// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Contains the block download scheduler to collect download tasks and schedule // them in an ordered, and throttled way. package downloader import ( "errors" "fmt" "sync" "sync/atomic" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/prque" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/metrics" ) const ( bodyType = uint(0) receiptType = uint(1) ) var ( blockCacheMaxItems = 8192 // Maximum number of blocks to cache before throttling the download blockCacheInitialItems = 2048 // Initial number of blocks to start fetching, before we know the sizes of the blocks blockCacheMemory = 256 * 1024 * 1024 // Maximum amount of memory to use for block caching blockCacheSizeWeight = 0.1 // Multiplier to approximate the average block size based on past ones ) var ( errNoFetchesPending = errors.New("no fetches pending") errStaleDelivery = errors.New("stale delivery") ) // fetchRequest is a currently running data retrieval operation. type fetchRequest struct { Peer *peerConnection // Peer to which the request was sent From uint64 // Requested chain element index (used for skeleton fills only) Headers []*types.Header // Requested headers, sorted by request order Time time.Time // Time when the request was made } // fetchResult is a struct collecting partial results from data fetchers until // all outstanding pieces complete and the result as a whole can be processed. type fetchResult struct { pending atomic.Int32 // Flag telling what deliveries are outstanding Header *types.Header Uncles []*types.Header Transactions types.Transactions Receipts types.Receipts Withdrawals types.Withdrawals } func newFetchResult(header *types.Header, fastSync bool) *fetchResult { item := &fetchResult{ Header: header, } if !header.EmptyBody() { item.pending.Store(item.pending.Load() | (1 << bodyType)) } else if header.WithdrawalsHash != nil { item.Withdrawals = make(types.Withdrawals, 0) } if fastSync && !header.EmptyReceipts() { item.pending.Store(item.pending.Load() | (1 << receiptType)) } return item } // SetBodyDone flags the body as finished. func (f *fetchResult) SetBodyDone() { if v := f.pending.Load(); (v & (1 << bodyType)) != 0 { f.pending.Add(-1) } } // AllDone checks if item is done. func (f *fetchResult) AllDone() bool { return f.pending.Load() == 0 } // SetReceiptsDone flags the receipts as finished. func (f *fetchResult) SetReceiptsDone() { if v := f.pending.Load(); (v & (1 << receiptType)) != 0 { f.pending.Add(-2) } } // Done checks if the given type is done already func (f *fetchResult) Done(kind uint) bool { v := f.pending.Load() return v&(1< 0 } // InFlightReceipts retrieves whether there are receipt fetch requests currently // in flight. func (q *queue) InFlightReceipts() bool { q.lock.Lock() defer q.lock.Unlock() return len(q.receiptPendPool) > 0 } // Idle returns if the queue is fully idle or has some data still inside. func (q *queue) Idle() bool { q.lock.Lock() defer q.lock.Unlock() queued := q.blockTaskQueue.Size() + q.receiptTaskQueue.Size() pending := len(q.blockPendPool) + len(q.receiptPendPool) return (queued + pending) == 0 } // ScheduleSkeleton adds a batch of header retrieval tasks to the queue to fill // up an already retrieved header skeleton. func (q *queue) ScheduleSkeleton(from uint64, skeleton []*types.Header) { q.lock.Lock() defer q.lock.Unlock() // No skeleton retrieval can be in progress, fail hard if so (huge implementation bug) if q.headerResults != nil { panic("skeleton assembly already in progress") } // Schedule all the header retrieval tasks for the skeleton assembly q.headerTaskPool = make(map[uint64]*types.Header) q.headerTaskQueue = prque.New[int64, uint64](nil) q.headerPeerMiss = make(map[string]map[uint64]struct{}) // Reset availability to correct invalid chains q.headerResults = make([]*types.Header, len(skeleton)*MaxHeaderFetch) q.headerHashes = make([]common.Hash, len(skeleton)*MaxHeaderFetch) q.headerProced = 0 q.headerOffset = from q.headerContCh = make(chan bool, 1) for i, header := range skeleton { index := from + uint64(i*MaxHeaderFetch) q.headerTaskPool[index] = header q.headerTaskQueue.Push(index, -int64(index)) } } // RetrieveHeaders retrieves the header chain assemble based on the scheduled // skeleton. func (q *queue) RetrieveHeaders() ([]*types.Header, []common.Hash, int) { q.lock.Lock() defer q.lock.Unlock() headers, hashes, proced := q.headerResults, q.headerHashes, q.headerProced q.headerResults, q.headerHashes, q.headerProced = nil, nil, 0 return headers, hashes, proced } // Schedule adds a set of headers for the download queue for scheduling, returning // the new headers encountered. func (q *queue) Schedule(headers []*types.Header, hashes []common.Hash, from uint64) []*types.Header { q.lock.Lock() defer q.lock.Unlock() // Insert all the headers prioritised by the contained block number inserts := make([]*types.Header, 0, len(headers)) for i, header := range headers { // Make sure chain order is honoured and preserved throughout hash := hashes[i] if header.Number == nil || header.Number.Uint64() != from { log.Warn("Header broke chain ordering", "number", header.Number, "hash", hash, "expected", from) break } if q.headerHead != (common.Hash{}) && q.headerHead != header.ParentHash { log.Warn("Header broke chain ancestry", "number", header.Number, "hash", hash) break } // Make sure no duplicate requests are executed // We cannot skip this, even if the block is empty, since this is // what triggers the fetchResult creation. if _, ok := q.blockTaskPool[hash]; ok { log.Warn("Header already scheduled for block fetch", "number", header.Number, "hash", hash) } else { q.blockTaskPool[hash] = header q.blockTaskQueue.Push(header, -int64(header.Number.Uint64())) } // Queue for receipt retrieval if q.mode == SnapSync && !header.EmptyReceipts() { if _, ok := q.receiptTaskPool[hash]; ok { log.Warn("Header already scheduled for receipt fetch", "number", header.Number, "hash", hash) } else { q.receiptTaskPool[hash] = header q.receiptTaskQueue.Push(header, -int64(header.Number.Uint64())) } } inserts = append(inserts, header) q.headerHead = hash from++ } return inserts } // Results retrieves and permanently removes a batch of fetch results from // the cache. the result slice will be empty if the queue has been closed. // Results can be called concurrently with Deliver and Schedule, // but assumes that there are not two simultaneous callers to Results func (q *queue) Results(block bool) []*fetchResult { // Abort early if there are no items and non-blocking requested if !block && !q.resultCache.HasCompletedItems() { return nil } closed := false for !closed && !q.resultCache.HasCompletedItems() { // In order to wait on 'active', we need to obtain the lock. // That may take a while, if someone is delivering at the same // time, so after obtaining the lock, we check again if there // are any results to fetch. // Also, in-between we ask for the lock and the lock is obtained, // someone can have closed the queue. In that case, we should // return the available results and stop blocking q.lock.Lock() if q.resultCache.HasCompletedItems() || q.closed { q.lock.Unlock() break } // No items available, and not closed q.active.Wait() closed = q.closed q.lock.Unlock() } // Regardless if closed or not, we can still deliver whatever we have results := q.resultCache.GetCompleted(maxResultsProcess) for _, result := range results { // Recalculate the result item weights to prevent memory exhaustion size := result.Header.Size() for _, uncle := range result.Uncles { size += uncle.Size() } for _, receipt := range result.Receipts { size += receipt.Size() } for _, tx := range result.Transactions { size += common.StorageSize(tx.Size()) } q.resultSize = common.StorageSize(blockCacheSizeWeight)*size + (1-common.StorageSize(blockCacheSizeWeight))*q.resultSize } // Using the newly calibrated resultsize, figure out the new throttle limit // on the result cache throttleThreshold := uint64((common.StorageSize(blockCacheMemory) + q.resultSize - 1) / q.resultSize) throttleThreshold = q.resultCache.SetThrottleThreshold(throttleThreshold) // With results removed from the cache, wake throttled fetchers for _, ch := range []chan bool{q.blockWakeCh, q.receiptWakeCh} { select { case ch <- true: default: } } // Log some info at certain times if time.Since(q.logTime) >= 60*time.Second { q.logTime = time.Now() info := q.Stats() info = append(info, "throttle", throttleThreshold) log.Debug("Downloader queue stats", info...) } return