// Copyright 2020 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package bls12381 import ( "errors" "math" "math/big" ) // PointG1 is type for point in G1. // PointG1 is both used for Affine and Jacobian point representation. // If z is equal to one the point is considered as in affine form. type PointG1 [3]fe func (p *PointG1) Set(p2 *PointG1) *PointG1 { p[0].set(&p2[0]) p[1].set(&p2[1]) p[2].set(&p2[2]) return p } // Zero returns G1 point in point at infinity representation func (p *PointG1) Zero() *PointG1 { p[0].zero() p[1].one() p[2].zero() return p } type tempG1 struct { t [9]*fe } // G1 is struct for G1 group. type G1 struct { tempG1 } // NewG1 constructs a new G1 instance. func NewG1() *G1 { t := newTempG1() return &G1{t} } func newTempG1() tempG1 { t := [9]*fe{} for i := 0; i < 9; i++ { t[i] = &fe{} } return tempG1{t} } // Q returns group order in big.Int. func (g *G1) Q() *big.Int { return new(big.Int).Set(q) } func (g *G1) fromBytesUnchecked(in []byte) (*PointG1, error) { p0, err := fromBytes(in[:48]) if err != nil { return nil, err } p1, err := fromBytes(in[48:]) if err != nil { return nil, err } p2 := new(fe).one() return &PointG1{*p0, *p1, *p2}, nil } // FromBytes constructs a new point given uncompressed byte input. // FromBytes does not take zcash flags into account. // Byte input expected to be larger than 96 bytes. // First 96 bytes should be concatenation of x and y values. // Point (0, 0) is considered as infinity. func (g *G1) FromBytes(in []byte) (*PointG1, error) { if len(in) != 96 { return nil, errors.New("input string should be equal or larger than 96") } p0, err := fromBytes(in[:48]) if err != nil { return nil, err } p1, err := fromBytes(in[48:]) if err != nil { return nil, err } // check if given input points to infinity if p0.isZero() && p1.isZero() { return g.Zero(), nil } p2 := new(fe).one() p := &PointG1{*p0, *p1, *p2} if !g.IsOnCurve(p) { return nil, errors.New("point is not on curve") } return p, nil } // DecodePoint given encoded (x, y) coordinates in 128 bytes returns a valid G1 Point. func (g *G1) DecodePoint(in []byte) (*PointG1, error) { if len(in) != 128 { return nil, errors.New("invalid g1 point length") } pointBytes := make([]byte, 96) // decode x xBytes, err := decodeFieldElement(in[:64]) if err != nil { return nil, err } // decode y yBytes, err := decodeFieldElement(in[64:]) if err != nil { return nil, err } copy(pointBytes[:48], xBytes) copy(pointBytes[48:], yBytes) return g.FromBytes(pointBytes) } // ToBytes serializes a point into bytes in uncompressed form. // ToBytes does not take zcash flags into account. // ToBytes returns (0, 0) if point is infinity. func (g *G1) ToBytes(p *PointG1) []byte { out := make([]byte, 96) if g.IsZero(p) { return out } g.Affine(p) copy(out[:48], toBytes(&p[0])) copy(out[48:], toBytes(&p[1])) return out } // EncodePoint encodes a point into 128 bytes. func (g *G1) EncodePoint(p *PointG1) []byte { outRaw := g.ToBytes(p) out := make([]byte, 128) // encode x copy(out[16:], outRaw[:48]) // encode y copy(out[64+16:], outRaw[48:]) return out } // New creates a new G1 Point which is equal to zero in other words point at infinity. func (g *G1) New() *PointG1 { return g.Zero() } // Zero returns a new G1 Point which is equal to point at infinity. func (g *G1) Zero() *PointG1 { return new(PointG1).Zero() } // One returns a new G1 Point which is equal to generator point. func (g *G1) One() *PointG1 { p := &PointG1{} return p.Set(&g1One) } // IsZero returns true if given point is equal to zero. func (g *G1) IsZero(p *PointG1) bool { return p[2].isZero() } // Equal checks if given two G1 point is equal in their affine form. func (g *G1) Equal(p1, p2 *PointG1) bool { if g.IsZero(p1) { return g.IsZero(p2) } if g.IsZero(p2) { return g.IsZero(p1) } t := g.t square(t[0], &p1[2]) square(t[1], &p2[2]) mul(t[2], t[0], &p2[0]) mul(t[3], t[1], &p1[0]) mul(t[0], t[0], &p1[2]) mul(t[1], t[1], &p2[2]) mul(t[1], t[1], &p1[1]) mul(t[0], t[0], &p2[1]) return t[0].equal(t[1]) && t[2].equal(t[3]) } // InCorrectSubgroup checks whether given point is in correct subgroup. func (g *G1) InCorrectSubgroup(p *PointG1) bool { tmp := &PointG1{} g.MulScalar(tmp, p, q) return g.IsZero(tmp) } // IsOnCurve checks a G1 point is on curve. func (g *G1) IsOnCurve(p *PointG1) bool { if g.IsZero(p) { return true } t := g.t square(t[0], &p[1]) square(t[1], &p[0]) mul(t[1], t[1], &p[0]) square(t[2], &p[2]) square(t[3], t[2]) mul(t[2], t[2], t[3]) mul(t[2], b, t[2]) add(t[1], t[1], t[2]) return