// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package downloader import ( "errors" "fmt" "io/ioutil" "math/big" "os" "strings" "sync" "sync/atomic" "testing" "time" "github.com/ethereum/go-ethereum" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/consensus/ethash" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/eth/protocols/eth" "github.com/ethereum/go-ethereum/eth/protocols/snap" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie" ) // downloadTester is a test simulator for mocking out local block chain. type downloadTester struct { freezer string chain *core.BlockChain downloader *Downloader peers map[string]*downloadTesterPeer lock sync.RWMutex } // newTester creates a new downloader test mocker. func newTester() *downloadTester { return newTesterWithNotification(nil) } // newTester creates a new downloader test mocker. func newTesterWithNotification(success func()) *downloadTester { freezer, err := ioutil.TempDir("", "") if err != nil { panic(err) } db, err := rawdb.NewDatabaseWithFreezer(rawdb.NewMemoryDatabase(), freezer, "", false) if err != nil { panic(err) } core.GenesisBlockForTesting(db, testAddress, big.NewInt(1000000000000000)) chain, err := core.NewBlockChain(db, nil, params.TestChainConfig, ethash.NewFaker(), vm.Config{}, nil, nil) if err != nil { panic(err) } tester := &downloadTester{ freezer: freezer, chain: chain, peers: make(map[string]*downloadTesterPeer), } tester.downloader = New(0, db, new(event.TypeMux), tester.chain, nil, tester.dropPeer, success) return tester } // terminate aborts any operations on the embedded downloader and releases all // held resources. func (dl *downloadTester) terminate() { dl.downloader.Terminate() dl.chain.Stop() os.RemoveAll(dl.freezer) } // sync starts synchronizing with a remote peer, blocking until it completes. func (dl *downloadTester) sync(id string, td *big.Int, mode SyncMode) error { head := dl.peers[id].chain.CurrentBlock() if td == nil { // If no particular TD was requested, load from the peer's blockchain td = dl.peers[id].chain.GetTd(head.Hash(), head.NumberU64()) } // Synchronise with the chosen peer and ensure proper cleanup afterwards err := dl.downloader.synchronise(id, head.Hash(), td, nil, mode, false, nil) select { case <-dl.downloader.cancelCh: // Ok, downloader fully cancelled after sync cycle default: // Downloader is still accepting packets, can block a peer up panic("downloader active post sync cycle") // panic will be caught by tester } return err } // newPeer registers a new block download source into the downloader. func (dl *downloadTester) newPeer(id string, version uint, blocks []*types.Block) *downloadTesterPeer { dl.lock.Lock() defer dl.lock.Unlock() peer := &downloadTesterPeer{ dl: dl, id: id, chain: newTestBlockchain(blocks), withholdHeaders: make(map[common.Hash]struct{}), } dl.peers[id] = peer if err := dl.downloader.RegisterPeer(id, version, peer); err != nil { panic(err) } if err := dl.downloader.SnapSyncer.Register(peer); err != nil { panic(err) } return peer } // dropPeer simulates a hard peer removal from the connection pool. func (dl *downloadTester) dropPeer(id string) { dl.lock.Lock() defer dl.lock.Unlock() delete(dl.peers, id) dl.downloader.SnapSyncer.Unregister(id) dl.downloader.UnregisterPeer(id) } type downloadTesterPeer struct { dl *downloadTester id string chain *core.BlockChain withholdHeaders map[common.Hash]struct{} } // Head constructs a function to retrieve a peer's current head hash // and total difficulty. func (dlp *downloadTesterPeer) Head() (common.Hash, *big.Int) { head := dlp.chain.CurrentBlock() return head.Hash(), dlp.chain.GetTd(head.Hash(), head.NumberU64()) } func unmarshalRlpHeaders(rlpdata []rlp.RawValue) []*types.Header { var headers = make([]*types.Header, len(rlpdata)) for i, data := range rlpdata { var h types.Header if err := rlp.DecodeBytes(data, &h); err != nil { panic(err) } headers[i] = &h } return headers } // RequestHeadersByHash constructs