091b13cf2c0f11ef652")
testpubkeyc = hexutil.MustDecode("0x02e32df42865e97135acfb65f3bae71bdc86f4d49150ad6a440b6f15878109880a")
)
func TestRecoverSanity(t *testing.T) {
msg, _ := hex.DecodeString("ce0677bb30baa8cf067c88db9811f4333d131bf8bcf12fe7065d211dce971008")
sig, _ := hex.DecodeString("90f27b8b488db00b00606796d2987f6a5f59ae62ea05effe84fef5b8b0e549984a691139ad57a3f0b906637673aa2f63d1f55cb1a69199d4009eea23ceaddc9301")
pubkey1, _ := hex.DecodeString("04e32df42865e97135acfb65f3bae71bdc86f4d49150ad6a440b6f15878109880a0a2b2667f7e725ceea70c673093bf67663e0312623c8e091b13cf2c0f11ef652")
pubkey2, err := Ecrecover(msg, sig)
func TestEcrecover(t *testing.T) {
pubkey, err := Ecrecover(testmsg, testsig)
if err != nil {
t.Fatalf("recover error: %s", err)
}
if !bytes.Equal(pubkey1, pubkey2) {
t.Errorf("pubkey mismatch: want: %x have: %x", pubkey1, pubkey2)
if !bytes.Equal(pubkey, testpubkey) {
t.Errorf("pubkey mismatch: want: %x have: %x", testpubkey, pubkey)
}
}
func TestVerifySignature(t *testing.T) {
sig := testsig[:len(testsig)-1] // remove recovery id
if !VerifySignature(testpubkey, testmsg, sig) {
t.Errorf("can't verify signature with uncompressed key")
}
if !VerifySignature(testpubkeyc, testmsg, sig) {
t.Errorf("can't verify signature with compressed key")
}
if VerifySignature(nil, testmsg, sig) {
t.Errorf("signature valid with no key")
}
if VerifySignature(testpubkey, nil, sig) {
t.Errorf("signature valid with no message")
}
if VerifySignature(testpubkey, testmsg, nil) {
t.Errorf("nil signature valid")
}
if VerifySignature(testpubkey, testmsg, append(common.CopyBytes(sig), 1, 2, 3)) {
t.Errorf("signature valid with extra bytes at the end")
}
if VerifySignature(testpubkey, testmsg, sig[:len(sig)-2]) {
t.Errorf("signature valid even though it's incomplete")
}
}
func TestDecompressPubkey(t *testing.T) {
key, err := DecompressPubkey(testpubkeyc)
if err != nil {
t.Fatal(err)
}
if uncompressed := FromECDSAPub(key); !bytes.Equal(uncompressed, testpubkey) {
t.Errorf("wrong public key result: got %x, want %x", uncompressed, testpubkey)
}
if _, err := DecompressPubkey(nil); err == nil {
t.Errorf("no error for nil pubkey")
}
if _, err := DecompressPubkey(testpubkeyc[:5]); err == nil {
t.Errorf("no error for incomplete pubkey")
}
if _, err := DecompressPubkey(append(common.CopyBytes(testpubkeyc), 1, 2, 3)); err == nil {
t.Errorf("no error for pubkey with extra bytes at the end")
}
}
func BenchmarkEcrecoverSignature(b *testing.B) {
for i := 0; i < b.N; i++ {
if _, err := Ecrecover(testmsg, testsig); err != nil {
b.Fatal("ecrecover error", err)
}
}
}
func BenchmarkVerifySignature(b *testing.B) {
sig := testsig[:len(testsig)-1] // remove recovery id
for i := 0; i < b.N; i++ {
if !VerifySignature(testpubkey, testmsg, sig) {
b.Fatal("verify error")
}
}
}
func BenchmarkDecompressPubkey(b *testing.B) {
for i := 0; i < b.N; i++ {
if _, err := DecompressPubkey(testpubkeyc); err != nil {
b.Fatal(err)
}
}
}

