This PR adds `DeleteRange` to `ethdb.KeyValueWriter`. While range
deletion using an iterator can be really slow, `DeleteRange` is natively
supported by pebble and apparently runs in O(1) time (typically 20-30ms
in my tests for removing hundreds of millions of keys and gigabytes of
data). For leveldb and memorydb an iterator based fallback is
implemented. Note that since the iterator method can be slow and a
database function should not unexpectedly block for a very long time,
the number of deleted keys is limited at 10000 which should ensure that
it does not block for more than a second. ErrTooManyKeys is returned if
the range has only been partially deleted. In this case the caller can
repeat the call until it finally succeeds.
This change makes the trie commit operation concurrent, if the number of changes exceed 100.
Co-authored-by: stevemilk <wangpeculiar@gmail.com>
Co-authored-by: Gary Rong <garyrong0905@gmail.com>
* cmd/geth, ethdb/pebble: polish method naming and code comment
* implement db stat for pebble
* cmd, core, ethdb, internal, trie: remove db property selector
* cmd, core, ethdb: fix function description
---------
Co-authored-by: prpeh <prpeh@proton.me>
Co-authored-by: Gary Rong <garyrong0905@gmail.com>
This pull request defines a gentrie for snap sync purpose.
The stackTrie is used to generate the merkle tree nodes upon receiving a state batch. Several additional options have been added into stackTrie to handle incomplete states (either missing states before or after).
In this pull request, these options have been relocated from stackTrie to genTrie, which serves as a wrapper for stackTrie specifically for snap sync purposes.
Further, the logic for managing incomplete state has been enhanced in this change. Originally, there are two cases handled:
- boundary node filtering
- internal (covered by extension node) node clearing
This changes adds one more:
- Clearing leftover nodes on the boundaries.
This feature is necessary if there are leftover trie nodes in database, otherwise node inconsistency may break the state healing.
This change makes use of uin256 to represent balance in state. It touches primarily upon statedb, stateobject and state processing, trying to avoid changes in transaction pools, core types, rpc and tracers.
This PR moves our fuzzers from tests/fuzzers into whatever their respective 'native' package is.
The historical reason why they were placed in an external location, is that when they were based on go-fuzz, they could not be "hidden" via the _test.go prefix. So in order to shove them away from the go-ethereum "production code", they were put aside.
But now we've rewritten them to be based on golang testing, and thus can be brought back. I've left (in tests/) the ones that are not production (bls128381), require non-standard imports (secp requires btcec, bn256 requires gnark/google/cloudflare deps).
This PR also adds a fuzzer for precompiled contracts, because why not.
This PR utilizes a newly rewritten replacement for go-118-fuzz-build, namely gofuzz-shim, which utilises the inputs from the fuzzing engine better.
This change enhances the stacktrie constructor by introducing an option struct. It also simplifies the `Hash` and `Commit` operations, getting rid of the special handling round root node.
This change
- Removes the owner-notion from a stacktrie; the owner is only ever needed for comitting to the database, but the commit-function, the `writeFn` is provided by the caller, so the caller can just set the owner into the `writeFn` instead of having it passed through the stacktrie.
- Removes the `encoding.BinaryMarshaler`/`encoding.BinaryUnmarshaler` interface from stacktrie. We're not using it, and it is doubtful whether anyone downstream is either.
This change fixes the bug in a benchmark, where the input to the trie is reused in a way which is not correct.
---------
Co-authored-by: Martin Holst Swende <martin@swende.se>
* all: implement path-based state scheme
* all: edits from review
* core/rawdb, trie/triedb/pathdb: review changes
* core, light, trie, eth, tests: reimplement pbss history
* core, trie/triedb/pathdb: track block number in state history
* trie/triedb/pathdb: add history documentation
* core, trie/triedb/pathdb: address comments from Peter's review
Important changes to list:
- Cache trie nodes by path in clean cache
- Remove root->id mappings when history is truncated
* trie/triedb/pathdb: fallback to disk if unexpect node in clean cache
* core/rawdb: fix tests
* trie/triedb/pathdb: rename metrics, change clean cache key
* trie/triedb: manage the clean cache inside of disk layer
* trie/triedb/pathdb: move journal function
* trie/triedb/path: fix tests
* trie/triedb/pathdb: fix journal
* trie/triedb/pathdb: fix history
* trie/triedb/pathdb: try to fix tests on windows
* core, trie: address comments
* trie/triedb/pathdb: fix test issues
---------
Co-authored-by: Felix Lange <fjl@twurst.com>
Co-authored-by: Martin Holst Swende <martin@swende.se>
This change makes the StateDB track the state key value diff of a block transition.
We already tracked current account and storage values for the purpose of updating
the state snapshot. With this PR, we now also track the original (pre-transition) values
of accounts and storage slots.
The state availability is checked during the creation of a state reader.
- In hash-based database, if the specified root node does not exist on disk disk, then
the state reader won't be created and an error will be returned.