results } func (q *queue) Stats() []interface{} { q.lock.RLock() defer q.lock.RUnlock() return q.stats() } func (q *queue) stats() []interface{} { return []interface{}{ "receiptTasks", q.receiptTaskQueue.Size(), "blockTasks", q.blockTaskQueue.Size(), "itemSize", q.resultSize, } } // ReserveHeaders reserves a set of headers for the given peer, skipping any // previously failed batches. func (q *queue) ReserveHeaders(p *peerConnection, count int) *fetchRequest { q.lock.Lock() defer q.lock.Unlock() // Short circuit if the peer's already downloading something (sanity check to // not corrupt state) if _, ok := q.headerPendPool[p.id]; ok { return nil } // Retrieve a batch of hashes, skipping previously failed ones send, skip := uint64(0), []uint64{} for send == 0 && !q.headerTaskQueue.Empty() { from, _ := q.headerTaskQueue.Pop() if q.headerPeerMiss[p.id] != nil { if _, ok := q.headerPeerMiss[p.id][from]; ok { skip = append(skip, from) continue } } send = from } // Merge all the skipped batches back for _, from := range skip { q.headerTaskQueue.Push(from, -int64(from)) } // Assemble and return the block download request if send == 0 { return nil } request := &fetchRequest{ Peer: p, From: send, Time: time.Now(), } q.headerPendPool[p.id] = request return request } // ReserveBodies reserves a set of body fetches for the given peer, skipping any // previously failed downloads. Beside the next batch of needed fetches, it also // returns a flag whether empty blocks were queued requiring processing. func (q *queue) ReserveBodies(p *peerConnection, count int) (*fetchRequest, bool, bool) { q.lock.Lock() defer q.lock.Unlock() return q.reserveHeaders(p, count, q.blockTaskPool, q.blockTaskQueue, q.blockPendPool, bodyType) } // ReserveReceipts reserves a set of receipt fetches for the given peer, skipping // any previously failed downloads. Beside the next batch of needed fetches, it // also returns a flag whether empty receipts were queued requiring importing. func (q *queue) ReserveReceipts(p *peerConnection, count int) (*fetchRequest, bool, bool) { q.lock.Lock() defer q.lock.Unlock() return q.reserveHeaders(p, count, q.receiptTaskPool, q.receiptTaskQueue, q.receiptPendPool, receiptType) } // reserveHeaders reserves a set of data download operations for a given peer, // skipping any previously failed ones. This method is a generic version used // by the individual special reservation functions. // // Note, this method expects the queue lock to be already held for writing. The // reason the lock is not obtained in here is because the parameters already need // to access the queue, so they already need a lock anyway. // // Returns: // // item - the fetchRequest // progress - whether any progress was made // throttle - if the caller should throttle for a while func (q *queue) reserveHeaders(p *peerConnection, count int, taskPool map[common.Hash]*types.Header, taskQueue *prque.Prque[int64, *types.Header], pendPool map[string]*fetchRequest, kind uint) (*fetchRequest, bool, bool) { // Short circuit if the pool has been depleted, or if the peer's already // downloading something (sanity check not to corrupt state) if taskQueue.Empty() { return nil, false, true } if _, ok := pendPool[p.id]; ok { return nil, false, false } // Retrieve a batch of tasks, skipping previously failed ones send := make([]*types.Header, 0, count) skip := make([]*types.Header, 0) progress := false throttled := false for proc := 0; len(send) < count && !taskQueue.Empty(); proc++ { // the task queue will pop items in order, so the highest prio block // is also the lowest block number. header, _ := taskQueue.Peek() // we can ask the resultcache if this header is within the // "prioritized" segment of blocks. If it is not, we need to throttle stale, throttle, item, err := q.resultCache.AddFetch(header, q.mode == SnapSync) if stale { // Don't put back in the task queue, this item has already been // delivered upstream taskQueue.PopItem() progress = true delete(taskPool, header.Hash()) proc = proc - 1 log.Error("Fetch reservation already delivered", "number", header.Number.Uint64()) continue } if throttle { // There are no resultslots available. Leave it in the task queue // However, if there are any left as 'skipped', we should not