@ -1,11 +1,9 @@
btcec
=====
[![Build Status](https://travis-ci.org/btcsuite/btcd.png?branch=master)]
(https://travis-ci.org/btcsuite/btcec) [![ISC License]
(http://img.shields.io/badge/license-ISC-blue.svg)](http://copyfree.org)
[![GoDoc](https://godoc.org/github.com/btcsuite/btcd/btcec?status.png)]
(http://godoc.org/github.com/btcsuite/btcd/btcec)
[![Build Status](https://travis-ci.org/btcsuite/btcd.png?branch=master)](https://travis-ci.org/btcsuite/btcec)
[![ISC License](http://img.shields.io/badge/license-ISC-blue.svg)](http://copyfree.org)
[![GoDoc](https://godoc.org/github.com/btcsuite/btcd/btcec?status.png)](http://godoc.org/github.com/btcsuite/btcd/btcec)
Package btcec implements elliptic curve cryptography needed for working with
Bitcoin (secp256k1 only for now). It is designed so that it may be used with the
@ -27,23 +25,19 @@ $ go get -u github.com/btcsuite/btcd/btcec
## Examples
* [Sign Message]
(http://godoc.org/github.com/btcsuite/btcd/btcec#example-package--SignMessage)
* [Sign Message](http://godoc.org/github.com/btcsuite/btcd/btcec#example-package--SignMessage)
Demonstrates signing a message with a secp256k1 private key that is first
parsed form raw bytes and serializing the generated signature.
* [Verify Signature]
(http://godoc.org/github.com/btcsuite/btcd/btcec#example-package--VerifySignature)
* [Verify Signature](http://godoc.org/github.com/btcsuite/btcd/btcec#example-package--VerifySignature)
Demonstrates verifying a secp256k1 signature against a public key that is
first parsed from raw bytes. The signature is also parsed from raw bytes.
* [Encryption]
(http://godoc.org/github.com/btcsuite/btcd/btcec#example-package--EncryptMessage)
* [Encryption](http://godoc.org/github.com/btcsuite/btcd/btcec#example-package--EncryptMessage)
Demonstrates encrypting a message for a public key that is first parsed from
raw bytes, then decrypting it using the corresponding private key.
* [Decryption]
(http://godoc.org/github.com/btcsuite/btcd/btcec#example-package--DecryptMessage)
* [Decryption](http://godoc.org/github.com/btcsuite/btcd/btcec#example-package--DecryptMessage)
Demonstrates decrypting a message using a private key that is first parsed
from raw bytes.

@ -36,8 +36,9 @@ var (
// interface from crypto/elliptic.
type KoblitzCurve struct {
*elliptic.CurveParams
q *big.Int
H int // cofactor of the curve.
q *big.Int
H int // cofactor of the curve.
halfOrder *big.Int // half the order N
// byteSize is simply the bit size / 8 and is provided for convenience
// since it is calculated repeatedly.
@ -747,9 +748,9 @@ func NAF(k []byte) ([]byte, []byte) {
}
if carry {
retPos[0] = 1
return retPos, retNeg
}
return retPos, retNeg
return retPos[1:], retNeg[1:]
}
// ScalarMult returns k*(Bx, By) where k is a big endian integer.
@ -912,9 +913,10 @@ func initS256() {
secp256k1.Gx = fromHex("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798")
secp256k1.Gy = fromHex("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8")
secp256k1.BitSize = 256
secp256k1.H = 1
secp256k1.q = new(big.Int).Div(new(big.Int).Add(secp256k1.P,
big.NewInt(1)), big.NewInt(4))
secp256k1.H = 1
secp256k1.halfOrder = new(big.Int).Rsh(secp256k1.N, 1)
// Provided for convenience since this gets computed repeatedly.
secp256k1.byteSize = secp256k1.BitSize / 8

