// Copyright 2020 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie import ( "bufio" "bytes" "encoding/gob" "errors" "io" "sync" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/log" ) var ErrCommitDisabled = errors.New("no database for committing") var stPool = sync.Pool{ New: func() interface{} { return NewStackTrie(nil) }, } func stackTrieFromPool(db ethdb.KeyValueWriter, owner common.Hash) *StackTrie { st := stPool.Get().(*StackTrie) st.db = db st.owner = owner return st } func returnToPool(st *StackTrie) { st.Reset() stPool.Put(st) } // StackTrie is a trie implementation that expects keys to be inserted // in order. Once it determines that a subtree will no longer be inserted // into, it will hash it and free up the memory it uses. type StackTrie struct { owner common.Hash // the owner of the trie nodeType uint8 // node type (as in branch, ext, leaf) val []byte // value contained by this node if it's a leaf key []byte // key chunk covered by this (leaf|ext) node children [16]*StackTrie // list of children (for branch and exts) db ethdb.KeyValueWriter // Pointer to the commit db, can be nil } // NewStackTrie allocates and initializes an empty trie. func NewStackTrie(db ethdb.KeyValueWriter) *StackTrie { return &StackTrie{ nodeType: emptyNode, db: db, } } // NewStackTrieWithOwner allocates and initializes an empty trie, but with // the additional owner field. func NewStackTrieWithOwner(db ethdb.KeyValueWriter, owner common.Hash) *StackTrie { return &StackTrie{ owner: owner, nodeType: emptyNode, db: db, } } // NewFromBinary initialises a serialized stacktrie with the given db. func NewFromBinary(data []byte, db ethdb.KeyValueWriter) (*StackTrie, error) { var st StackTrie if err := st.UnmarshalBinary(data); err != nil { return nil, err } // If a database is used, we need to recursively add it to every child if db != nil { st.setDb(db) } return &st, nil } // MarshalBinary implements encoding.BinaryMarshaler func (st *StackTrie) MarshalBinary() (data []byte, err error) { var ( b bytes.Buffer w = bufio.NewWriter(&b) ) if err := gob.NewEncoder(w).Encode(struct { Owner common.Hash NodeType uint8 Val []byte Key []byte }{ st.owner, st.nodeType, st.val, st.key, }); err != nil { return nil, err } for _, child := range st.children { if child == nil { w.WriteByte(0) continue } w.WriteByte(1) if childData, err := child.MarshalBinary(); err != nil { return nil, err } else { w.Write(childData) } } w.Flush() return b.Bytes(), nil } // UnmarshalBinary implements encoding.BinaryUnmarshaler func (st *StackTrie) UnmarshalBinary(data []byte) error { r := bytes.NewReader(data) return st.unmarshalBinary(r) } func (st *StackTrie) unmarshalBinary(r io.Reader) error { var dec struct { Owner common.Hash NodeType uint8 Val []byte Key []byte } gob.NewDecoder(r).Decode(&dec) st.owner = dec.Owner st.nodeType = dec.NodeType st.val = dec.Val st.key = dec.Key var hasChild = make([]byte, 1) for i := range st.children { if _, err := r.Read(hasChild); err != nil { return err } else if hasChild[0] == 0 { continue } var child StackTrie child.unmarshalBinary(r) st.children[i] = &child } return nil } func (st *StackTrie) setDb(db ethdb.KeyValueWriter) { st.db = db for _, child := range st.children { if child != nil { child.setDb(db) } } } func newLeaf(owner common.Hash, key, val []byte, db ethdb.KeyValueWriter) *StackTrie { st := stackTrieFromPool(db, owner) st.nodeType = leafNode st.key = append(st.key, key...) st.val = val return st } func newExt(owner common.Hash, key []byte, child *StackTrie, db ethdb.KeyValueWriter) *StackTrie { st := stackTrieFromPool(db, owner) st.nodeType = extNode st.key = append(st.key, key...) st.children[0] = child return st } // List all values that StackTrie#nodeType can hold const ( emptyNode = iota branchNode extNode leafNode hashedNode ) // TryUpdate inserts a (key, value) pair into the stack trie func (st *StackTrie) TryUpdate(key, value []byte) error { k := keybytesToHex(key) if len(value) == 0 { panic("deletion not supported") } st.insert(k[:len(k)-1], value) return