a GetBlockHeaders function based on a hashed // origin; associated with a particular peer in the download tester. The returned // function can be used to retrieve batches of headers from the particular peer. func (dlp *downloadTesterPeer) RequestHeadersByHash(origin common.Hash, amount int, skip int, reverse bool, sink chan *eth.Response) (*eth.Request, error) { // Service the header query via the live handler code rlpHeaders := eth.ServiceGetBlockHeadersQuery(dlp.chain, ð.GetBlockHeadersPacket{ Origin: eth.HashOrNumber{ Hash: origin, }, Amount: uint64(amount), Skip: uint64(skip), Reverse: reverse, }, nil) headers := unmarshalRlpHeaders(rlpHeaders) // If a malicious peer is simulated withholding headers, delete them for hash := range dlp.withholdHeaders { for i, header := range headers { if header.Hash() == hash { headers = append(headers[:i], headers[i+1:]...) break } } } hashes := make([]common.Hash, len(headers)) for i, header := range headers { hashes[i] = header.Hash() } // Deliver the headers to the downloader req := ð.Request{ Peer: dlp.id, } res := ð.Response{ Req: req, Res: (*eth.BlockHeadersPacket)(&headers), Meta: hashes, Time: 1, Done: make(chan error, 1), // Ignore the returned status } go func() { sink <- res }() return req, nil } // RequestHeadersByNumber constructs a GetBlockHeaders function based on a numbered // origin; associated with a particular peer in the download tester. The returned // function can be used to retrieve batches of headers from the particular peer. func (dlp *downloadTesterPeer) RequestHeadersByNumber(origin uint64, amount int, skip int, reverse bool, sink chan *eth.Response) (*eth.Request, error) { // Service the header query via the live handler code rlpHeaders := eth.ServiceGetBlockHeadersQuery(dlp.chain, ð.GetBlockHeadersPacket{ Origin: eth.HashOrNumber{ Number: origin, }, Amount: uint64(amount), Skip: uint64(skip), Reverse: reverse, }, nil) headers := unmarshalRlpHeaders(rlpHeaders) // If a malicious peer is simulated withholding headers, delete them for hash := range dlp.withholdHeaders { for i, header := range headers { if header.Hash() == hash { headers = append(headers[:i], headers[i+1:]...) break } } } hashes := make([]common.Hash, len(headers)) for i, header := range headers { hashes[i] = header.Hash() } // Deliver the headers to the downloader req := ð.Request{ Peer: dlp.id, } res := ð.Response{ Req: req, Res: (*eth.BlockHeadersPacket)(&headers), Meta: hashes, Time: 1, Done: make(chan error, 1), // Ignore the returned status } go func() { sink <- res }() return req, nil } // RequestBodies constructs a getBlockBodies method associated with a particular // peer in the download tester. The returned function can be used to retrieve // batches of block bodies from the particularly requested peer. func (dlp *downloadTesterPeer) RequestBodies(hashes []common.Hash, sink chan *eth.Response) (*eth.Request, error) { blobs := eth.ServiceGetBlockBodiesQuery(dlp.chain, hashes) bodies := make([]*eth.BlockBody, len(blobs)) for i, blob := range blobs { bodies[i] = new(eth.BlockBody) rlp.DecodeBytes(blob, bodies[i]) } var ( txsHashes = make([]common.Hash, len(bodies)) uncleHashes = make([]common.Hash, len(bodies)) ) hasher := trie.NewStackTrie(nil) for i, body := range bodies { txsHashes[i] = types.DeriveSha(types.Transactions(body.Transactions), hasher) uncleHashes[i] = types.CalcUncleHash(body.Uncles) } req := ð.Request{ Peer: dlp.id, } res := ð.Response{ Req: req, Res: (*eth.BlockBodiesPacket)(&bodies), Meta: [][]common.Hash{txsHashes, uncleHashes}, Time: 1, Done: make(chan error, 1), // Ignore the returned status } go func() { sink <- res }() return req, nil } // RequestReceipts constructs a getReceipts method associated with a particular // peer in the download tester. The returned function can be used to retrieve // batches of block receipts from the particularly requested peer. func (dlp *downloadTesterPeer) RequestReceipts(hashes []common.Hash, sink chan *eth.Response) (*eth.Request, error) { blobs := eth.ServiceGetReceiptsQuery(dlp.chain, hashes) receipts := make([][]*types.Receipt, len(blobs)) for i, blob := range blobs { rlp.DecodeBytes(blob, &receipts[i]) } hasher := trie.NewStackTrie(nil) hashes = make([]common.Hash, len(receipts)) for i, receipt := range receipts { hashes[i] = types.DeriveSha(types.Receipts(receipt), hasher) } req := ð.Request{ Peer: dlp.id, } res := ð.Response{ Req: req, Res: (*eth.ReceiptsPacket)(&receipts), Meta: hashes, Time: 1, Done: make(chan error, 1), // Ignore the returned status } go func() { sink <- res }() return req, nil } // ID retrieves the peer's unique identifier. func (dlp *downloadTesterPeer) ID() string { return dlp.id } // RequestAccountRange fetches a batch of accounts rooted in a specific account // trie, starting with the origin. func (dlp *downloadTesterPeer) RequestAccountRange(id uint64, root, origin, limit common.Hash, bytes uint64) error { // Create the request and service it req := &snap.GetAccountRangePacket{ ID: id, Root: root, Origin: origin, Limit: limit, Bytes: bytes, } slimaccs, proofs := snap.ServiceGetAccountRangeQuery(dlp.chain, req) // We need to convert to non-slim format, delegate to the packet code res := &snap.AccountRangePacket{ ID: id, Accounts: slimaccs, Proof: proofs, } hashes, accounts, _ := res.Unpack() go dlp.dl.downloader.SnapSyncer.OnAccounts(dlp, id, hashes, accounts, proofs) return nil } // RequestStorageRanges fetches a batch of storage slots belonging to one or // more accounts. If slots from only one accout is requested, an origin marker // may also be used to retrieve from there. func (dlp *downloadTesterPeer) RequestStorageRanges(id uint64, root common.Hash, accounts []common.Hash, origin, limit []byte, bytes uint64) error { // Create the request and service it req := &snap.GetStorageRangesPacket{ ID: id, Accounts: accounts, Root: root, Origin: origin, Limit: limit, Bytes: bytes, } storage, proofs := snap.ServiceGetStorageRangesQuery(dlp.chain, req) // We need to convert to demultiplex, delegate to the packet code res := &snap.StorageRangesPacket{ ID: id, Slots: storage, Proof: proofs, } hashes, slots := res.Unpack() go dlp.dl.downloader.SnapSyncer.OnStorage(dlp, id, hashes, slots, proofs) return nil } // RequestByteCodes fetches a batch of bytecodes by hash. func (dlp *downloadTesterPeer) RequestByteCodes(id uint64, hashes []common.Hash, bytes uint64) error { req := &snap.GetByteCodesPacket{ ID: id, Hashes: hashes, Bytes: bytes, } codes := snap.ServiceGetByteCodesQuery(dlp.chain, req) go dlp.dl.downloader.SnapSyncer.OnByteCodes(dlp, id, codes) return nil } // RequestTrieNodes fetches a batch of account or storage trie nodes rooted in // a specificstate trie. func (dlp *downloadTesterPeer) RequestTrieNodes(id uint64, root common.Hash, paths []snap.TrieNodePathSet, bytes uint64) error { req := &snap.GetTrieNodesPacket{ ID: id, Root: root, Paths: paths, Bytes: bytes, } nodes, _ := snap.ServiceGetTrieNodesQuery(dlp.chain, req, time.Now()) go dlp.dl.downloader.SnapSyncer.OnTrieNodes(dlp, id, nodes) return nil } // Log retrieves the peer's own contextual logger. func (dlp *downloadTesterPeer) Log() log.Logger { return log.New("peer", dlp.id) } // assertOwnChain checks if the local chain contains the correct number of items // of the various chain components. func assertOwnChain(t *testing.T, tester *downloadTester, length int) { // Mark this method as a helper to report errors at callsite, not in here t.Helper() headers, blocks, receipts := length, length, length if tester.downloader.getMode() == LightSync { blocks, receipts = 1, 1 } if hs := int(tester.chain.CurrentHeader().Number.Uint64()) + 1; hs != headers { t.Fatalf("synchronised headers mismatch: have %v, want %v", hs, headers) } if bs := int(tester.chain.CurrentBlock().NumberU64()) + 1; bs != blocks { t.Fatalf("synchronised blocks mismatch: have %v, want %v", bs, blocks) } if rs := int(tester.chain.CurrentFastBlock().NumberU64()) + 