@ -100,10 +100,6 @@ const (
// fieldPrimeWordOne is word one of the secp256k1 prime in the
// internal field representation. It is used during negation.
fieldPrimeWordOne = 0x3ffffbf
// primeLowBits is the lower 2*fieldBase bits of the secp256k1 prime in
// its standard normalized form. It is used during modular reduction.
primeLowBits = 0xffffefffffc2f
)
// fieldVal implements optimized fixed-precision arithmetic over the
@ -250,39 +246,15 @@ func (f *fieldVal) SetHex(hexString string) *fieldVal {
// performs fast modular reduction over the secp256k1 prime by making use of the
// special form of the prime.
func (f *fieldVal) Normalize() *fieldVal {
// The field representation leaves 6 bits of overflow in each
// word so intermediate calculations can be performed without needing
// to propagate the carry to each higher word during the calculations.
// In order to normalize, first we need to "compact" the full 256-bit
// value to the right and treat the additional 64 leftmost bits as
// the magnitude.
m := f.n[0]
t0 := m & fieldBaseMask
m = (m >> fieldBase) + f.n[1]
t1 := m & fieldBaseMask
m = (m >> fieldBase) + f.n[2]
t2 := m & fieldBaseMask
m = (m >> fieldBase) + f.n[3]
t3 := m & fieldBaseMask
m = (m >> fieldBase) + f.n[4]
t4 := m & fieldBaseMask
m = (m >> fieldBase) + f.n[5]
t5 := m & fieldBaseMask
m = (m >> fieldBase) + f.n[6]
t6 := m & fieldBaseMask
m = (m >> fieldBase) + f.n[7]
t7 := m & fieldBaseMask
m = (m >> fieldBase) + f.n[8]
t8 := m & fieldBaseMask
m = (m >> fieldBase) + f.n[9]
t9 := m & fieldMSBMask
m = m >> fieldMSBBits
// At this point, if the magnitude is greater than 0, the overall value
// is greater than the max possible 256-bit value. In particular, it is
// "how many times larger" than the max value it is. Since this field
// is doing arithmetic modulo the secp256k1 prime, we need to perform
// modular reduction over the prime.
// The field representation leaves 6 bits of overflow in each word so
// intermediate calculations can be performed without needing to
// propagate the carry to each higher word during the calculations. In
// order to normalize, we need to "compact" the full 256-bit value to
// the right while propagating any carries through to the high order
// word.
//
// Since this field is doing arithmetic modulo the secp256k1 prime, we
// also need to perform modular reduction over the prime.
//
// Per [HAC] section 14.3.4: Reduction method of moduli of special form,
// when the modulus is of the special form m = b^t - c, highly efficient
@ -298,98 +270,87 @@ func (f *fieldVal) Normalize() *fieldVal {
//
// The algorithm presented in the referenced section typically repeats
// until the quotient is zero. However, due to our field representation
// we already know at least how many times we would need to repeat as
// it's the value currently in m. Thus we can simply multiply the
// magnitude by the field representation of the prime and do a single
// iteration. Notice that nothing will be changed when the magnitude is
// zero, so we could skip this in that case, however always running
// regardless allows it to run in constant time.
r := t0 + m*977
t0 = r & fieldBaseMask
r = (r >> fieldBase) + t1 + m*64
t1 = r & fieldBaseMask
r = (r >> fieldBase) + t2
t2 = r & fieldBaseMask
r = (r >> fieldBase) + t3
t3 = r & fieldBaseMask
r = (r >> fieldBase) + t4
t4 = r & fieldBaseMask
r = (r >> fieldBase) + t5
t5 = r & fieldBaseMask
r = (r >> fieldBase) + t6
t6 = r & fieldBaseMask
r = (r >> fieldBase) + t7
t7 = r & fieldBaseMask
r = (r >> fieldBase) + t8
t8 = r & fieldBaseMask
r = (r >> fieldBase) + t9
t9 = r & fieldMSBMask
// At this point, the result will be in the range 0 <= result <=
// prime + (2^64 - c). Therefore, one more subtraction of the prime
// might be needed if the current result is greater than or equal to the
// prime. The following does the final reduction in constant time.
// Note that the if/else here intentionally does the bitwise OR with
// zero even though it won't change the value to ensure constant time
// between the branches.
var mask int32
lowBits := uint64(t1)<<fieldBase | uint64(t0)
if lowBits < primeLowBits {
mask |= -1
} else {
mask |= 0
}
if t2 < fieldBaseMask {
mask |= -1
} else {
mask |= 0
}
if t3 < fieldBaseMask {
mask |= -1
} else {
mask |= 0
}
if t4 < fieldBaseMask {
mask |= -1
} else {
mask |= 0
}
if t5 < fieldBaseMask {
mask |= -1
} else {
mask |= 0
}
if t6 < fieldBaseMask {
mask |= -1
// we already know to within one reduction how many times we would need
// to repeat as it's the uppermost bits of the high order word. Thus we
// can simply multiply the magnitude by the field representation of the
// prime and do a single iteration. After this step there might be an
// additional carry to bit 256 (bit 22 of the high order word).
t9 := f.n[9]
m := t9 >> fieldMSBBits
t9 = t9 & fieldMSBMask
t0 := f.n[0] + m*977
t1 := (t0 >> fieldBase) + f.n[1] + (m << 6)
t0 = t0 & fieldBaseMask
t2 := (t1 >> fieldBase) + f.n[2]
t1 = t1 & fieldBaseMask
t3 := (t2 >> fieldBase) + f.n[3]
t2 = t2 & fieldBaseMask
t4 := (t3 >> fieldBase) + f.n[4]
t3 = t3 & fieldBaseMask
t5 := (t4 >> fieldBase) + f.n[5]
t4 = t4 & fieldBaseMask
t6 := (t5 >> fieldBase) + f.n[6]
t5 = t5 & fieldBaseMask
t7 := (t6 >> fieldBase) + f.n[7]
t6 = t6 & fieldBaseMask
t8 := (t7 >> fieldBase) + f.n[8]
t7 = t7 & fieldBaseMask
t9 = (t8 >> fieldBase) + t9
t8 = t8 & fieldBaseMask
// At this point, the magnitude is guaranteed to be one, however, the
// value could still be greater than the prime if there was either a
// carry through to bit 256 (bit 22 of the higher order word) or the
// value is greater than or equal to the field characteristic. The
// following determines if either or these conditions are true and does
// the final reduction in constant time.
//
// Note that the if/else statements here intentionally do the bitwise
// operators even when it won't change the value to ensure constant time
// between the branches. Also note that 'm' will be zero when neither
// of the aforementioned conditions are true and the value will not be
// changed when 'm' is zero.
m = 1
if t9 == fieldMSBMask {
m &= 1
} else {
mask |= 0
m &= 0
}
if t7 < fieldBaseMask {
mask |= -1
if t2&t3&t4&t5&t6&t7&t8 == fieldBaseMask {
m &= 1
} else {
mask |= 0
m &= 0
}
if t8 < fieldBaseMask {
mask |= -1
if ((t0+977)>>fieldBase + t1 + 64) > fieldBaseMask {
m &= 1
} else {
mask |= 0
m &= 0
}
if t9 < fieldMSBMask {
mask |= -1
if t9>>fieldMSBBits != 0 {
m |= 1
} else {
mask |= 0
m |= 0
}
lowBits -= ^uint64(mask) & primeLowBits
t0 = uint32(lowBits & fieldBaseMask)
t1 = uint32((lowBits >> fieldBase) & fieldBaseMask)
t2 = t2 & uint32(mask)
t3 = t3 & uint32(mask)
t4 = t4 & uint32(mask)
t5 = t5 & uint32(mask)
t6 = t6 & uint32(mask)
t7 = t7 & uint32(mask)
t8 = t8 & uint32(mask)
t9 = t9 & uint32(mask)
t0 = t0 + m*977
t1 = (t0 >> fieldBase) + t1 + (m << 6)
t0 = t0 & fieldBaseMask
t2 = (t1 >> fieldBase) + t2
t1 = t1 & fieldBaseMask
t3 = (t2 >> fieldBase) + t3
t2 = t2 & fieldBaseMask
t4 = (t3 >> fieldBase) + t4
t3 = t3 & fieldBaseMask
t5 = (t4 >> fieldBase) + t5
t4 = t4 & fieldBaseMask
t6 = (t5 >> fieldBase) + t6
t5 = t5 & fieldBaseMask
t7 = (t6 >> fieldBase) + t7
t6 = t6 & fieldBaseMask
t8 = (t7 >> fieldBase) + t8
t7 = t7 & fieldBaseMask
t9 = (t8 >> fieldBase) + t9
t8 = t8 & fieldBaseMask
t9 = t9 & fieldMSBMask // Remove potential multiple of 2^256.
// Finally, set the normalized and reduced words.
f.n[0] = t0

