// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package state import ( "bytes" "testing" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/tracing" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie" "github.com/ethereum/go-ethereum/triedb" "github.com/ethereum/go-ethereum/triedb/hashdb" "github.com/ethereum/go-ethereum/triedb/pathdb" "github.com/holiman/uint256" ) // testAccount is the data associated with an account used by the state tests. type testAccount struct { address common.Address balance *uint256.Int nonce uint64 code []byte } // makeTestState create a sample test state to test node-wise reconstruction. func makeTestState(scheme string) (ethdb.Database, Database, *triedb.Database, common.Hash, []*testAccount) { // Create an empty state config := &triedb.Config{Preimages: true} if scheme == rawdb.PathScheme { config.PathDB = pathdb.Defaults } else { config.HashDB = hashdb.Defaults } db := rawdb.NewMemoryDatabase() nodeDb := triedb.NewDatabase(db, config) sdb := NewDatabase(nodeDb, nil) state, _ := New(types.EmptyRootHash, sdb) // Fill it with some arbitrary data var accounts []*testAccount for i := byte(0); i < 96; i++ { obj := state.getOrNewStateObject(common.BytesToAddress([]byte{i})) acc := &testAccount{address: common.BytesToAddress([]byte{i})} obj.AddBalance(uint256.NewInt(uint64(11*i)), tracing.BalanceChangeUnspecified) acc.balance = uint256.NewInt(uint64(11 * i)) obj.SetNonce(uint64(42 * i)) acc.nonce = uint64(42 * i) if i%3 == 0 { obj.SetCode(crypto.Keccak256Hash([]byte{i, i, i, i, i}), []byte{i, i, i, i, i}) acc.code = []byte{i, i, i, i, i} } if i%5 == 0 { for j := byte(0); j < 5; j++ { hash := crypto.Keccak256Hash([]byte{i, i, i, i, i, j, j}) obj.SetState(hash, hash) } } accounts = append(accounts, acc) } root, _ := state.Commit(0, false) // Return the generated state return db, sdb, nodeDb, root, accounts } // checkStateAccounts cross references a reconstructed state with an expected // account array. func checkStateAccounts(t *testing.T, db ethdb.Database, scheme string, root common.Hash, accounts []*testAccount) { var config triedb.Config if scheme == rawdb.PathScheme { config.PathDB = pathdb.Defaults } // Check root availability and state contents state, err := New(root, NewDatabase(triedb.NewDatabase(db, &config), nil)) if err != nil { t.Fatalf("failed to create state trie at %x: %v", root, err) } if err := checkStateConsistency(db, scheme, root); err != nil { t.Fatalf("inconsistent state trie at %x: %v", root, err) } for i, acc := range accounts { if balance := state.GetBalance(acc.address); balance.Cmp(acc.balance) != 0 { t.Errorf("account %d: balance mismatch: have %v, want %v", i, balance, acc.balance) } if nonce := state.GetNonce(acc.address); nonce != acc.nonce { t.Errorf("account %d: nonce mismatch: have %v, want %v", i, nonce, acc.nonce) } if code := state.GetCode(acc.address); !bytes.Equal(code, acc.code) { t.Errorf("account %d: code mismatch: have %x, want %x", i, code, acc.code) } } } // checkStateConsistency checks that all data of a state root is present. func checkStateConsistency(db ethdb.Database, scheme string, root common.Hash) error { config := &triedb.Config{Preimages: true} if scheme == rawdb.PathScheme { config.PathDB = pathdb.Defaults } state, err := New(root, NewDatabase(triedb.NewDatabase(db, config), nil)) if err != nil { return err } it := newNodeIterator(state) for it.Next() { } return it.Error } // Tests that an empty state is not scheduled for syncing. func TestEmptyStateSync(t *testing.T) { dbA := triedb.NewDatabase(rawdb.NewMemoryDatabase(), nil) dbB := triedb.NewDatabase(rawdb.NewMemoryDatabase(), &triedb.Config{PathDB: pathdb.Defaults}) sync := NewStateSync(types.EmptyRootHash, rawdb.NewMemoryDatabase(), nil, dbA.Scheme()) if