// Copyright 2020 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package eth import ( "fmt" "math/big" "testing" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/consensus/ethash" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/forkid" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/eth/downloader" "github.com/ethereum/go-ethereum/eth/protocols/eth" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/p2p" "github.com/ethereum/go-ethereum/p2p/enode" "github.com/ethereum/go-ethereum/params" ) // testEthHandler is a mock event handler to listen for inbound network requests // on the `eth` protocol and convert them into a more easily testable form. type testEthHandler struct { blockBroadcasts event.Feed txAnnounces event.Feed txBroadcasts event.Feed } func (h *testEthHandler) Chain() *core.BlockChain { panic("no backing chain") } func (h *testEthHandler) TxPool() eth.TxPool { panic("no backing tx pool") } func (h *testEthHandler) AcceptTxs() bool { return true } func (h *testEthHandler) RunPeer(*eth.Peer, eth.Handler) error { panic("not used in tests") } func (h *testEthHandler) PeerInfo(enode.ID) interface{} { panic("not used in tests") } func (h *testEthHandler) Handle(peer *eth.Peer, packet eth.Packet) error { switch packet := packet.(type) { case *eth.NewBlockPacket: h.blockBroadcasts.Send(packet.Block) return nil case *eth.NewPooledTransactionHashesPacket: h.txAnnounces.Send(packet.Hashes) return nil case *eth.TransactionsPacket: h.txBroadcasts.Send(([]*types.Transaction)(*packet)) return nil case *eth.PooledTransactionsResponse: h.txBroadcasts.Send(([]*types.Transaction)(*packet)) return nil default: panic(fmt.Sprintf("unexpected eth packet type in tests: %T", packet)) } } // Tests that peers are correctly accepted (or rejected) based on the advertised // fork IDs in the protocol handshake. func TestForkIDSplit68(t *testing.T) { testForkIDSplit(t, eth.ETH68) } func testForkIDSplit(t *testing.T, protocol uint) { t.Parallel() var ( engine = ethash.NewFaker() configNoFork = ¶ms.ChainConfig{HomesteadBlock: big.NewInt(1)} configProFork = ¶ms.ChainConfig{ HomesteadBlock: big.NewInt(1), EIP150Block: big.NewInt(2), EIP155Block: big.NewInt(2), EIP158Block: big.NewInt(2), ByzantiumBlock: big.NewInt(3), } dbNoFork = rawdb.NewMemoryDatabase() dbProFork = rawdb.NewMemoryDatabase() gspecNoFork = &core.Genesis{Config: configNoFork} gspecProFork = &core.Genesis{Config: configProFork} chainNoFork, _ = core.NewBlockChain(dbNoFork, nil, gspecNoFork, nil, engine, vm.Config{}, nil) chainProFork, _ = core.NewBlockChain(dbProFork, nil, gspecProFork, nil, engine, vm.Config{}, nil) _, blocksNoFork, _ = core.GenerateChainWithGenesis(gspecNoFork, engine, 2, nil) _, blocksProFork, _ = core.GenerateChainWithGenesis(gspecProFork, engine, 2, nil) ethNoFork, _ = newHandler(&handlerConfig{ Database: dbNoFork, Chain: chainNoFork, TxPool: newTestTxPool(), Network: 1, Sync: downloader.FullSync, BloomCache: 1, }) ethProFork, _ = newHandler(&handlerConfig{ Database: dbProFork, Chain: chainProFork, TxPool: newTestTxPool(), Network: 1, Sync: downloader.FullSync, BloomCache: 1, }) ) ethNoFork.Start(1000) ethProFork.Start(1000) // Clean up everything after ourselves defer chainNoFork.Stop() defer chainProFork.Stop() defer ethNoFork.Stop() defer ethProFork.Stop() // Both nodes should allow the other to connect (same genesis, next fork is the same) p2pNoFork, p2pProFork := p2p.MsgPipe() defer p2pNoFork.Close() defer p2pProFork.Close() peerNoFork := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{1}, "", nil, p2pNoFork), p2pNoFork, nil) peerProFork := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{2}, "", nil, p2pProFork), p2pProFork, nil) defer peerNoFork.Close() defer peerProFork.Close() errc := make(chan error, 2) go func(errc chan error) { errc <- ethNoFork.runEthPeer(peerProFork, func(peer *eth.Peer) error { return nil }) }(errc) go func(errc chan error) { errc <- ethProFork.runEthPeer(peerNoFork, func(peer *eth.Peer) error { return nil }) }(errc) for i := 0; i < 2; i++ { select { case err := <-errc: if err != nil { t.Fatalf("frontier nofork <-> profork failed: %v", err) } case <-time.After(250 * time.Millisecond): t.Fatalf("frontier nofork <-> profork handler timeout") } } // Progress into Homestead. Fork's match, so we don't care what the future holds chainNoFork.InsertChain(blocksNoFork[:1]) chainProFork.InsertChain(blocksProFork[:1]) p2pNoFork, p2pProFork = p2p.MsgPipe() defer p2pNoFork.Close() defer p2pProFork.Close() peerNoFork = eth.NewPeer(protocol, p2p.NewPeer(enode.ID{1}, "", nil), p2pNoFork, nil) peerProFork = eth.NewPeer(protocol, p2p.NewPeer(enode.ID{2}, "", nil), p2pProFork, nil) defer peerNoFork.Close() defer peerProFork.Close() errc = make(chan error, 2) go func(errc chan error) { errc <- ethNoFork.runEthPeer(peerProFork, func(peer *eth.Peer) error { return nil }) }(errc) go func(errc chan error) { errc <- ethProFork.runEthPeer(peerNoFork, func(peer *eth.Peer) error { return nil }) }(errc) for i := 0; i < 2; i++ { select { case err := <-errc: if err != nil { t.Fatalf("homestead nofork <-> profork failed: %v", err) } case <-time.After(250 * time.Millisecond): t.Fatalf("homestead nofork <-> profork handler timeout") } } // Progress into Spurious. Forks mismatch, signalling differing chains, reject chainNoFork.InsertChain(blocksNoFork[1:2]) chainProFork.InsertChain(blocksProFork[1:2]) p2pNoFork, p2pProFork = p2p.MsgPipe() defer p2pNoFork.Close() defer p2pProFork.Close() peerNoFork = eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{1}, "", nil, p2pNoFork), p2pNoFork, nil) peerProFork = eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{2}, "", nil, p2pProFork), p2pProFork, nil) defer peerNoFork.Close() defer peerProFork.Close() errc = make(chan error, 2) go func(errc chan error) { errc <- ethNoFork.runEthPeer(peerProFork, func(peer *eth.Peer) error { return nil }) }(errc) go func(errc chan error) { errc <- ethProFork.runEthPeer(peerNoFork, func(peer *eth.Peer) error { return nil }) }(errc) var successes int for i := 0; i < 2; i++ { select { case err := <-errc: if err == nil { successes++ if successes == 2 { // Only one side disconnects t.Fatalf("fork ID rejection didn't happen") } } case <-time.After(250 * time.Millisecond): t.Fatalf("split peers not rejected") } } } // Tests that received transactions are added to the local pool. func TestRecvTransactions68(t *testing.T) { testRecvTransactions(t, eth.ETH68) } func testRecvTransactions(t *testing.T, protocol uint) { t.Parallel() // Create a message handler, configure it to accept transactions and watch them handler := newTestHandler() defer handler.close() handler.handler.synced.Store(true) // mark synced to accept transactions txs := make(chan core.NewTxsEvent) sub := handler.txpool.SubscribeTransactions(txs, false) defer sub.Unsubscribe() // Create a source peer to send messages through and a sink handler to receive them p2pSrc, p2pSink := p2p.MsgPipe() defer p2pSrc.Close() defer p2pSink.Close() src := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{1}, "", nil, p2pSrc), p2pSrc, handler.txpool) sink := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{2}, "", nil, p2pSink), p2pSink, handler.txpool) defer src.Close() defer sink.Close() go handler.handler.runEthPeer(sink, func(peer *eth.Peer) error { return eth.Handle((*ethHandler)(handler.handler), peer) }) // Run the handshake locally to avoid spinning up a source handler var ( genesis = handler.chain.Genesis() head = handler.chain.CurrentBlock() td = handler.chain.GetTd(head.Hash(), head.Number.Uint64()) ) if err := src.Handshake(1, td, head.Hash(), genesis.Hash(), forkid.NewIDWithChain(handler.chain), forkid.NewFilter(handler.chain)); err != nil { t.Fatalf("failed to run protocol handshake") } // Send the transaction to the sink and verify that it's added to the tx pool tx := types.NewTransaction(0, common.Address{}, big.NewInt(0), 100000, big.NewInt(0), nil) tx, _ = types.SignTx(tx, types.HomesteadSigner{}, testKey) if err := src.SendTransactions([]*types.Transaction{tx}); err != nil { t.Fatalf("failed to send transaction: %v", err) } select { case event := <-txs: if len(event.Txs) != 1 { t.Errorf("wrong number of added transactions: got %d, want 1", len(event.Txs)) } else if event.Txs[0].Hash() != tx.Hash() { t.Errorf("added wrong tx hash: got %v, want %v", event.Txs[0].Hash(), tx.Hash()) } case <-time.After(2 * time.Second): t.Errorf("no NewTxsEvent received within 2 seconds") } } // This test checks that pending transactions are sent. func TestSendTransactions68(t *testing.T) { testSendTransactions(t, eth.ETH68) } func testSendTransactions(t *testing.T, protocol uint) { t.Parallel() // Create a message handler and fill the pool with big transactions handler := newTestHandler() defer handler.close() insert := make([]*types.Transaction, 100) for nonce := range insert { tx := types.NewTransaction(uint64(nonce), common.Address{}, big.NewInt(0), 100000, big.NewInt(0), make([]byte, 10240)) tx, _ = types.SignTx(tx, types.HomesteadSigner{}, testKey) insert[nonce] = tx } go handler.txpool.Add(insert, false, false) // Need goroutine to not block on feed time.Sleep(250 * time.Millisecond) // Wait