t[0].equal(t[1]) } // IsAffine checks a G1 point whether it is in affine form. func (g *G1) IsAffine(p *PointG1) bool { return p[2].isOne() } // Affine calculates affine form of given G1 point. func (g *G1) Affine(p *PointG1) *PointG1 { if g.IsZero(p) { return p } if !g.IsAffine(p) { t := g.t inverse(t[0], &p[2]) square(t[1], t[0]) mul(&p[0], &p[0], t[1]) mul(t[0], t[0], t[1]) mul(&p[1], &p[1], t[0]) p[2].one() } return p } // Add adds two G1 points p1, p2 and assigns the result to point at first argument. func (g *G1) Add(r, p1, p2 *PointG1) *PointG1 { // http://www.hyperelliptic.org/EFD/gp/auto-shortw-jacobian-0.html#addition-add-2007-bl if g.IsZero(p1) { return r.Set(p2) } if g.IsZero(p2) { return r.Set(p1) } t := g.t square(t[7], &p1[2]) mul(t[1], &p2[0], t[7]) mul(t[2], &p1[2], t[7]) mul(t[0], &p2[1], t[2]) square(t[8], &p2[2]) mul(t[3], &p1[0], t[8]) mul(t[4], &p2[2], t[8]) mul(t[2], &p1[1], t[4]) if t[1].equal(t[3]) { if t[0].equal(t[2]) { return g.Double(r, p1) } return r.Zero() } sub(t[1], t[1], t[3]) double(t[4], t[1]) square(t[4], t[4]) mul(t[5], t[1], t[4]) sub(t[0], t[0], t[2]) double(t[0], t[0]) square(t[6], t[0]) sub(t[6], t[6], t[5]) mul(t[3], t[3], t[4]) double(t[4], t[3]) sub(&r[0], t[6], t[4]) sub(t[4], t[3], &r[0]) mul(t[6], t[2], t[5]) double(t[6], t[6]) mul(t[0], t[0], t[4]) sub(&r[1], t[0], t[6]) add(t[0], &p1[2], &p2[2]) square(t[0], t[0]) sub(t[0], t[0], t[7]) sub(t[0], t[0], t[8]) mul(&r[2], t[0], t[1]) return r } // Double doubles a G1 point p and assigns the result to the point at first argument. func (g *G1) Double(r, p *PointG1) *PointG1 { // http://www.hyperelliptic.org/EFD/gp/auto-shortw-jacobian-0.html#doubling-dbl-2009-l if g.IsZero(p) { return r.Set(p) } t := g.t square(t[0], &p[0]) square(t[1], &p[1]) square(t[2], t[1]) add(t[1], &p[0], t[1]) square(t[1], t[1]) sub(t[1], t[1], t[0]) sub(t[1], t[1], t[2]) double(t[1], t[1]) double(t[3], t[0]) add(t[0], t[3], t[0]) square(t[4], t[0]) double(t[3], t[1]) sub(&r[0], t[4], t[3]) sub(t[1], t[1], &r[0]) double(t[2], t[2]) double(t[2], t[2]) double(t[2], t[2]) mul(t[0], t[0], t[1]) sub(t[1], t[0], t[2]) mul(t[0], &p[1], &p[2]) r[1].set(t[1]) double(&r[2], t[0]) return r } // Neg negates a G1 point p and assigns the result to the point at first argument. func (g *G1) Neg(r, p *PointG1) *PointG1 { r[0].set(&p[0]) r[2].set(&p[2]) neg(&r[1], &p[1]) return r } // Sub subtracts two G1 points p1, p2 and assigns the result to point at first argument. func (g *G1) Sub(c, a, b *PointG1) *PointG1 { d := &PointG1{} g.Neg(d, b) g.Add(c, a, d) return c } // MulScalar multiplies a point by given scalar value in big.Int and assigns the result to point at first argument. func (g *G1) MulScalar(c, p *PointG1, e *big.Int) *PointG1 { q, n := &PointG1{}, &PointG1{} n.Set(p) l := e.BitLen() for i := 0; i < l; i++ { if e.Bit(i) == 1 { g.Add(q, q, n) } g.Double(n, n) } return c.Set(q) } // ClearCofactor maps given a G1 point to correct subgroup func (g *G1) ClearCofactor(p *PointG1) { g.MulScalar(p, p, cofactorEFFG1) } // MultiExp calculates multi exponentiation. Given pairs of G1 point and scalar values // (P_0, e_0), (P_1, e_1), ... (P_n, e_n) calculates r = e_0 * P_0 + e_1 * P_1 + ... + e_n * P_n // Length of points and scalars are expected to be equal, otherwise an error is returned. // Result is assigned to point at first argument. func (g *G1) MultiExp(r *PointG1, points []*PointG1, powers []*big.Int) (*PointG1, error) { if len(points) != len(powers) { return nil, errors.New("point and scalar vectors should be in same length") } var c uint32 = 3 if len(powers) >= 32 { c = uint32(math.Ceil(math.Log10(float64(len(powers))))) } bucketSize, numBits := (1<= 0; i-- { g.Add(sum, sum, bucket[i]) g.Add(acc, acc, sum) } windows[j] = g.New() windows[j].Set(acc) j++ cur += c } acc.Zero() for i := len(windows) - 1; i >= 0; i-- { for j := uint32(0); j < c; j++ { g.Double(acc, acc) } g.Add(acc, acc, windows[i]) } return r.Set(acc), nil } // MapToCurve given a byte slice returns a valid G1 point. // This mapping function implements the Simplified Shallue-van de Woestijne-Ulas method. // https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-06 // Input byte slice should be a valid field element, otherwise an error is returned. func (g *G1) MapToCurve(in []byte) (*PointG1, error) { u, err := fromBytes(in) if err != nil { return nil, err } x, y := swuMapG1(u) isogenyMapG1(x, y) one := new(fe).one() p := &PointG1{*x, *y, *one} g.ClearCofactor(p) return g.Affine(p), nil }