// Copyright 2023 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package legacypool import ( "crypto/ecdsa" "math/big" "testing" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/tracing" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/event" "github.com/holiman/uint256" ) func pricedValuedTransaction(nonce uint64, value int64, gaslimit uint64, gasprice *big.Int, key *ecdsa.PrivateKey) *types.Transaction { tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, big.NewInt(value), gaslimit, gasprice, nil), types.HomesteadSigner{}, key) return tx } func count(t *testing.T, pool *LegacyPool) (pending int, queued int) { t.Helper() pending, queued = pool.stats() if err := validatePoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } return pending, queued } func fillPool(t testing.TB, pool *LegacyPool) { t.Helper() // Create a number of test accounts, fund them and make transactions executableTxs := types.Transactions{} nonExecutableTxs := types.Transactions{} for i := 0; i < 384; i++ { key, _ := crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt(10000000000), tracing.BalanceChangeUnspecified) // Add executable ones for j := 0; j < int(pool.config.AccountSlots); j++ { executableTxs = append(executableTxs, pricedTransaction(uint64(j), 100000, big.NewInt(300), key)) } } // Import the batch and verify that limits have been enforced pool.addRemotesSync(executableTxs) pool.addRemotesSync(nonExecutableTxs) pending, queued := pool.Stats() slots := pool.all.Slots() // sanity-check that the test prerequisites are ok (pending full) if have, want := pending, slots; have != want { t.Fatalf("have %d, want %d", have, want) } if have, want := queued, 0; have != want { t.Fatalf("have %d, want %d", have, want) } t.Logf("pool.config: GlobalSlots=%d, GlobalQueue=%d\n", pool.config.GlobalSlots, pool.config.GlobalQueue) t.Logf("pending: %d queued: %d, all: %d\n", pending, queued, slots) } // Tests that if a batch high-priced of non-executables arrive, they do not kick out // executable transactions func TestTransactionFutureAttack(t *testing.T) { t.Parallel() // Create the pool to test the limit enforcement with statedb, _ := state.New(types.EmptyRootHash, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) blockchain := newTestBlockChain(eip1559Config, 1000000, statedb, new(event.Feed)) config := testTxPoolConfig config.GlobalQueue = 100 config.GlobalSlots = 100 pool := New(config, blockchain) pool.Init(config.PriceLimit, blockchain.CurrentBlock(), makeAddressReserver()) defer pool.Close() fillPool(t, pool) pending, _ := pool.Stats() // Now, future transaction attack starts, let's add a bunch of expensive non-executables, and see if the pending-count drops { key, _ := crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt(100000000000), tracing.BalanceChangeUnspecified) futureTxs := types.Transactions{} for j := 0; j < int(pool.config.GlobalSlots+pool.config.GlobalQueue); j++ { futureTxs = append(futureTxs, pricedTransaction(1000+uint64(j), 100000, big.NewInt(500), key)) } for i := 0; i < 5; i++ { pool.addRemotesSync(futureTxs) newPending, newQueued := count(t, pool) t.Logf("pending: %d queued: %d, all: %d\n", newPending, newQueued, pool.all.Slots()) } } newPending, _ := pool.Stats() // Pending should not have been touched if have, want := newPending, pending; have < want { t.Errorf("wrong pending-count, have %d, want %d (GlobalSlots: %d)", have, want, pool.config.GlobalSlots) } } // Tests that if a batch high-priced of non-executables arrive, they do not kick out // executable transactions func TestTransactionFuture1559(t *testing.T) { t.Parallel() // Create the pool to test the pricing enforcement with statedb, _ := state.New(types.EmptyRootHash, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) blockchain := newTestBlockChain(eip1559Config, 1000000, statedb, new(event.Feed)) pool := New(testTxPoolConfig, blockchain) pool.Init(testTxPoolConfig.PriceLimit, blockchain.CurrentBlock(), makeAddressReserver()) defer pool.Close() // Create a number of test accounts, fund them and make transactions fillPool(t, pool) pending, _ := pool.Stats() // Now, future transaction attack starts, let's add a bunch of expensive non-executables, and