until tx events get out of the system (can't use events, tx broadcaster races with peer join) // Create a source handler to send messages through and a sink peer to receive them p2pSrc, p2pSink := p2p.MsgPipe() defer p2pSrc.Close() defer p2pSink.Close() src := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{1}, "", nil, p2pSrc), p2pSrc, handler.txpool) sink := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{2}, "", nil, p2pSink), p2pSink, handler.txpool) defer src.Close() defer sink.Close() go handler.handler.runEthPeer(src, func(peer *eth.Peer) error { return eth.Handle((*ethHandler)(handler.handler), peer) }) // Run the handshake locally to avoid spinning up a source handler var ( genesis = handler.chain.Genesis() head = handler.chain.CurrentBlock() td = handler.chain.GetTd(head.Hash(), head.Number.Uint64()) ) if err := sink.Handshake(1, td, head.Hash(), genesis.Hash(), forkid.NewIDWithChain(handler.chain), forkid.NewFilter(handler.chain)); err != nil { t.Fatalf("failed to run protocol handshake") } // After the handshake completes, the source handler should stream the sink // the transactions, subscribe to all inbound network events backend := new(testEthHandler) anns := make(chan []common.Hash) annSub := backend.txAnnounces.Subscribe(anns) defer annSub.Unsubscribe() bcasts := make(chan []*types.Transaction) bcastSub := backend.txBroadcasts.Subscribe(bcasts) defer bcastSub.Unsubscribe() go eth.Handle(backend, sink) // Make sure we get all the transactions on the correct channels seen := make(map[common.Hash]struct{}) for len(seen) < len(insert) { switch protocol { case 68: select { case hashes := <-anns: for _, hash := range hashes { if _, ok := seen[hash]; ok { t.Errorf("duplicate transaction announced: %x", hash) } seen[hash] = struct{}{} } case <-bcasts: t.Errorf("initial tx broadcast received on post eth/66") } default: panic("unsupported protocol, please extend test") } } for _, tx := range insert { if _, ok := seen[tx.Hash()]; !ok { t.Errorf("missing transaction: %x", tx.Hash()) } } } // Tests that transactions get propagated to all attached peers, either via direct // broadcasts or via announcements/retrievals. func TestTransactionPropagation68(t *testing.T) { testTransactionPropagation(t, eth.ETH68) } func testTransactionPropagation(t *testing.T, protocol uint) { t.Parallel() // Create a source handler to send transactions from and a number of sinks // to receive them. We need multiple sinks since a one-to-one peering would // broadcast all transactions without announcement. source := newTestHandler() source.handler.snapSync.Store(false) // Avoid requiring snap, otherwise some will be dropped below defer source.close() sinks := make([]*testHandler, 10) for i := 0; i < len(sinks); i++ { sinks[i] = newTestHandler() defer sinks[i].close() sinks[i].handler.synced.Store(true) // mark synced to accept transactions } // Interconnect all the sink handlers with the source handler for i, sink := range sinks { sourcePipe, sinkPipe := p2p.MsgPipe() defer sourcePipe.Close() defer sinkPipe.Close() sourcePeer := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{byte(i + 1)}, "", nil, sourcePipe), sourcePipe, source.txpool) sinkPeer := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{0}, "", nil, sinkPipe), sinkPipe, sink.txpool) defer sourcePeer.Close() defer sinkPeer.Close() go source.handler.runEthPeer(sourcePeer, func(peer *eth.Peer) error { return eth.Handle((*ethHandler)(source.handler), peer) }) go sink.handler.runEthPeer(sinkPeer, func(peer *eth.Peer) error { return eth.Handle((*ethHandler)(sink.handler), peer) }) } // Subscribe to all the transaction pools txChs := make([]chan core.NewTxsEvent, len(sinks)) for i := 0; i < len(sinks); i++ { txChs[i] = make(chan core.NewTxsEvent, 1024) sub := sinks[i].txpool.SubscribeTransactions(txChs[i], false) defer sub.Unsubscribe() } // Fill the source pool with transactions and wait for them at the sinks txs := make([]*types.Transaction, 1024) for nonce := range txs { tx := types.NewTransaction(uint64(nonce), common.Address{}, big.NewInt(0), 100000, big.NewInt(0), nil) tx, _ = types.SignTx(tx, types.HomesteadSigner{}, testKey) txs[nonce] = tx } source.txpool.Add(txs, false, false) // Iterate through all the sinks and ensure they all got the transactions for i := range sinks { for arrived, timeout := 0, false; arrived < len(txs) && !timeout; { select { case event := <-txChs[i]: arrived += len(event.Txs) case <-time.After(2 * time.Second): t.Errorf("sink %d: transaction propagation timed out: have %d, want %d", i, arrived, len(txs)) timeout = true } } } }