paths, nodes, codes := sync.Missing(1); len(paths) != 0 || len(nodes) != 0 || len(codes) != 0 { t.Errorf("content requested for empty state: %v, %v, %v", nodes, paths, codes) } sync = NewStateSync(types.EmptyRootHash, rawdb.NewMemoryDatabase(), nil, dbB.Scheme()) if paths, nodes, codes := sync.Missing(1); len(paths) != 0 || len(nodes) != 0 || len(codes) != 0 { t.Errorf("content requested for empty state: %v, %v, %v", nodes, paths, codes) } } // Tests that given a root hash, a state can sync iteratively on a single thread, // requesting retrieval tasks and returning all of them in one go. func TestIterativeStateSyncIndividual(t *testing.T) { testIterativeStateSync(t, 1, false, false, rawdb.HashScheme) testIterativeStateSync(t, 1, false, false, rawdb.PathScheme) } func TestIterativeStateSyncBatched(t *testing.T) { testIterativeStateSync(t, 100, false, false, rawdb.HashScheme) testIterativeStateSync(t, 100, false, false, rawdb.PathScheme) } func TestIterativeStateSyncIndividualFromDisk(t *testing.T) { testIterativeStateSync(t, 1, true, false, rawdb.HashScheme) testIterativeStateSync(t, 1, true, false, rawdb.PathScheme) } func TestIterativeStateSyncBatchedFromDisk(t *testing.T) { testIterativeStateSync(t, 100, true, false, rawdb.HashScheme) testIterativeStateSync(t, 100, true, false, rawdb.PathScheme) } func TestIterativeStateSyncIndividualByPath(t *testing.T) { testIterativeStateSync(t, 1, false, true, rawdb.HashScheme) testIterativeStateSync(t, 1, false, true, rawdb.PathScheme) } func TestIterativeStateSyncBatchedByPath(t *testing.T) { testIterativeStateSync(t, 100, false, true, rawdb.HashScheme) testIterativeStateSync(t, 100, false, true, rawdb.PathScheme) } // stateElement represents the element in the state trie(bytecode or trie node). type stateElement struct { path string hash common.Hash code common.Hash syncPath trie.SyncPath } func testIterativeStateSync(t *testing.T, count int, commit bool, bypath bool, scheme string) { // Create a random state to copy srcDisk, srcDb, ndb, srcRoot, srcAccounts := makeTestState(scheme) if commit { ndb.Commit(srcRoot, false) } srcTrie, _ := trie.New(trie.StateTrieID(srcRoot), ndb) // Create a destination state and sync with the scheduler dstDb := rawdb.NewMemoryDatabase() sched := NewStateSync(srcRoot, dstDb, nil, ndb.Scheme()) var ( nodeElements []stateElement codeElements []stateElement ) paths, nodes, codes := sched.Missing(count) for i := 0; i < len(paths); i++ { nodeElements = append(nodeElements, stateElement{ path: paths[i], hash: nodes[i], syncPath: trie.NewSyncPath([]byte(paths[i])), }) } for i := 0; i < len(codes); i++ { codeElements = append(codeElements, stateElement{code: codes[i]}) } reader, err := ndb.Reader(srcRoot) if err != nil { t.Fatalf("state is not existent, %#x", srcRoot) } for len(nodeElements)+len(codeElements) > 0 { var ( nodeResults = make([]trie.NodeSyncResult, len(nodeElements)) codeResults = make([]trie.CodeSyncResult, len(codeElements)) ) for i, element := range codeElements { data, err := srcDb.ContractCode(common.Address{}, element.code) if err != nil { t.Fatalf("failed to retrieve contract bytecode for hash %x", element.code) } codeResults[i] = trie.CodeSyncResult{Hash: element.code, Data: data} } for i, node := range nodeElements { if bypath { if len(node.syncPath) == 1 { data, _, err := srcTrie.GetNode(node.syncPath[0]) if err != nil { t.Fatalf("failed to retrieve node data for path %x: %v", node.syncPath[0], err) } nodeResults[i] = trie.NodeSyncResult{Path: node.path, Data: data} } else { var acc types.StateAccount if err := rlp.DecodeBytes(srcTrie.MustGet(node.syncPath[0]), &acc); err != nil { t.Fatalf("failed to decode account on path %x: %v", node.syncPath[0], err) } id := trie.StorageTrieID(srcRoot, common.BytesToHash(node.syncPath[0]), acc.Root) stTrie, err := trie.New(id, ndb) if err != nil { t.Fatalf("failed to retrieve storage trie for path %x: %v", node.syncPath[1], err) } data, _, err := stTrie.GetNode(node.syncPath[1]) if err != nil { t.Fatalf("failed to retrieve node data for path %x: %v", node.syncPath[1], err) } nodeResults[i] = trie.NodeSyncResult{Path: node.path, Data: data} } } else { owner, inner := trie.ResolvePath([]byte(node.path)) data, err := reader.Node(owner, inner, node.hash) if err != nil { t.Fatalf("failed to retrieve node data for key %v", []byte(node.path)) } nodeResults[i] = trie.NodeSyncResult{Path: node.path, Data: data} } } for _, result := range codeResults { if err := sched.ProcessCode(result); err != nil { t.Errorf("failed to process result %v", err) } } for _, result := range nodeResults { if err := sched.ProcessNode(result); err != nil { t.Errorf("failed to process result %v", err) } } batch := dstDb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() paths, nodes, codes = sched.Missing(count) nodeElements = nodeElements[:0] for i := 0; i < len(paths); i++ { nodeElements = append(nodeElements, stateElement{ path: paths[i], hash: nodes[i], syncPath: trie.NewSyncPath([]byte(paths[i])), }) } codeElements = codeElements[:0] for i := 0; i < len(codes); i++ { codeElements = append(codeElements, stateElement{ code: codes[i], }) } } // Copy the preimages from source db in order to traverse the state. srcDb.TrieDB().WritePreimages() copyPreimages(srcDisk, dstDb) // Cross check that the two states are in sync checkStateAccounts(t, dstDb, ndb.Scheme(), srcRoot, srcAccounts) } // Tests that the trie scheduler can correctly reconstruct the state even if only // partial results are returned, and the others sent only later. func TestIterativeDelayedStateSync(t *testing.T) { testIterativeDelayedStateSync(t, rawdb.HashScheme) testIterativeDelayedStateSync(t, rawdb.PathScheme) } func testIterativeDelayedStateSync(t *testing.T, scheme string) { // Create a random state to copy srcDisk, srcDb, ndb, srcRoot, srcAccounts := makeTestState(scheme) // Create a destination state and sync with the scheduler dstDb := rawdb.NewMemoryDatabase() sched := NewStateSync(srcRoot, dstDb, nil, ndb.Scheme()) var ( nodeElements []stateElement codeElements []stateElement ) paths, nodes, codes := sched.Missing(0) for i := 0; i < len(paths); i++ { nodeElements = append(nodeElements, stateElement{ path: paths[i], hash: nodes[i], syncPath: trie.NewSyncPath([]byte(paths[i])), }) } for i := 0; i < len(codes); i++ { codeElements = append(codeElements, stateElement{code: codes[i]}) } reader, err := ndb.Reader(srcRoot) if err != nil { t.Fatalf("state is not existent, %#x", srcRoot) } for len(nodeElements)+len(codeElements) > 0 { // Sync only half of the scheduled nodes var nodeProcessed int var codeProcessed int if len(codeElements) > 0 { codeResults := make([]trie.CodeSyncResult, len(codeElements)/2+1) for i, element := range codeElements[:len(codeResults)] { data, err := srcDb.ContractCode(common.Address{}, element.code) if err != nil { t.Fatalf("failed to retrieve contract bytecode for %x", element.code) } codeResults[i] = trie.CodeSyncResult{Hash: element.code, Data: data} } for _, result := range codeResults { if err := sched.ProcessCode(result); err != nil { t.Fatalf("failed to process result %v", err) } } codeProcessed = len(codeResults) } if len(nodeElements) > 0 { nodeResults := make([]trie.NodeSyncResult, len(nodeElements)/2+1) for i, element := range nodeElements[:len(nodeResults)] { owner, inner := trie.ResolvePath([]byte(element.path)) data, err := reader.Node(owner, inner, element.hash) if