// Copyright 2024 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package snap import ( "bytes" "math/rand" "slices" "testing" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/internal/testrand" "github.com/ethereum/go-ethereum/trie" ) type replayer struct { paths []string // sort in fifo order hashes []common.Hash // empty for deletion unknowns int // counter for unknown write } func newBatchReplay() *replayer { return &replayer{} } func (r *replayer) decode(key []byte, value []byte) { account := rawdb.IsAccountTrieNode(key) storage := rawdb.IsStorageTrieNode(key) if !account && !storage { r.unknowns += 1 return } var path []byte if account { _, path = rawdb.ResolveAccountTrieNodeKey(key) } else { _, owner, inner := rawdb.ResolveStorageTrieNode(key) path = append(owner.Bytes(), inner...) } r.paths = append(r.paths, string(path)) if len(value) == 0 { r.hashes = append(r.hashes, common.Hash{}) } else { r.hashes = append(r.hashes, crypto.Keccak256Hash(value)) } } // updates returns a set of effective mutations. Multiple mutations targeting // the same node path will be merged in FIFO order. func (r *replayer) modifies() map[string]common.Hash { set := make(map[string]common.Hash) for i, path := range r.paths { set[path] = r.hashes[i] } return set } // updates returns the number of updates. func (r *replayer) updates() int { var count int for _, hash := range r.modifies() { if hash == (common.Hash{}) { continue } count++ } return count } // Put inserts the given value into the key-value data store. func (r *replayer) Put(key []byte, value []byte) error { r.decode(key, value) return nil } // Delete removes the key from the key-value data store. func (r *replayer) Delete(key []byte) error { r.decode(key, nil) return nil } func byteToHex(str []byte) []byte { l := len(str) * 2 var nibbles = make([]byte, l) for i, b := range str { nibbles[i*2] = b / 16 nibbles[i*2+1] = b % 16 } return nibbles } // innerNodes returns the internal nodes narrowed by two boundaries along with // the leftmost and rightmost sub-trie roots. func innerNodes(first, last []byte, includeLeft, includeRight bool, nodes map[string]common.Hash, t *testing.T) (map[string]common.Hash, []byte, []byte) { var ( leftRoot []byte rightRoot []byte firstHex = byteToHex(first) lastHex = byteToHex(last) inner = make(map[string]common.Hash) ) for path, hash := range nodes { if hash == (common.Hash{}) { t.Fatalf("Unexpected deletion, %v", []byte(path)) } // Filter out the siblings on the left side or the left boundary nodes. if !includeLeft && (bytes.Compare(firstHex, []byte(path)) > 0 || bytes.HasPrefix(firstHex, []byte(path))) { continue } // Filter out the siblings on the right side or the right boundary nodes. if !includeRight && (bytes.Compare(lastHex, []byte(path)) < 0 || bytes.HasPrefix(lastHex, []byte(path))) { continue } inner[path] = hash // Track the path of the leftmost sub trie root if leftRoot == nil || bytes.Compare(leftRoot, []byte(path)) > 0 { leftRoot = []byte(path) } // Track the path of the rightmost sub trie root if rightRoot == nil || (bytes.Compare(rightRoot, []byte(path)) < 0) || (bytes.Compare(rightRoot, []byte(path)) > 0 && bytes.HasPrefix(rightRoot, []byte(path))) { rightRoot = []byte(path) } } return inner, leftRoot, rightRoot } func buildPartial(owner common.Hash, db ethdb.KeyValueReader, batch ethdb.Batch, entries []*kv, first, last int) *replayer { tr := newPathTrie(owner, first != 0, db, batch) for i := first; i <= last; i++ { tr.update(entries[i].k, entries[i].v) } tr.commit(last == len(entries)-1) replay := newBatchReplay() batch.Replay(replay) return replay } // TestPartialGentree verifies if the trie constructed with partial states can // generate consistent trie nodes that match those of the full trie. func TestPartialGentree(t *testing.T) { for round := 0; round < 100; round++ { var ( n = rand.Intn(1024) + 10 entries []*kv ) for i := 0; i < n; i++ { var val []byte if rand.Intn(3) == 0 { val = testrand.Bytes(3) } else { val = testrand.Bytes(32) } entries = append(entries, &kv{ k: testrand.Bytes(32), v: val, }) } slices.SortFunc(entries, (*kv).cmp) nodes := make(map[string]common.Hash) tr := trie.NewStackTrie(func(path []byte, hash common.Hash, blob []byte) { nodes[string(path)] = hash }) for i := 0; i < len(entries); i++ { tr.Update(entries[i].k, entries[i].v) } tr.Hash() check := func(first, last int) { var ( db = rawdb.NewMemoryDatabase() batch = db.NewBatch() ) // Build the partial tree with specific boundaries r := buildPartial(common.Hash{}, db, batch, entries, first, last) if r.unknowns > 0 { t.Fatalf("Unknown database write: %d", r.unknowns) } // Ensure all the internal nodes are produced var ( set = r.modifies() inner, _, _ = innerNodes(entries[first].k, entries[last].k, first == 0, last == len(entries)-1, nodes, t) ) for path, hash := range inner { if _, ok := set[path]; !ok { t.Fatalf("Missing nodes %v", []byte(path)) } if hash != set[path] { t.Fatalf("Inconsistent node, want %x, got: %x", hash, set[path]) } } if r.updates() != len(inner) { t.Fatalf("Unexpected node write detected, want: %d, got: %d", len(inner), r.updates()) } } for j := 0; j < 100; j++ { var ( first int last int ) for { first = rand.Intn(len(entries)) last = rand.Intn(len(entries)) if first <= last { break } } check(first, last) } var cases = []struct { first int last int }{ {0, len(entries) - 1}, // full {1, len(entries) - 1}, // no left {2, len(entries) - 1}, // no left {2, len(entries) - 2}, // no left and right {2, len(entries) - 2}, // no left and right {len(entries) / 2, len(entries) / 2}, // single {0, 0}, // single first {len(entries) - 1, len(entries) - 1}, // single last } for _, c := range cases { check(c.first, c.last) } } } // TestGentreeDanglingClearing tests if the dangling nodes falling within the // path space of constructed tree can be correctly removed. func TestGentreeDanglingClearing(t *testing.T) { for round := 0; round < 100; round++ { var ( n = rand.Intn(1024) + 10 entries []*kv ) for i := 0; i < n; i++ { var val []byte if rand.Intn(3) == 0 { val = testrand.Bytes(3) } else { val = testrand.Bytes(32) } entries = append(entries, &kv{ k: testrand.Bytes(32), v: val, }) } slices.SortFunc(entries, (*kv).cmp) nodes := make(map[string]common.Hash) tr := trie.NewStackTrie(func(path []byte, hash common.Hash, blob []byte) { nodes[string(path)] = hash }) for i := 0; i < len(entries); i++ { tr.Update(entries[i].k, entries[i].v) } tr.Hash() check := func(first, last int) { var ( db = rawdb.NewMemoryDatabase() batch = db.NewBatch() ) // Write the junk nodes as the dangling var injects []string for path := range nodes { for i := 0; i < len(path); i++ { _, ok := nodes[path[:i]] if ok { continue } injects = append(injects, path[:i]) } } if len(injects) == 0 { return } for _, path := range injects { rawdb.WriteAccountTrieNode(db, []byte(path), testrand.Bytes(32)) } // Build the partial tree with specific range replay := buildPartial(common.Hash{}, db, batch, entries, first, last) if replay.unknowns > 0 { t.Fatalf("Unknown database write: %d", replay.unknowns) } set := replay.modifies() // Make sure the injected junks falling within the path space of // committed trie nodes are correctly deleted. _, leftRoot, rightRoot := innerNodes(entries[first].k, entries[last].k, first == 0, last == len(entries)-1, nodes, t) for _, path := range injects { if bytes.Compare([]byte(path), leftRoot) < 0 && !bytes.HasPrefix(leftRoot, []byte(path)) { continue } if bytes.Compare([]byte(path), rightRoot) > 0 { continue } if hash, ok := set[path]; !ok || hash != (common.Hash{}) { t.Fatalf("Missing delete, %v", []byte(path)) } } } for j := 0; j < 100; j++ { var ( first int last int ) for { first = rand.Intn(len(entries)) last = rand.Intn(len(entries)) if first <= last { break } } check(first, last) } var cases = []struct { first int last int }{ {0, len(entries) - 1}, // full {1, len(entries) - 1}, // no left {2, len(entries) - 1}, // no left {2, len(entries) - 2}, // no left and right {2, len(entries) - 2}, // no left and right {len(entries) / 2, len(entries) / 2}, // single {0, 0}, // single first {len(entries) - 1, len(entries) - 1}, // single last } for _, c := range cases { check(c.first, c.last) } } } // TestFlushPartialTree tests the gentrie can produce complete inner trie nodes // even with lots of batch flushes. func TestFlushPartialTree(t *testing.T) { var entries []*kv for i := 0; i < 1024; i++ { var val []byte if rand.Intn(3) == 0 { val = testrand.Bytes(3) } else { val = testrand.Bytes(32) } entries = append(entries, &kv{ k: testrand.Bytes(32), v: val, }) } slices.SortFunc(entries, (*kv).cmp) nodes := make(map[string]common.Hash) tr := trie.NewStackTrie(func(path []byte, hash common.Hash, blob []byte) { nodes[string(path)] = hash }) for i := 0; i < len(entries); i++ { tr.Update(entries[i].k, entries[i].v) } tr.Hash() var cases = []struct { first int last int }{ {0, len(entries) - 1}, // full {1, len(entries) - 1}, // no left {10, len(entries) - 1}, // no left {10, len(entries) - 2}, // no left and right {10, len(entries) - 10}, // no left and right {11, 11}, // single {0, 0}, // single first {len(entries) - 1, len(entries) - 1}, // single last } for _, c := range cases { var ( db = rawdb.NewMemoryDatabase() batch = db.NewBatch() combined = db.NewBatch() ) inner, _, _ := innerNodes(entries[c.first].k, entries[c.last].k, c.first == 0, c.last == len(entries)-1, nodes, t) tr := newPathTrie(common.Hash{}, c.first != 0, db, batch) for i := c.first; i <= c.last; i++ { tr.update(entries[i].k, entries[i].v) if rand.Intn(2) == 0 { tr.commit(false) batch.Replay(combined) batch.Write() batch.Reset() } } tr.commit(c.last == len(entries)-1) batch.Replay(combined) batch.Write() batch.Reset() r := newBatchReplay() combined.Replay(r) // Ensure all the internal nodes are produced set := r.modifies() for path, hash := range inner { if _, ok := set[path]; !ok { t.Fatalf("Missing nodes %v", []byte(path)) } if hash != set[path] { t.Fatalf("Inconsistent node, want %x, got: %x", hash, set[path]) } } if r.updates() != len(inner) { t.Fatalf("Unexpected node write detected, want: %d, got: %d", len(inner), r.updates()) } } } // TestBoundSplit ensures two consecutive trie chunks are not overlapped with // each other. func TestBoundSplit(t *testing.T) { var entries []*kv for i := 0; i < 1024; i++ { var val []byte if rand.Intn(3) == 0 { val = testrand.Bytes(3) } else { val = testrand.Bytes(32) } entries = append(entries, &kv{ k: testrand.Bytes(32), v: val, }) } slices.SortFunc(entries, (*kv).cmp) for j := 0; j < 100; j++ { var ( next int last int db = rawdb.NewMemoryDatabase() lastRightRoot []byte ) for { if next == len(entries) { break } last = rand.Intn(len(entries)-next) + next r := buildPartial(common.Hash{}, db, db.NewBatch(), entries, next, last) set := r.modifies() // Skip if the chunk is zero-size if r.updates() == 0 { next = last + 1 continue } // Ensure the updates in two consecutive chunks are not overlapped. // The only overlapping part should be deletion. if lastRightRoot != nil && len(set) > 0 { // Derive the path of left-most node in this chunk var leftRoot []byte for path, hash := range r.modifies() { if hash == (common.Hash{}) { t.Fatalf("Unexpected deletion %v", []byte(path)) } if leftRoot == nil || bytes.Compare(leftRoot, []byte(path)) > 0 { leftRoot = []byte(path) } } if bytes.HasPrefix(lastRightRoot, leftRoot) || bytes.HasPrefix(leftRoot, lastRightRoot) { t.Fatalf("Two chunks are not correctly separated, lastRight: %v, left: %v", lastRightRoot, leftRoot) } } // Track