tell // the caller to throttle, since we still want some other // peer to fetch those for us throttled = len(skip) == 0 break } if err != nil { // this most definitely should _not_ happen log.Warn("Failed to reserve headers", "err", err) // There are no resultslots available. Leave it in the task queue break } if item.Done(kind) { // If it's a noop, we can skip this task delete(taskPool, header.Hash()) taskQueue.PopItem() proc = proc - 1 progress = true continue } // Remove it from the task queue taskQueue.PopItem() // Otherwise unless the peer is known not to have the data, add to the retrieve list if p.Lacks(header.Hash()) { skip = append(skip, header) } else { send = append(send, header) } } // Merge all the skipped headers back for _, header := range skip { taskQueue.Push(header, -int64(header.Number.Uint64())) } if q.resultCache.HasCompletedItems() { // Wake Results, resultCache was modified q.active.Signal() } // Assemble and return the block download request if len(send) == 0 { return nil, progress, throttled } request := &fetchRequest{ Peer: p, Headers: send, Time: time.Now(), } pendPool[p.id] = request return request, progress, throttled } // Revoke cancels all pending requests belonging to a given peer. This method is // meant to be called during a peer drop to quickly reassign owned data fetches // to remaining nodes. func (q *queue) Revoke(peerID string) { q.lock.Lock() defer q.lock.Unlock() if request, ok := q.headerPendPool[peerID]; ok { q.headerTaskQueue.Push(request.From, -int64(request.From)) delete(q.headerPendPool, peerID) } if request, ok := q.blockPendPool[peerID]; ok { for _, header := range request.Headers { q.blockTaskQueue.Push(header, -int64(header.Number.Uint64())) } delete(q.blockPendPool, peerID) } if request, ok := q.receiptPendPool[peerID]; ok { for _, header := range request.Headers { q.receiptTaskQueue.Push(header, -int64(header.Number.Uint64())) } delete(q.receiptPendPool, peerID) } } // ExpireHeaders cancels a request that timed out and moves the pending fetch // task back into the queue for rescheduling. func (q *queue) ExpireHeaders(peer string) int { q.lock.Lock() defer q.lock.Unlock() headerTimeoutMeter.Mark(1) return q.expire(peer, q.headerPendPool, q.headerTaskQueue) } // ExpireBodies checks for in flight block body requests that exceeded a timeout // allowance, canceling them and returning the responsible peers for penalisation. func (q *queue) ExpireBodies(peer string) int { q.lock.Lock() defer q.lock.Unlock() bodyTimeoutMeter.Mark(1) return q.expire(peer, q.blockPendPool, q.blockTaskQueue) } // ExpireReceipts checks for in flight receipt requests that exceeded a timeout // allowance, canceling them and returning the responsible peers for penalisation. func (q *queue) ExpireReceipts(peer string) int { q.lock.Lock() defer q.lock.Unlock() receiptTimeoutMeter.Mark(1) return q.expire(peer, q.receiptPendPool, q.receiptTaskQueue) } // expire is the generic check that moves a specific expired task from a pending // pool back into a task pool. The syntax on the passed taskQueue is a bit weird // as we would need a generic expire method to handle both types, but that is not // supported at the moment at least (Go 1.19). // // Note, this method expects the queue lock to be already held. The reason the // lock is not obtained in here is that the parameters already need to access // the queue, so they already need a lock anyway. func (q *queue) expire(peer string, pendPool map[string]*fetchRequest, taskQueue interface{}) int { // Retrieve the request being expired and log an error if it's non-existent, // as there's no order of events that should lead to such expirations. req := pendPool[peer] if req == nil { log.Error("Expired request does not exist", "peer", peer) return 0 } delete(pendPool, peer) // Return any non-satisfied requests to the pool if req.From > 0 { taskQueue.(*prque.Prque[int64, uint64]).Push(req.From, -int64(req.From)) } for _, header := range req.Headers { taskQueue.