1; rs != receipts { t.Fatalf("synchronised receipts mismatch: have %v, want %v", rs, receipts) } } func TestCanonicalSynchronisation66Full(t *testing.T) { testCanonSync(t, eth.ETH66, FullSync) } func TestCanonicalSynchronisation66Snap(t *testing.T) { testCanonSync(t, eth.ETH66, SnapSync) } func TestCanonicalSynchronisation66Light(t *testing.T) { testCanonSync(t, eth.ETH66, LightSync) } func testCanonSync(t *testing.T, protocol uint, mode SyncMode) { tester := newTester() defer tester.terminate() // Create a small enough block chain to download chain := testChainBase.shorten(blockCacheMaxItems - 15) tester.newPeer("peer", protocol, chain.blocks[1:]) // Synchronise with the peer and make sure all relevant data was retrieved if err := tester.sync("peer", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, len(chain.blocks)) } // Tests that if a large batch of blocks are being downloaded, it is throttled // until the cached blocks are retrieved. func TestThrottling66Full(t *testing.T) { testThrottling(t, eth.ETH66, FullSync) } func TestThrottling66Snap(t *testing.T) { testThrottling(t, eth.ETH66, SnapSync) } func testThrottling(t *testing.T, protocol uint, mode SyncMode) { tester := newTester() defer tester.terminate() // Create a long block chain to download and the tester targetBlocks := len(testChainBase.blocks) - 1 tester.newPeer("peer", protocol, testChainBase.blocks[1:]) // Wrap the importer to allow stepping blocked, proceed := uint32(0), make(chan struct{}) tester.downloader.chainInsertHook = func(results []*fetchResult) { atomic.StoreUint32(&blocked, uint32(len(results))) <-proceed } // Start a synchronisation concurrently errc := make(chan error, 1) go func() { errc <- tester.sync("peer", nil, mode) }() // Iteratively take some blocks, always checking the retrieval count for { // Check the retrieval count synchronously (! reason for this ugly block) tester.lock.RLock() retrieved := int(tester.chain.CurrentFastBlock().Number().Uint64()) + 1 tester.lock.RUnlock() if retrieved >= targetBlocks+1 { break } // Wait a bit for sync to throttle itself var cached, frozen int for start := time.Now(); time.Since(start) < 3*time.Second; { time.Sleep(25 * time.Millisecond) tester.lock.Lock() tester.downloader.queue.lock.Lock() tester.downloader.queue.resultCache.lock.Lock() { cached = tester.downloader.queue.resultCache.countCompleted() frozen = int(atomic.LoadUint32(&blocked)) retrieved = int(tester.chain.CurrentFastBlock().Number().Uint64()) + 1 } tester.downloader.queue.resultCache.lock.Unlock() tester.downloader.queue.lock.Unlock() tester.lock.Unlock() if cached == blockCacheMaxItems || cached == blockCacheMaxItems-reorgProtHeaderDelay || retrieved+cached+frozen == targetBlocks+1 || retrieved+cached+frozen == targetBlocks+1-reorgProtHeaderDelay { break } } // Make sure we filled up the cache, then exhaust it time.Sleep(25 * time.Millisecond) // give it a chance to screw up tester.lock.RLock() retrieved = int(tester.chain.CurrentFastBlock().Number().Uint64()) + 1 tester.lock.RUnlock() if cached != blockCacheMaxItems && cached != blockCacheMaxItems-reorgProtHeaderDelay && retrieved+cached+frozen != targetBlocks+1 && retrieved+cached+frozen != targetBlocks+1-reorgProtHeaderDelay { t.Fatalf("block count mismatch: have %v, want %v (owned %v, blocked %v, target %v)", cached, blockCacheMaxItems, retrieved, frozen, targetBlocks+1) } // Permit the blocked blocks to import if atomic.LoadUint32(&blocked) > 0 { atomic.StoreUint32(&blocked, uint32(0)) proceed <- struct{}{} } } // Check that we haven't pulled more blocks than available assertOwnChain(t, tester, targetBlocks+1) if err := <-errc; err != nil { t.Fatalf("block synchronization failed: %v", err) } } // Tests that simple synchronization against a forked chain works correctly. In // this test common ancestor lookup should *not* be short circuited, and a full // binary search should be executed. func TestForkedSync66Full(t *testing.T) { testForkedSync(t, eth.ETH66, FullSync) } func TestForkedSync66Snap(t *testing.T) { testForkedSync(t, eth.ETH66, SnapSync) } func TestForkedSync66Light(t *testing.T) { testForkedSync(t, eth.ETH66, LightSync) } func testForkedSync(t *testing.T, protocol uint, mode SyncMode) { tester := newTester() defer tester.terminate() chainA := testChainForkLightA.shorten(len(testChainBase.blocks) + 80) chainB := testChainForkLightB.shorten(len(testChainBase.blocks) + 81) tester.newPeer("fork A", protocol, chainA.blocks[1:]) tester.newPeer("fork B", protocol, chainB.blocks[1:]) // Synchronise with the peer and make sure all blocks were retrieved if err := tester.sync("fork A", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, len(chainA.blocks)) // Synchronise with the second peer and make sure that fork is pulled too if err := tester.sync("fork B", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, len(chainB.blocks)) } // Tests that synchronising against a much shorter but much heavyer fork works // corrently and is not dropped. func TestHeavyForkedSync66Full(t *testing.T) { testHeavyForkedSync(t, eth.ETH66, FullSync) } func TestHeavyForkedSync66Snap(t *testing.T) { testHeavyForkedSync(t, eth.ETH66, SnapSync) } func TestHeavyForkedSync66Light(t *testing.T) { testHeavyForkedSync(t, eth.ETH66, LightSync) } func testHeavyForkedSync(t *testing.T, protocol uint, mode SyncMode) { tester := newTester() defer tester.terminate() chainA := testChainForkLightA.shorten(len(testChainBase.blocks) + 80) chainB := testChainForkHeavy.shorten(len(testChainBase.blocks) + 79) tester.newPeer("light", protocol, chainA.blocks[1:]) tester.newPeer("heavy", protocol, chainB.blocks[1:]) // Synchronise with the peer and make sure all blocks were retrieved if err := tester.sync("light", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, len(chainA.blocks)) // Synchronise with the second peer and make sure that fork is pulled too if err := tester.sync("heavy", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, len(chainB.blocks)) } // Tests that chain forks are contained within a certain interval of the current // chain head, ensuring that malicious peers cannot waste resources by feeding // long dead chains. func TestBoundedForkedSync66Full(t *testing.T) { testBoundedForkedSync(t, eth.ETH66, FullSync) } func TestBoundedForkedSync66Snap(t *testing.T) { testBoundedForkedSync(t, eth.ETH66, SnapSync) } func TestBoundedForkedSync66Light(t *testing.T) { testBoundedForkedSync(t, eth.ETH66, LightSync) } func testBoundedForkedSync(t *testing.T, protocol uint, mode SyncMode) { tester := newTester() defer tester.terminate() chainA := testChainForkLightA chainB := testChainForkLightB tester.newPeer("original", protocol, chainA.blocks[1:]) tester.newPeer("rewriter", protocol, chainB.blocks[1:]) // Synchronise with the peer and make sure all blocks were retrieved if err := tester.sync("original", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, len(chainA.blocks)) // Synchronise with the second peer and ensure that the fork is rejected to being too old if err := tester.sync("rewriter", nil, mode); err != errInvalidAncestor { t.Fatalf("sync failure mismatch: have %v, want %v", err, errInvalidAncestor) } } // Tests that chain forks are contained within a certain interval of the current // chain head for short but heavy forks too. These are a bit special because they // take different ancestor lookup paths. func TestBoundedHeavyForkedSync66Full(t *testing.T) { testBoundedHeavyForkedSync(t, eth.ETH66, FullSync) } func TestBoundedHeavyForkedSync66Snap(t *testing.T) { testBoundedHeavyForkedSync(t, eth.ETH66, SnapSync) } func TestBoundedHeavyForkedSync66Light(t *testing.T) { testBoundedHeavyForkedSync(t, eth.ETH66, LightSync) } func testBoundedHeavyForkedSync(t *testing.T, protocol uint, mode SyncMode) { tester := newTester() defer tester.terminate() // Create a long enough forked chain chainA := testChainForkLightA chainB := testChainForkHeavy