@ -1,63 +0,0 @@
// Copyright 2015 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
// This file is ignored during the regular build due to the following build tag.
// It is called by go generate and used to automatically generate pre-computed
// tables used to accelerate operations.
// +build ignore
package main
import (
"bytes"
"compress/zlib"
"encoding/base64"
"fmt"
"log"
"os"
"github.com/btcsuite/btcd/btcec"
)
func main() {
fi, err := os.Create("secp256k1.go")
if err != nil {
log.Fatal(err)
}
defer fi.Close()
// Compress the serialized byte points.
serialized := btcec.S256().SerializedBytePoints()
var compressed bytes.Buffer
w := zlib.NewWriter(&compressed)
if _, err := w.Write(serialized); err != nil {
fmt.Println(err)
os.Exit(1)
}
w.Close()
// Encode the compressed byte points with base64.
encoded := make([]byte, base64.StdEncoding.EncodedLen(compressed.Len()))
base64.StdEncoding.Encode(encoded, compressed.Bytes())
fmt.Fprintln(fi, "// Copyright (c) 2015 The btcsuite developers")
fmt.Fprintln(fi, "// Use of this source code is governed by an ISC")
fmt.Fprintln(fi, "// license that can be found in the LICENSE file.")
fmt.Fprintln(fi)
fmt.Fprintln(fi, "package btcec")
fmt.Fprintln(fi)
fmt.Fprintln(fi, "// Auto-generated file (see genprecomps.go)")
fmt.Fprintln(fi, "// DO NOT EDIT")
fmt.Fprintln(fi)
fmt.Fprintf(fi, "var secp256k1BytePoints = %q\n", string(encoded))
a1, b1, a2, b2 := btcec.S256().EndomorphismVectors()
fmt.Println("The following values are the computed linearly " +
"independent vectors needed to make use of the secp256k1 " +
"endomorphism:")
fmt.Printf("a1: %x\n", a1)
fmt.Printf("b1: %x\n", b1)
fmt.Printf("a2: %x\n", a2)
fmt.Printf("b2: %x\n", b2)
}