(*prque.Prque[int64, *types.Header]).Push(header, -int64(header.Number.Uint64())) } return len(req.Headers) } // DeliverHeaders injects a header retrieval response into the header results // cache. This method either accepts all headers it received, or none of them // if they do not map correctly to the skeleton. // // If the headers are accepted, the method makes an attempt to deliver the set // of ready headers to the processor to keep the pipeline full. However, it will // not block to prevent stalling other pending deliveries. func (q *queue) DeliverHeaders(id string, headers []*types.Header, hashes []common.Hash, headerProcCh chan *headerTask) (int, error) { q.lock.Lock() defer q.lock.Unlock() var logger log.Logger if len(id) < 16 { // Tests use short IDs, don't choke on them logger = log.New("peer", id) } else { logger = log.New("peer", id[:16]) } // Short circuit if the data was never requested request := q.headerPendPool[id] if request == nil { headerDropMeter.Mark(int64(len(headers))) return 0, errNoFetchesPending } delete(q.headerPendPool, id) headerReqTimer.UpdateSince(request.Time) headerInMeter.Mark(int64(len(headers))) // Ensure headers can be mapped onto the skeleton chain target := q.headerTaskPool[request.From].Hash() accepted := len(headers) == MaxHeaderFetch if accepted { if headers[0].Number.Uint64() != request.From { logger.Trace("First header broke chain ordering", "number", headers[0].Number, "hash", hashes[0], "expected", request.From) accepted = false } else if hashes[len(headers)-1] != target { logger.Trace("Last header broke skeleton structure ", "number", headers[len(headers)-1].Number, "hash", hashes[len(headers)-1], "expected", target) accepted = false } } if accepted { parentHash := hashes[0] for i, header := range headers[1:] { hash := hashes[i+1] if want := request.From + 1 + uint64(i); header.Number.Uint64() != want { logger.Warn("Header broke chain ordering", "number", header.Number, "hash", hash, "expected", want) accepted = false break } if parentHash != header.ParentHash { logger.Warn("Header broke chain ancestry", "number", header.Number, "hash", hash) accepted = false break } // Set-up parent hash for next round parentHash = hash } } // If the batch of headers wasn't accepted, mark as unavailable if !accepted { logger.Trace("Skeleton filling not accepted", "from", request.From) headerDropMeter.Mark(int64(len(headers))) miss := q.headerPeerMiss[id] if miss == nil { q.headerPeerMiss[id] = make(map[uint64]struct{}) miss = q.headerPeerMiss[id] } miss[request.From] = struct{}{} q.headerTaskQueue.Push(request.From, -int64(request.From)) return 0, errors.New("delivery not accepted") } // Clean up a successful fetch and try to deliver any sub-results copy(q.headerResults[request.From-q.headerOffset:], headers) copy(q.headerHashes[request.From-q.headerOffset:], hashes) delete(q.headerTaskPool, request.From) ready := 0 for q.headerProced+ready < len(q.headerResults) && q.headerResults[q.headerProced+ready] != nil { ready += MaxHeaderFetch } if ready > 0 { // Headers are ready for delivery, gather them and push forward (non blocking) processHeaders := make([]*types.Header, ready) copy(processHeaders, q.headerResults[q.headerProced:q.headerProced+ready]) processHashes := make([]common.Hash, ready) copy(processHashes, q.headerHashes[q.headerProced:q.headerProced+ready]) select { case headerProcCh <- &headerTask{ headers: processHeaders, hashes: processHashes, }: logger.Trace("Pre-scheduled new headers", "count", len(processHeaders), "from", processHeaders[0].Number) q.headerProced += len(processHeaders) default: } } // Check for termination and return if len(q.headerTaskPool) == 0 { q.headerContCh <- false } return len(headers), nil } // DeliverBodies injects a block body retrieval response into the results queue. // The method returns the number of blocks bodies accepted from the delivery and // also wakes any threads waiting for data delivery. func (q *queue) DeliverBodies(id string, txLists [][]*types.Transaction, txListHashes []common.Hash, uncleLists [][]*types.Header, uncleListHashes []common.Hash, withdrawalLists [][]*types.Withdrawal, withdrawalListHashes []common.Hash) (int, error) { q.lock.Lock() defer q.lock.Unlock() validate := func(index int, header *types.Header) error { if txListHashes[index] != header.TxHash { return errInvalidBody } if uncleListHashes[index] != header.UncleHash { return errInvalidBody } if header.WithdrawalsHash == nil { // nil hash means that withdrawals should not be present in body if