the updates as the last chunk var rightRoot []byte for path := range set { if rightRoot == nil || (bytes.Compare(rightRoot, []byte(path)) < 0) || (bytes.Compare(rightRoot, []byte(path)) > 0 && bytes.HasPrefix(rightRoot, []byte(path))) { rightRoot = []byte(path) } } lastRightRoot = rightRoot next = last + 1 } } } // TestTinyPartialTree tests if the partial tree is too tiny(has less than two // states), then nothing should be committed. func TestTinyPartialTree(t *testing.T) { var entries []*kv for i := 0; i < 1024; i++ { var val []byte if rand.Intn(3) == 0 { val = testrand.Bytes(3) } else { val = testrand.Bytes(32) } entries = append(entries, &kv{ k: testrand.Bytes(32), v: val, }) } slices.SortFunc(entries, (*kv).cmp) for i := 0; i < len(entries); i++ { next := i last := i + 1 if last >= len(entries) { last = len(entries) - 1 } db := rawdb.NewMemoryDatabase() r := buildPartial(common.Hash{}, db, db.NewBatch(), entries, next, last) if next != 0 && last != len(entries)-1 { if r.updates() != 0 { t.Fatalf("Unexpected data writes, got: %d", r.updates()) } } } } func TestTrieDelete(t *testing.T) { var entries []*kv for i := 0; i < 1024; i++ { entries = append(entries, &kv{ k: testrand.Bytes(32), v: testrand.Bytes(32), }) } slices.SortFunc(entries, (*kv).cmp) nodes := make(map[string]common.Hash) tr := trie.NewStackTrie(func(path []byte, hash common.Hash, blob []byte) { nodes[string(path)] = hash }) for i := 0; i < len(entries); i++ { tr.Update(entries[i].k, entries[i].v) } tr.Hash() check := func(index []int) { var ( db = rawdb.NewMemoryDatabase() batch = db.NewBatch() marks = map[int]struct{}{} neighbors = map[int]struct{}{} ) for _, n := range index { marks[n] = struct{}{} } for _, n := range index { if n != 0 { if _, ok := marks[n-1]; !ok { neighbors[n-1] = struct{}{} } } if n != len(entries)-1 { if _, ok := neighbors[n+1]; !ok { neighbors[n+1] = struct{}{} } } } // Write the junk nodes as the dangling var injects []string for _, n := range index { nibbles := byteToHex(entries[n].k) for i := 0; i <= len(nibbles); i++ { injects = append(injects, string(nibbles[:i])) } } for _, path := range injects { rawdb.WriteAccountTrieNode(db, []byte(path), testrand.Bytes(32)) } tr := newPathTrie(common.Hash{}, false, db, batch) for i := 0; i < len(entries); i++ { if _, ok := marks[i]; ok { tr.delete(entries[i].k) } else { tr.update(entries[i].k, entries[i].v) } } tr.commit(true) r := newBatchReplay() batch.Replay(r) batch.Write() for _, path := range injects { if rawdb.HasAccountTrieNode(db, []byte(path)) { t.Fatalf("Unexpected leftover node %v", []byte(path)) } } // ensure all the written nodes match with the complete tree set := make(map[string]common.Hash) for path, hash := range r.modifies() { if hash == (common.Hash{}) { continue } n, ok := nodes[path] if !ok { t.Fatalf("Unexpected trie node: %v", []byte(path)) } if n != hash { t.Fatalf("Unexpected trie node content: %v, want: %x, got: %x", []byte(path), n, hash) } set[path] = hash } // ensure all the missing nodes either on the deleted path, or // on the neighbor paths. isMissing := func(path []byte) bool { for n := range marks { key := byteToHex(entries[n].k) if bytes.HasPrefix(key, path) { return true } } for n := range neighbors { key := byteToHex(entries[n].k) if bytes.HasPrefix(key, path) { return true } } return false } for path := range nodes { if _, ok := set[path]; ok { continue } if !isMissing([]byte(path)) { t.Fatalf("Missing node %v", []byte(path)) } } } var cases = []struct { index []int }{ // delete the first {[]int{0}}, // delete the last {[]int{len(entries) - 1}}, // delete the first two {[]int{0, 1}}, // delete the last two {[]int{len(entries) - 2, len(entries) - 1}}, {[]int{ 0, 2, 4, 6, len(entries) - 1, len(entries) - 3, len(entries) - 5, len(entries) - 7, }}, } for _, c := range cases { check(c.index) } }