err != nil { t.Fatalf("failed to retrieve contract bytecode for %x", element.code) } nodeResults[i] = trie.NodeSyncResult{Path: element.path, Data: data} } for _, result := range nodeResults { if err := sched.ProcessNode(result); err != nil { t.Fatalf("failed to process result %v", err) } } nodeProcessed = len(nodeResults) } batch := dstDb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() paths, nodes, codes = sched.Missing(0) nodeElements = nodeElements[nodeProcessed:] for i := 0; i < len(paths); i++ { nodeElements = append(nodeElements, stateElement{ path: paths[i], hash: nodes[i], syncPath: trie.NewSyncPath([]byte(paths[i])), }) } codeElements = codeElements[codeProcessed:] for i := 0; i < len(codes); i++ { codeElements = append(codeElements, stateElement{ code: codes[i], }) } } // Copy the preimages from source db in order to traverse the state. srcDb.TrieDB().WritePreimages() copyPreimages(srcDisk, dstDb) // Cross check that the two states are in sync checkStateAccounts(t, dstDb, ndb.Scheme(), srcRoot, srcAccounts) } // Tests that given a root hash, a trie can sync iteratively on a single thread, // requesting retrieval tasks and returning all of them in one go, however in a // random order. func TestIterativeRandomStateSyncIndividual(t *testing.T) { testIterativeRandomStateSync(t, 1, rawdb.HashScheme) testIterativeRandomStateSync(t, 1, rawdb.PathScheme) } func TestIterativeRandomStateSyncBatched(t *testing.T) { testIterativeRandomStateSync(t, 100, rawdb.HashScheme) testIterativeRandomStateSync(t, 100, rawdb.PathScheme) } func testIterativeRandomStateSync(t *testing.T, count int, scheme string) { // Create a random state to copy srcDisk, srcDb, ndb, srcRoot, srcAccounts := makeTestState(scheme) // Create a destination state and sync with the scheduler dstDb := rawdb.NewMemoryDatabase() sched := NewStateSync(srcRoot, dstDb, nil, ndb.Scheme()) nodeQueue := make(map[string]stateElement) codeQueue := make(map[common.Hash]struct{}) paths, nodes, codes := sched.Missing(count) for i, path := range paths { nodeQueue[path] = stateElement{ path: path, hash: nodes[i], syncPath: trie.NewSyncPath([]byte(path)), } } for _, hash := range codes { codeQueue[hash] = struct{}{} } reader, err := ndb.Reader(srcRoot) if err != nil { t.Fatalf("state is not existent, %#x", srcRoot) } for len(nodeQueue)+len(codeQueue) > 0 { // Fetch all the queued nodes in a random order if len(codeQueue) > 0 { results := make([]trie.CodeSyncResult, 0, len(codeQueue)) for hash := range codeQueue { data, err := srcDb.ContractCode(common.Address{}, hash) if err != nil { t.Fatalf("failed to retrieve node data for %x", hash) } results = append(results, trie.CodeSyncResult{Hash: hash, Data: data}) } for _, result := range results { if err := sched.ProcessCode(result); err != nil { t.Fatalf("failed to process result %v", err) } } } if len(nodeQueue) > 0 { results := make([]trie.NodeSyncResult, 0, len(nodeQueue)) for path, element := range nodeQueue { owner, inner := trie.ResolvePath([]byte(element.path)) data, err := reader.Node(owner, inner, element.hash) if err != nil { t.Fatalf("failed to retrieve node data for %x %v %v", element.hash, []byte(element.path), element.path) } results = append(results, trie.NodeSyncResult{Path: path, Data: data}) } for _, result := range results { if err := sched.ProcessNode(result); err != nil { t.Fatalf("failed to process result %v", err) } } } batch := dstDb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() nodeQueue = make(map[string]stateElement) codeQueue = make(map[common.Hash]struct{}) paths, nodes, codes := sched.Missing(count) for i, path := range paths { nodeQueue[path] = stateElement{ path: path, hash: nodes[i], syncPath: trie.NewSyncPath([]byte(path)), } } for _, hash := range codes { codeQueue[hash] = struct{}{} } } // Copy the preimages from source db in order to traverse the state. srcDb.TrieDB().WritePreimages() copyPreimages(srcDisk, dstDb) // Cross check that the two states are in sync checkStateAccounts(t, dstDb, ndb.Scheme(), srcRoot, srcAccounts) } // Tests that the trie scheduler can correctly reconstruct the state even if only // partial results are returned (Even those randomly), others sent only later. func TestIterativeRandomDelayedStateSync(t *testing.T) { testIterativeRandomDelayedStateSync(t, rawdb.HashScheme) testIterativeRandomDelayedStateSync(t, rawdb.PathScheme) } func testIterativeRandomDelayedStateSync(t *testing.T, scheme string) { // Create a random state to copy srcDisk, srcDb, ndb, srcRoot, srcAccounts := makeTestState(scheme) // Create a destination state and sync with the scheduler dstDb := rawdb.NewMemoryDatabase() sched := NewStateSync(srcRoot, dstDb, nil, ndb.Scheme()) nodeQueue := make(map[string]stateElement) codeQueue := make(map[common.Hash]struct{}) paths, nodes, codes := sched.Missing(0) for i, path := range paths { nodeQueue[path] = stateElement{ path: path, hash: nodes[i], syncPath: trie.NewSyncPath([]byte(path)), } } for _, hash := range codes { codeQueue[hash] = struct{}{} } reader, err := ndb.Reader(srcRoot) if err != nil { t.Fatalf("state is not existent, %#x", srcRoot) } for len(nodeQueue)+len(codeQueue) > 0 { // Sync only half of the scheduled nodes, even those in random order if len(codeQueue) > 0 { results := make([]trie.CodeSyncResult, 0, len(codeQueue)/2+1) for hash := range codeQueue { delete(codeQueue, hash) data, err := srcDb.ContractCode(common.Address{}, hash) if err != nil { t.Fatalf("failed to retrieve node data for %x", hash) } results = append(results, trie.CodeSyncResult{Hash: hash, Data: data}) if len(results) >= cap(results) { break } } for _, result := range results { if err := sched.ProcessCode(result); err != nil { t.Fatalf("failed to process result %v", err) } } } if len(nodeQueue) > 0 { results := make([]trie.NodeSyncResult, 0, len(nodeQueue)/2+1) for path, element := range nodeQueue { delete(nodeQueue, path) owner, inner := trie.ResolvePath([]byte(element.path)) data, err := reader.Node(owner, inner, element.hash) if err != nil { t.Fatalf("failed to retrieve node data for %x", element.hash) } results = append(results, trie.NodeSyncResult{Path: path, Data: data}) if len(results) >= cap(results) { break } } // Feed the retrieved results back and queue new tasks for _, result := range results { if err := sched.ProcessNode(result); err != nil { t.Fatalf("failed to process result %v", err) } } } batch := dstDb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() paths, nodes, codes := sched.Missing(0) for i, path := range paths { nodeQueue[path] = stateElement{ path: path, hash: nodes[i], syncPath: trie.NewSyncPath([]byte(path)), } } for _, hash := range codes { codeQueue[hash] = struct{}{} } } // Copy the preimages from source db in order to traverse the state. srcDb.TrieDB().WritePreimages() copyPreimages(srcDisk, dstDb) // Cross check that the two states are in sync checkStateAccounts(t, dstDb, ndb.Scheme(), srcRoot, srcAccounts) } // Tests that at any point in time during a sync, only complete sub-tries are in // the database. func TestIncompleteStateSync(t *testing.T) { testIncompleteStateSync(t, rawdb.HashScheme) testIncompleteStateSync(t, rawdb.PathScheme) } func testIncompleteStateSync(t *testing.T, scheme string) { // Create a random state to copy db, srcDb, ndb, srcRoot, srcAccounts := makeTestState(scheme) // isCodeLookup to save some hashing var isCode = make(map[common.Hash]struct{}) for _, acc := range srcAccounts { if