* accounts, cmd, eth, ethdb: port logs over to new system
* ethdb: drop concept of cache distribution between dbs
* eth: fix some log nitpicks to make them nicer
Reworked the EVM gas instructions to use 64bit integers rather than
arbitrary size big ints. All gas operations, be it additions,
multiplications or divisions, are checked and guarded against 64 bit
integer overflows.
In additon, most of the protocol paramaters in the params package have
been converted to uint64 and are now constants rather than variables.
* common/math: added overflow check ops
* core: vmenv, env renamed to evm
* eth, internal/ethapi, les: unmetered eth_call and cancel methods
* core/vm: implemented big.Int pool for evm instructions
* core/vm: unexported intPool methods & verification methods
* core/vm: added memoryGasCost overflow check and test
Reworked the EVM gas instructions to use 64bit integers rather than
arbitrary size big ints. All gas operations, be it additions,
multiplications or divisions, are checked and guarded against 64 bit
integer overflows.
In additon, most of the protocol paramaters in the params package have
been converted to uint64 and are now constants rather than variables.
* common/math: added overflow check ops
* core: vmenv, env renamed to evm
* eth, internal/ethapi, les: unmetered eth_call and cancel methods
* core/vm: implemented big.Int pool for evm instructions
* core/vm: unexported intPool methods & verification methods
* core/vm: added memoryGasCost overflow check and test
State and receipt deliveries from a previous eth/62+ sync can hang if
the downloader has moved on to syncing with eth/61. Fix this by also
draining the eth/63 channels while waiting for eth/61 data.
A nicer solution would be to take care of the channels in a central
place, but that would involve a major rewrite.
Unexpected deliveries could block indefinitely if they arrived at the
right time. The fix is to ensure that the cancellation channel is
always closed when the sync ends, unblocking any deliveries. Also remove
the atomic check for whether a sync is currently running because it
doesn't help and can be misleading.
Cancelling always seems to break the tests though. The downloader
spawned d.process whenever new data arrived, making it somewhat hard to
track when block processing was actually done. Fix this by running
d.process in a dedicated goroutine that is tied to the lifecycle of the
sync. d.process gets notified of new work by the queue instead of being
invoked all the time. This removes a ton of weird workaround code,
including a hairy use of atomic CAS.