see if the pending-count drops { key, _ := crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt(100000000000), tracing.BalanceChangeUnspecified) futureTxs := types.Transactions{} for j := 0; j < int(pool.config.GlobalSlots+pool.config.GlobalQueue); j++ { futureTxs = append(futureTxs, dynamicFeeTx(1000+uint64(j), 100000, big.NewInt(200), big.NewInt(101), key)) } pool.addRemotesSync(futureTxs) } newPending, _ := pool.Stats() // Pending should not have been touched if have, want := newPending, pending; have != want { t.Errorf("Wrong pending-count, have %d, want %d (GlobalSlots: %d)", have, want, pool.config.GlobalSlots) } } // Tests that if a batch of balance-overdraft txs arrive, they do not kick out // executable transactions func TestTransactionZAttack(t *testing.T) { t.Parallel() // Create the pool to test the pricing enforcement with statedb, _ := state.New(types.EmptyRootHash, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) blockchain := newTestBlockChain(eip1559Config, 1000000, statedb, new(event.Feed)) pool := New(testTxPoolConfig, blockchain) pool.Init(testTxPoolConfig.PriceLimit, blockchain.CurrentBlock(), makeAddressReserver()) defer pool.Close() // Create a number of test accounts, fund them and make transactions fillPool(t, pool) countInvalidPending := func() int { t.Helper() var ivpendingNum int pendingtxs, _ := pool.Content() for account, txs := range pendingtxs { cur_balance := new(big.Int).Set(pool.currentState.GetBalance(account).ToBig()) for _, tx := range txs { if cur_balance.Cmp(tx.Value()) <= 0 { ivpendingNum++ } else { cur_balance.Sub(cur_balance, tx.Value()) } } } if err := validatePoolInternals(pool); err != nil { t.Fatalf("pool internal state corrupted: %v", err) } return ivpendingNum } ivPending := countInvalidPending() t.Logf("invalid pending: %d\n", ivPending) // Now, DETER-Z attack starts, let's add a bunch of expensive non-executables (from N accounts) along with balance-overdraft txs (from one account), and see if the pending-count drops for j := 0; j < int(pool.config.GlobalQueue); j++ { futureTxs := types.Transactions{} key, _ := crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt(100000000000), tracing.BalanceChangeUnspecified) futureTxs = append(futureTxs, pricedTransaction(1000+uint64(j), 21000, big.NewInt(500), key)) pool.addRemotesSync(futureTxs) } overDraftTxs := types.Transactions{} { key, _ := crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt(100000000000), tracing.BalanceChangeUnspecified) for j := 0; j < int(pool.config.GlobalSlots); j++ { overDraftTxs = append(overDraftTxs, pricedValuedTransaction(uint64(j), 600000000000, 21000, big.NewInt(500), key)) } } pool.addRemotesSync(overDraftTxs) pool.addRemotesSync(overDraftTxs) pool.addRemotesSync(overDraftTxs) pool.addRemotesSync(overDraftTxs) pool.addRemotesSync(overDraftTxs) newPending, newQueued := count(t, pool) newIvPending := countInvalidPending() t.Logf("pool.all.Slots(): %d\n", pool.all.Slots()) t.Logf("pending: %d queued: %d, all: %d\n", newPending, newQueued, pool.all.Slots()) t.Logf("invalid pending: %d\n", newIvPending) // Pending should not have been touched if newIvPending != ivPending { t.Errorf("Wrong invalid pending-count, have %d, want %d (GlobalSlots: %d, queued: %d)", newIvPending, ivPending, pool.config.GlobalSlots, newQueued) } } func BenchmarkFutureAttack(b *testing.B) { // Create the pool to test the limit enforcement with statedb, _ := state.New(types.EmptyRootHash, state.NewDatabase(rawdb.NewMemoryDatabase()), nil) blockchain := newTestBlockChain(eip1559Config, 1000000, statedb, new(event.Feed)) config := testTxPoolConfig config.GlobalQueue = 100 config.GlobalSlots = 100 pool := New(config, blockchain) pool.Init(testTxPoolConfig.PriceLimit, blockchain.CurrentBlock(), makeAddressReserver()) defer pool.Close() fillPool(b, pool) key, _ := crypto.GenerateKey() pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt(100000000000), tracing.BalanceChangeUnspecified) futureTxs := types.Transactions{} for n := 0; n < b.N; n++ { futureTxs = append(futureTxs, pricedTransaction(1000+uint64(n), 100000, big.NewInt(500), key)) } b.ResetTimer() for i := 0; i < 5; i++ { pool.addRemotesSync(futureTxs) } }