tester.newPeer("original", protocol, chainA.blocks[1:]) // Synchronise with the peer and make sure all blocks were retrieved if err := tester.sync("original", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, len(chainA.blocks)) tester.newPeer("heavy-rewriter", protocol, chainB.blocks[1:]) // Synchronise with the second peer and ensure that the fork is rejected to being too old if err := tester.sync("heavy-rewriter", nil, mode); err != errInvalidAncestor { t.Fatalf("sync failure mismatch: have %v, want %v", err, errInvalidAncestor) } } // Tests that a canceled download wipes all previously accumulated state. func TestCancel66Full(t *testing.T) { testCancel(t, eth.ETH66, FullSync) } func TestCancel66Snap(t *testing.T) { testCancel(t, eth.ETH66, SnapSync) } func TestCancel66Light(t *testing.T) { testCancel(t, eth.ETH66, LightSync) } func testCancel(t *testing.T, protocol uint, mode SyncMode) { tester := newTester() defer tester.terminate() chain := testChainBase.shorten(MaxHeaderFetch) tester.newPeer("peer", protocol, chain.blocks[1:]) // Make sure canceling works with a pristine downloader tester.downloader.Cancel() if !tester.downloader.queue.Idle() { t.Errorf("download queue not idle") } // Synchronise with the peer, but cancel afterwards if err := tester.sync("peer", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } tester.downloader.Cancel() if !tester.downloader.queue.Idle() { t.Errorf("download queue not idle") } } // Tests that synchronisation from multiple peers works as intended (multi thread sanity test). func TestMultiSynchronisation66Full(t *testing.T) { testMultiSynchronisation(t, eth.ETH66, FullSync) } func TestMultiSynchronisation66Snap(t *testing.T) { testMultiSynchronisation(t, eth.ETH66, SnapSync) } func TestMultiSynchronisation66Light(t *testing.T) { testMultiSynchronisation(t, eth.ETH66, LightSync) } func testMultiSynchronisation(t *testing.T, protocol uint, mode SyncMode) { tester := newTester() defer tester.terminate() // Create various peers with various parts of the chain targetPeers := 8 chain := testChainBase.shorten(targetPeers * 100) for i := 0; i < targetPeers; i++ { id := fmt.Sprintf("peer #%d", i) tester.newPeer(id, protocol, chain.shorten(len(chain.blocks) / (i + 1)).blocks[1:]) } if err := tester.sync("peer #0", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, len(chain.blocks)) } // Tests that synchronisations behave well in multi-version protocol environments // and not wreak havoc on other nodes in the network. func TestMultiProtoSynchronisation66Full(t *testing.T) { testMultiProtoSync(t, eth.ETH66, FullSync) } func TestMultiProtoSynchronisation66Snap(t *testing.T) { testMultiProtoSync(t, eth.ETH66, SnapSync) } func TestMultiProtoSynchronisation66Light(t *testing.T) { testMultiProtoSync(t, eth.ETH66, LightSync) } func testMultiProtoSync(t *testing.T, protocol uint, mode SyncMode) { tester := newTester() defer tester.terminate() // Create a small enough block chain to download chain := testChainBase.shorten(blockCacheMaxItems - 15) // Create peers of every type tester.newPeer("peer 66", eth.ETH66, chain.blocks[1:]) //tester.newPeer("peer 65", eth.ETH67, chain.blocks[1:) // Synchronise with the requested peer and make sure all blocks were retrieved if err := tester.sync(fmt.Sprintf("peer %d", protocol), nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, len(chain.blocks)) // Check that no peers have been dropped off for _, version := range []int{66} { peer := fmt.Sprintf("peer %d", version) if _, ok := tester.peers[peer]; !ok { t.Errorf("%s dropped", peer) } } } // Tests that if a block is empty (e.g. header only), no body request should be // made, and instead the header should be assembled into a whole block in itself. func TestEmptyShortCircuit66Full(t *testing.T) { testEmptyShortCircuit(t, eth.ETH66, FullSync) } func TestEmptyShortCircuit66Snap(t *testing.T) { testEmptyShortCircuit(t, eth.ETH66, SnapSync) } func TestEmptyShortCircuit66Light(t *testing.T) { testEmptyShortCircuit(t, eth.ETH66, LightSync) } func testEmptyShortCircuit(t *testing.T, protocol uint, mode SyncMode) { tester := newTester() defer tester.terminate() // Create a block chain to download chain := testChainBase tester.newPeer("peer", protocol, chain.blocks[1:]) // Instrument the downloader to signal body requests bodiesHave, receiptsHave := int32(0), int32(0) tester.downloader.bodyFetchHook = func(headers []*types.Header) { atomic.AddInt32(&bodiesHave, int32(len(headers))) } tester.downloader.receiptFetchHook = func(headers []*types.Header) { atomic.AddInt32(&receiptsHave, int32(len(headers))) } // Synchronise with the peer and make sure all blocks were retrieved if err := tester.sync("peer", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, len(chain.blocks)) // Validate the number of block bodies that should have been requested bodiesNeeded, receiptsNeeded := 0, 0 for _, block := range chain.blocks[1:] { if mode != LightSync && (len(block.Transactions()) > 0 || len(block.Uncles()) > 0) { bodiesNeeded++ } } for _, block := range chain.blocks[1:] { if mode == SnapSync && len(block.Transactions()) > 0 { receiptsNeeded++ } } if int(bodiesHave) != bodiesNeeded { t.Errorf("body retrieval count mismatch: have %v, want %v", bodiesHave, bodiesNeeded) } if int(receiptsHave) != receiptsNeeded { t.Errorf("receipt retrieval count mismatch: have %v, want %v", receiptsHave, receiptsNeeded) } } // Tests that headers are enqueued continuously, preventing malicious nodes from // stalling the downloader by feeding gapped header chains. func TestMissingHeaderAttack66Full(t *testing.T) { testMissingHeaderAttack(t, eth.ETH66, FullSync) } func TestMissingHeaderAttack66Snap(t *testing.T) { testMissingHeaderAttack(t, eth.ETH66, SnapSync) } func TestMissingHeaderAttack66Light(t *testing.T) { testMissingHeaderAttack(t, eth.ETH66, LightSync) } func testMissingHeaderAttack(t *testing.T, protocol uint, mode SyncMode) { tester := newTester() defer tester.terminate() chain := testChainBase.shorten(blockCacheMaxItems - 15) attacker := tester.newPeer("attack", protocol, chain.blocks[1:]) attacker.withholdHeaders[chain.blocks[len(chain.blocks)/2-1].Hash()] = struct{}{} if err := tester.sync("attack", nil, mode); err == nil { t.Fatalf("succeeded attacker synchronisation") } // Synchronise with the valid peer and make sure sync succeeds tester.newPeer("valid", protocol, chain.blocks[1:]) if err := tester.sync("valid", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, len(chain.blocks)) } // Tests that if requested headers are shifted (i.e. first is missing), the queue // detects the invalid numbering. func TestShiftedHeaderAttack66Full(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH66, FullSync) } func TestShiftedHeaderAttack66Snap(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH66, SnapSync) } func TestShiftedHeaderAttack66Light(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH66, LightSync) } func testShiftedHeaderAttack(t *testing.T, protocol uint, mode SyncMode) { tester := newTester() defer tester.terminate() chain := testChainBase.shorten(blockCacheMaxItems - 15) // Attempt a full sync with an attacker feeding shifted headers attacker := tester.newPeer("attack", protocol, chain.blocks[1:]) attacker.withholdHeaders[chain.blocks[1].Hash()] = struct{}{} if err := tester.sync("attack", nil, mode); err == nil { t.Fatalf("succeeded attacker synchronisation") } // Synchronise with the valid peer and make sure sync succeeds tester.newPeer("valid", protocol, chain.blocks[1:]) if err := tester.sync("valid", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, len(chain.blocks)) } // Tests that upon detecting an invalid header, the recent ones are rolled back // for various failure scenarios. Afterwards a full sync is attempted to make // sure no state was corrupted. func TestInvalidHeaderRollback66Snap(t *testing.T) { testInvalidHeaderRollback(t, eth.ETH66, SnapSync) } func