@ -54,6 +54,15 @@ const (
pubkeyHybrid byte = 0x6 // y_bit + x coord + y coord
)
// IsCompressedPubKey returns true the the passed serialized public key has
// been encoded in compressed format, and false otherwise.
func IsCompressedPubKey(pubKey []byte) bool {
// The public key is only compressed if it is the correct length and
// the format (first byte) is one of the compressed pubkey values.
return len(pubKey) == PubKeyBytesLenCompressed &&
(pubKey[0]&^byte(0x1) == pubkeyCompressed)
}
// ParsePubKey parses a public key for a koblitz curve from a bytestring into a
// ecdsa.Publickey, verifying that it is valid. It supports compressed,
// uncompressed and hybrid signature formats.

File diff suppressed because one or more lines are too long

@ -29,10 +29,6 @@ type Signature struct {
}
var (
// Curve order and halforder, used to tame ECDSA malleability (see BIP-0062)
order = new(big.Int).Set(S256().N)
halforder = new(big.Int).Rsh(order, 1)
// Used in RFC6979 implementation when testing the nonce for correctness
one = big.NewInt(1)
@ -51,8 +47,8 @@ var (
func (sig *Signature) Serialize() []byte {
// low 'S' malleability breaker
sigS := sig.S
if sigS.Cmp(halforder) == 1 {
sigS = new(big.Int).Sub(order, sigS)
if sigS.Cmp(S256().halfOrder) == 1 {
sigS = new(big.Int).Sub(S256().N, sigS)
}
// Ensure the encoded bytes for the r and s values are canonical and
// thus suitable for DER encoding.
@ -62,7 +58,7 @@ func (sig *Signature) Serialize() []byte {
// total length of returned signature is 1 byte for each magic and
// length (6 total), plus lengths of r and s
length := 6 + len(rb) + len(sb)
b := make([]byte, length, length)
b := make([]byte, length)
b[0] = 0x30
b[1] = byte(length - 2)
@ -420,7 +416,8 @@ func RecoverCompact(curve *KoblitzCurve, signature,
func signRFC6979(privateKey *PrivateKey, hash []byte) (*Signature, error) {
privkey := privateKey.ToECDSA()
N := order
N := S256().N
halfOrder := S256().halfOrder
k := nonceRFC6979(privkey.D, hash)
inv := new(big.Int).ModInverse(k, N)
r, _ := privkey.Curve.ScalarBaseMult(k.Bytes())
@ -438,7 +435,7 @@ func signRFC6979(privateKey *PrivateKey, hash []byte) (*Signature, error) {
s.Mul(s, inv)
s.Mod(s, N)
if s.Cmp(halforder) == 1 {
if s.Cmp(halfOrder) == 1 {
s.Sub(N, s)
}
if s.Sign() == 0 {

@ -51,10 +51,10 @@
"revisionTime": "2017-02-10T01:56:32Z"
},
{
"checksumSHA1": "fIpm6Vr5a8kgr22gWkQx7vKUTyU=",
"checksumSHA1": "gZQ6HheWahvZzIc3phBnOwoWHjE=",
"path": "github.com/btcsuite/btcd/btcec",
"revision": "d06c0bb181529331be8f8d9350288c420d9e60e4",
"revisionTime": "2017-02-01T21:25:25Z"
"revision": "2e60448ffcc6bf78332d1fe590260095f554dd78",
"revisionTime": "2017-11-28T15:02:46Z"
},
{
"checksumSHA1": "cDMtzKmdTx4CcIpP4broa+16X9g=",

Loading…
Cancel
Save