withdrawalLists[index] != nil { return errInvalidBody } } else { // non-nil hash: body must have withdrawals if withdrawalLists[index] == nil { return errInvalidBody } if withdrawalListHashes[index] != *header.WithdrawalsHash { return errInvalidBody } } return nil } reconstruct := func(index int, result *fetchResult) { result.Transactions = txLists[index] result.Uncles = uncleLists[index] result.Withdrawals = withdrawalLists[index] result.SetBodyDone() } return q.deliver(id, q.blockTaskPool, q.blockTaskQueue, q.blockPendPool, bodyReqTimer, bodyInMeter, bodyDropMeter, len(txLists), validate, reconstruct) } // DeliverReceipts injects a receipt retrieval response into the results queue. // The method returns the number of transaction receipts accepted from the delivery // and also wakes any threads waiting for data delivery. func (q *queue) DeliverReceipts(id string, receiptList [][]*types.Receipt, receiptListHashes []common.Hash) (int, error) { q.lock.Lock() defer q.lock.Unlock() validate := func(index int, header *types.Header) error { if receiptListHashes[index] != header.ReceiptHash { return errInvalidReceipt } return nil } reconstruct := func(index int, result *fetchResult) { result.Receipts = receiptList[index] result.SetReceiptsDone() } return q.deliver(id, q.receiptTaskPool, q.receiptTaskQueue, q.receiptPendPool, receiptReqTimer, receiptInMeter, receiptDropMeter, len(receiptList), validate, reconstruct) } // deliver injects a data retrieval response into the results queue. // // Note, this method expects the queue lock to be already held for writing. The // reason this lock is not obtained in here is because the parameters already need // to access the queue, so they already need a lock anyway. func (q *queue) deliver(id string, taskPool map[common.Hash]*types.Header, taskQueue *prque.Prque[int64, *types.Header], pendPool map[string]*fetchRequest, reqTimer metrics.Timer, resInMeter metrics.Meter, resDropMeter metrics.Meter, results int, validate func(index int, header *types.Header) error, reconstruct func(index int, result *fetchResult)) (int, error) { // Short circuit if the data was never requested request := pendPool[id] if request == nil { resDropMeter.Mark(int64(results)) return 0, errNoFetchesPending } delete(pendPool, id) reqTimer.UpdateSince(request.Time) resInMeter.Mark(int64(results)) // If no data items were retrieved, mark them as unavailable for the origin peer if results == 0 { for _, header := range request.Headers { request.Peer.MarkLacking(header.Hash()) } } // Assemble each of the results with their headers and retrieved data parts var ( accepted int failure error i int hashes []common.Hash ) for _, header := range request.Headers { // Short circuit assembly if no more fetch results are found if i >= results { break } // Validate the fields if err := validate(i, header); err != nil { failure = err break } hashes = append(hashes, header.Hash()) i++ } for _, header := range request.Headers[:i] { if res, stale, err := q.resultCache.GetDeliverySlot(header.Number.Uint64()); err == nil && !stale { reconstruct(accepted, res) } else { // else: between here and above, some other peer filled this result, // or it was indeed a no-op. This should not happen, but if it does it's // not something to panic about log.Error("Delivery stale", "stale", stale, "number", header.Number.Uint64(), "err", err) failure = errStaleDelivery } // Clean up a successful fetch delete(taskPool, hashes[accepted]) accepted++ } resDropMeter.Mark(int64(results - accepted)) // Return all failed or missing fetches to the queue for _, header := range request.Headers[accepted:] { taskQueue.Push(header, -int64(header.Number.Uint64())) } // Wake up Results if accepted > 0 { q.active.Signal() } if failure == nil { return accepted, nil } // If none of the data was good, it's a stale delivery if accepted > 0 { return accepted, fmt.Errorf("partial failure: %v", failure) } return accepted, fmt.Errorf("%w: %v", failure, errStaleDelivery) } // Prepare configures the result cache to allow accepting and caching inbound // fetch results. func (q *queue) Prepare(offset uint64, mode SyncMode) { q.lock.Lock() defer q.lock.Unlock() // Prepare the queue for sync results q.resultCache.Prepare(offset) q.mode = mode }