nil } func (st *StackTrie) Update(key, value []byte) { if err := st.TryUpdate(key, value); err != nil { log.Error("Unhandled trie error in StackTrie.Update", "err", err) } } func (st *StackTrie) Reset() { st.owner = common.Hash{} st.db = nil st.key = st.key[:0] st.val = nil for i := range st.children { st.children[i] = nil } st.nodeType = emptyNode } // Helper function that, given a full key, determines the index // at which the chunk pointed by st.keyOffset is different from // the same chunk in the full key. func (st *StackTrie) getDiffIndex(key []byte) int { for idx, nibble := range st.key { if nibble != key[idx] { return idx } } return len(st.key) } // Helper function to that inserts a (key, value) pair into // the trie. func (st *StackTrie) insert(key, value []byte) { switch st.nodeType { case branchNode: /* Branch */ idx := int(key[0]) // Unresolve elder siblings for i := idx - 1; i >= 0; i-- { if st.children[i] != nil { if st.children[i].nodeType != hashedNode { st.children[i].hash() } break } } // Add new child if st.children[idx] == nil { st.children[idx] = newLeaf(st.owner, key[1:], value, st.db) } else { st.children[idx].insert(key[1:], value) } case extNode: /* Ext */ // Compare both key chunks and see where they differ diffidx := st.getDiffIndex(key) // Check if chunks are identical. If so, recurse into // the child node. Otherwise, the key has to be split // into 1) an optional common prefix, 2) the fullnode // representing the two differing path, and 3) a leaf // for each of the differentiated subtrees. if diffidx == len(st.key) { // Ext key and key segment are identical, recurse into // the child node. st.children[0].insert(key[diffidx:], value) return } // Save the original part. Depending if the break is // at the extension's last byte or not, create an // intermediate extension or use the extension's child // node directly. var n *StackTrie if diffidx < len(st.key)-1 { n = newExt(st.owner, st.key[diffidx+1:], st.children[0], st.db) } else { // Break on the last byte, no need to insert // an extension node: reuse the current node n = st.children[0] } // Convert to hash n.hash() var p *StackTrie if diffidx == 0 { // the break is on the first byte, so // the current node is converted into // a branch node. st.children[0] = nil p = st st.nodeType = branchNode } else { // the common prefix is at least one byte // long, insert a new intermediate branch // node. st.children[0] = stackTrieFromPool(st.db, st.owner) st.children[0].nodeType = branchNode p = st.children[0] } // Create a leaf for the inserted part o := newLeaf(st.owner, key[diffidx+1:], value, st.db) // Insert both child leaves where they belong: origIdx := st.key[diffidx] newIdx := key[diffidx] p.children[origIdx] = n p.children[newIdx] = o st.key = st.key[:diffidx] case leafNode: /* Leaf */ // Compare both key chunks and see where they differ diffidx := st.getDiffIndex(key) // Overwriting a key isn't supported, which means that // the current leaf is expected to be split into 1) an // optional extension for the common prefix of these 2 // keys, 2) a fullnode selecting the path on which the // keys differ, and 3) one leaf for the differentiated // component of each key. if diffidx >= len(st.key) { panic("Trying to insert into existing key") } // Check if the split occurs at the first nibble of the // chunk. In that case, no prefix extnode is necessary. // Otherwise, create that var p *StackTrie if diffidx == 0 { // Convert current leaf into a branch st.nodeType = branchNode p = st st.children[0] = nil } else { // Convert current node into an ext, // and insert a child branch node. st.nodeType = extNode st.children[0] = NewStackTrieWithOwner(st.db, st.owner) st.children[0].nodeType = branchNode p = st.children[0] } // Create the two child leaves: one containing the original // value and another containing the new value. The child leaf // is hashed directly in order to free up some memory. origIdx := st.key[diffidx] p.children[origIdx] = newLeaf(st.owner, st.key[diffidx+1:], st.val, st.db) p.children[origIdx].hash() newIdx := key[diffidx] p.children[newIdx] = newLeaf(st.owner, key[diffidx+1:], value, st.db) // Finally, cut off the key part that has been passed // over to the children. st.key = st.key[:diffidx] st.val = nil case emptyNode: /* Empty */ st.nodeType = leafNode st.key = key st.val = value case hashedNode: panic("trying to insert into hash") default: panic("invalid type") } } // hash converts st into a 'hashedNode', if possible. Possible outcomes: // // 1. The rlp-encoded value was >= 32 bytes: // - Then the 32-byte `hash` will be accessible in `st.val`. // - And the 'st.type' will be 'hashedNode' // // 2. The rlp-encoded value was < 32 bytes // - Then the <32 byte rlp-encoded value will be accessible in 'st.val'. // - And the 'st.type' will be 'hashedNode' AGAIN // // This method also sets 'st.type' to hashedNode, and clears 'st.key'. func (st *StackTrie) hash() { h := newHasher(false) defer returnHasherToPool(h) st.hashRec(h) } func (st *StackTrie) hashRec(hasher *hasher) { // The switch below sets this to the RLP-encoding of this node. var encodedNode []byte switch st.nodeType { case hashedNode: return case emptyNode: st.val = emptyRoot.Bytes() st.key = st.key[:0] st.nodeType = hashedNode return case branchNode: var nodes rawFullNode for i, child := range st.children { if child == nil { nodes[i] = nilValueNode continue } child.hashRec(hasher) if len(child.val) < 32 { nodes[i] = rawNode(child.val) } else { nodes[i] = hashNode(child.val) } // Release child back to pool. st.children[i] = nil returnToPool(child) } nodes.encode(hasher.encbuf) encodedNode = hasher.encodedBytes() case extNode: st.children[0].hashRec(hasher) sz := hexToCompactInPlace(st.key) n := rawShortNode{Key: st.key[:sz]} if len(st.children[0].val) < 32 { n.Val = rawNode(st.children[0].val) } else { n.Val = hashNode(st.children[0].val) } n.encode(hasher.encbuf) encodedNode = hasher.encodedBytes() // Release child back to pool. returnToPool(st.children[0]) st.children[0] = nil case leafNode: st.key = append(st.key, byte(16)) sz := hexToCompactInPlace(st.key) n := rawShortNode{Key: st.key[:sz], Val: valueNode(st.val)} n.encode(hasher.encbuf) encodedNode = hasher.encodedBytes() default: panic("invalid node type") } st.nodeType = hashedNode st.key = st.key[:0] if len(encodedNode) < 32 { st.val = common.CopyBytes(encodedNode) return } // Write the hash to the 'val'. We allocate a new val here to not mutate // input values st.val = hasher.hashData(encodedNode) if st.db != nil { // TODO! Is it safe to Put the slice here? // Do all db implementations copy the value provided? st.db.Put(st.val, encodedNode) } } // Hash returns the hash of the current node. func (st *StackTrie) Hash() (h common.Hash) { hasher := newHasher(false) defer returnHasherToPool(hasher) st.hashRec(hasher) if len(st.val) == 32 { copy(h[:], st.val) return h } // If the node's RLP isn't 32 bytes long, the node will not // be hashed, and instead contain the rlp-encoding of the // node. For the top level node, we need to force the hashing. hasher.sha.Reset() hasher.sha.Write(st.val) hasher.sha.Read(h[:]) return h } // Commit will firstly hash the entrie trie if it's still not hashed // and then commit all nodes to the associated database. Actually most // of the trie nodes MAY have been committed already. The main purpose // here is to commit the root node. // // The associated database is expected, otherwise the whole commit // functionality should be disabled. func (st *StackTrie) Commit() (h common.Hash, err error) { if st.db == nil { return common.Hash{}, ErrCommitDisabled } hasher := newHasher(false) defer returnHasherToPool(hasher) st.hashRec(hasher) if len(st.val) == 32 { copy(h[:], st.val) return h, nil } // If the node's RLP isn't 32 bytes long, the node will not // be hashed (and committed), and instead contain the rlp-encoding of the // node. For the top level node, we need to force the hashing+commit. hasher.sha.Reset() hasher.sha.Write(st.val) hasher.sha.Read(h[:]) st.db.Put(h[:], st.val) return h, nil }