- In path-based database, if the specified state layer is not available, then the
state reader won't be created and an error will be returned.
This change also contains a stricter semantics regarding the `Commit` operation: once it has been performed, the trie is no longer usable, and certain operations will return an error.
This removes the feature where top nodes of the proof can be elided.
It was intended to be used by the LES server, to save bandwidth
when the client had already fetched parts of the state and only needed
some extra nodes to complete the proof. Alas, it never got implemented
in the client.
* trie: add node type common package
In trie/types package, a few node wrappers are defined, which will be used
in both trie package, trie/snap package, etc. Therefore, a standalone common
package is created to put these stuffs.
* trie: rename trie/types to trie/trienode
In this PR, all TryXXX(e.g. TryGet) APIs of trie are renamed to XXX(e.g. Get) with an error returned.
The original XXX(e.g. Get) APIs are renamed to MustXXX(e.g. MustGet) and does not return any error -- they print a log output. A future PR will change the behaviour to panic on errorrs.
The EmptyRootHash and EmptyCodeHash are defined everywhere in the codebase, this PR replaces all of them with unified one defined in core/types package, and also defines constants for TxRoot, WithdrawalsRoot and UncleRoot
This PR contains a small portion of the full pbss PR, namely
Remove the tracer from trie (and comitter), and instead using an accessList.
Related changes to the Nodeset.
---------
Co-authored-by: Gary Rong <garyrong0905@gmail.com>
This PR is a (superior) alternative to https://github.com/ethereum/go-ethereum/pull/26708, it handles deprecation, primarily two specific cases.
`rand.Seed` is typically used in two ways
- `rand.Seed(time.Now().UnixNano())` -- we seed it, just to be sure to get some random, and not always get the same thing on every run. This is not needed, with global seeding, so those are just removed.
- `rand.Seed(1)` this is typically done to ensure we have a stable test. If we rely on this, we need to fix up the tests to use a deterministic prng-source. A few occurrences like this has been replaced with a proper custom source.
`rand.Read` has been replaced by `crypto/rand`.`Read` in this PR.
This change ports some changes from the main PBSS PR:
- get rid of callback function in `trie.Database.Commit` which is not required anymore
- rework the `nodeResolver` in `trie.Iterator` to make it compatible with multiple state scheme
- some other shallow changes in tests and typo-fixes
This PR moves some trie-related db accessor methods to a different file, and also removes the schema type. Instead of the schema type, a string is used to distinguish between hashbased/pathbased db accessors.
This also moves some code from trie package to rawdb package.
This PR is intended to be a no-functionality-change prep PR for #25963 .
---------
Co-authored-by: Gary Rong <garyrong0905@gmail.com>
This PR introduces a node scheme abstraction. The interface is only implemented by `hashScheme` at the moment, but will be extended by `pathScheme` very soon.
Apart from that, a few changes are also included which is worth mentioning:
- port the changes in the stacktrie, tracking the path prefix of nodes during commit
- use ethdb.Database for constructing trie.Database. This is not necessary right now, but it is required for path-based used to open reverse diff freezer
This commit replaces ioutil.TempDir with t.TempDir in tests. The
directory created by t.TempDir is automatically removed when the test
and all its subtests complete.
Prior to this commit, temporary directory created using ioutil.TempDir
had to be removed manually by calling os.RemoveAll, which is omitted in
some tests. The error handling boilerplate e.g.
defer func() {
if err := os.RemoveAll(dir); err != nil {
t.Fatal(err)
}
}
is also tedious, but t.TempDir handles this for us nicely.
Reference: https://pkg.go.dev/testing#T.TempDir
Signed-off-by: Eng Zer Jun <engzerjun@gmail.com>
Trie tracer is an auxiliary tool to capture all deleted nodes
which can't be captured by trie.Committer. The deleted nodes
can be removed from the disk later.
This change speeds up trie hashing and all other activities that require
RLP encoding of trie nodes by approximately 20%. The speedup is achieved by
avoiding reflection overhead during node encoding.
The interface type trie.node now contains a method 'encode' that works with
rlp.EncoderBuffer. Management of EncoderBuffers is left to calling code.
trie.hasher, which is pooled to avoid allocations, now maintains an
EncoderBuffer. This means memory resources related to trie node encoding
are tied to the hasher pool.
Co-authored-by: Felix Lange <fjl@twurst.com>
This PR adds an addtional API called `NewBatchWithSize` for db
batcher. It turns out that leveldb batch memory allocation is
super inefficient. The main reason is the allocation step of
leveldb Batch is too small when the batch size is large. It can
take a few second to build a leveldb batch with 100MB size.
Luckily, leveldb also offers another API called MakeBatch which can
pre-allocate the memory area. So if the approximate size of batch is
known in advance, this API can be used in this case.
It's needed in new state scheme PR which needs to commit a batch of
trie nodes in a single batch. Implement the feature in a seperate PR.