len(acc.code) > 0 { isCode[crypto.Keccak256Hash(acc.code)] = struct{}{} } } isCode[types.EmptyCodeHash] = struct{}{} // Create a destination state and sync with the scheduler dstDb := rawdb.NewMemoryDatabase() sched := NewStateSync(srcRoot, dstDb, nil, ndb.Scheme()) var ( addedCodes []common.Hash addedPaths []string addedHashes []common.Hash ) reader, err := ndb.Reader(srcRoot) if err != nil { t.Fatalf("state is not available %x", srcRoot) } nodeQueue := make(map[string]stateElement) codeQueue := make(map[common.Hash]struct{}) paths, nodes, codes := sched.Missing(1) for i, path := range paths { nodeQueue[path] = stateElement{ path: path, hash: nodes[i], syncPath: trie.NewSyncPath([]byte(path)), } } for _, hash := range codes { codeQueue[hash] = struct{}{} } for len(nodeQueue)+len(codeQueue) > 0 { // Fetch a batch of state nodes if len(codeQueue) > 0 { results := make([]trie.CodeSyncResult, 0, len(codeQueue)) for hash := range codeQueue { data, err := srcDb.ContractCode(common.Address{}, hash) if err != nil { t.Fatalf("failed to retrieve node data for %x", hash) } results = append(results, trie.CodeSyncResult{Hash: hash, Data: data}) addedCodes = append(addedCodes, hash) } // Process each of the state nodes for _, result := range results { if err := sched.ProcessCode(result); err != nil { t.Fatalf("failed to process result %v", err) } } } if len(nodeQueue) > 0 { results := make([]trie.NodeSyncResult, 0, len(nodeQueue)) for path, element := range nodeQueue { owner, inner := trie.ResolvePath([]byte(element.path)) data, err := reader.Node(owner, inner, element.hash) if err != nil { t.Fatalf("failed to retrieve node data for %x", element.hash) } results = append(results, trie.NodeSyncResult{Path: path, Data: data}) if element.hash != srcRoot { addedPaths = append(addedPaths, element.path) addedHashes = append(addedHashes, element.hash) } } // Process each of the state nodes for _, result := range results { if err := sched.ProcessNode(result); err != nil { t.Fatalf("failed to process result %v", err) } } } batch := dstDb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() // Fetch the next batch to retrieve nodeQueue = make(map[string]stateElement) codeQueue = make(map[common.Hash]struct{}) paths, nodes, codes := sched.Missing(1) for i, path := range paths { nodeQueue[path] = stateElement{ path: path, hash: nodes[i], syncPath: trie.NewSyncPath([]byte(path)), } } for _, hash := range codes { codeQueue[hash] = struct{}{} } } // Copy the preimages from source db in order to traverse the state. srcDb.TrieDB().WritePreimages() copyPreimages(db, dstDb) // Sanity check that removing any node from the database is detected for _, node := range addedCodes { val := rawdb.ReadCode(dstDb, node) rawdb.DeleteCode(dstDb, node) if err := checkStateConsistency(dstDb, ndb.Scheme(), srcRoot); err == nil { t.Errorf("trie inconsistency not caught, missing: %x", node) } rawdb.WriteCode(dstDb, node, val) } for i, path := range addedPaths { owner, inner := trie.ResolvePath([]byte(path)) hash := addedHashes[i] val := rawdb.ReadTrieNode(dstDb, owner, inner, hash, scheme) if val == nil { t.Error("missing trie node") } rawdb.DeleteTrieNode(dstDb, owner, inner, hash, scheme) if err := checkStateConsistency(dstDb, scheme, srcRoot); err == nil { t.Errorf("trie inconsistency not caught, missing: %v", path) } rawdb.WriteTrieNode(dstDb, owner, inner, hash, val, scheme) } } func copyPreimages(srcDb, dstDb ethdb.Database) { it := srcDb.NewIterator(rawdb.PreimagePrefix, nil) defer it.Release() preimages := make(map[common.Hash][]byte) for it.Next() { hash := it.Key()[len(rawdb.PreimagePrefix):] preimages[common.BytesToHash(hash)] = common.CopyBytes(it.Value()) } rawdb.WritePreimages(dstDb, preimages) }