testInvalidHeaderRollback(t *testing.T, protocol uint, mode SyncMode) { tester := newTester() defer tester.terminate() // Create a small enough block chain to download targetBlocks := 3*fsHeaderSafetyNet + 256 + fsMinFullBlocks chain := testChainBase.shorten(targetBlocks) // Attempt to sync with an attacker that feeds junk during the fast sync phase. // This should result in the last fsHeaderSafetyNet headers being rolled back. missing := fsHeaderSafetyNet + MaxHeaderFetch + 1 fastAttacker := tester.newPeer("fast-attack", protocol, chain.blocks[1:]) fastAttacker.withholdHeaders[chain.blocks[missing].Hash()] = struct{}{} if err := tester.sync("fast-attack", nil, mode); err == nil { t.Fatalf("succeeded fast attacker synchronisation") } if head := tester.chain.CurrentHeader().Number.Int64(); int(head) > MaxHeaderFetch { t.Errorf("rollback head mismatch: have %v, want at most %v", head, MaxHeaderFetch) } // Attempt to sync with an attacker that feeds junk during the block import phase. // This should result in both the last fsHeaderSafetyNet number of headers being // rolled back, and also the pivot point being reverted to a non-block status. missing = 3*fsHeaderSafetyNet + MaxHeaderFetch + 1 blockAttacker := tester.newPeer("block-attack", protocol, chain.blocks[1:]) fastAttacker.withholdHeaders[chain.blocks[missing].Hash()] = struct{}{} // Make sure the fast-attacker doesn't fill in blockAttacker.withholdHeaders[chain.blocks[missing].Hash()] = struct{}{} if err := tester.sync("block-attack", nil, mode); err == nil { t.Fatalf("succeeded block attacker synchronisation") } if head := tester.chain.CurrentHeader().Number.Int64(); int(head) > 2*fsHeaderSafetyNet+MaxHeaderFetch { t.Errorf("rollback head mismatch: have %v, want at most %v", head, 2*fsHeaderSafetyNet+MaxHeaderFetch) } if mode == SnapSync { if head := tester.chain.CurrentBlock().NumberU64(); head != 0 { t.Errorf("fast sync pivot block #%d not rolled back", head) } } // Attempt to sync with an attacker that withholds promised blocks after the // fast sync pivot point. This could be a trial to leave the node with a bad // but already imported pivot block. withholdAttacker := tester.newPeer("withhold-attack", protocol, chain.blocks[1:]) tester.downloader.syncInitHook = func(uint64, uint64) { for i := missing; i < len(chain.blocks); i++ { withholdAttacker.withholdHeaders[chain.blocks[i].Hash()] = struct{}{} } tester.downloader.syncInitHook = nil } if err := tester.sync("withhold-attack", nil, mode); err == nil { t.Fatalf("succeeded withholding attacker synchronisation") } if head := tester.chain.CurrentHeader().Number.Int64(); int(head) > 2*fsHeaderSafetyNet+MaxHeaderFetch { t.Errorf("rollback head mismatch: have %v, want at most %v", head, 2*fsHeaderSafetyNet+MaxHeaderFetch) } if mode == SnapSync { if head := tester.chain.CurrentBlock().NumberU64(); head != 0 { t.Errorf("fast sync pivot block #%d not rolled back", head) } } // Synchronise with the valid peer and make sure sync succeeds. Since the last rollback // should also disable fast syncing for this process, verify that we did a fresh full // sync. Note, we can't assert anything about the receipts since we won't purge the // database of them, hence we can't use assertOwnChain. tester.newPeer("valid", protocol, chain.blocks[1:]) if err := tester.sync("valid", nil, mode); err != nil { t.Fatalf("failed to synchronise blocks: %v", err) } assertOwnChain(t, tester, len(chain.blocks)) } // Tests that a peer advertising a high TD doesn't get to stall the downloader // afterwards by not sending any useful hashes. func TestHighTDStarvationAttack66Full(t *testing.T) { testHighTDStarvationAttack(t, eth.ETH66, FullSync) } func TestHighTDStarvationAttack66Snap(t *testing.T) { testHighTDStarvationAttack(t, eth.ETH66, SnapSync) } func TestHighTDStarvationAttack66Light(t *testing.T) { testHighTDStarvationAttack(t, eth.ETH66, LightSync) } func testHighTDStarvationAttack(t *testing.T, protocol uint, mode SyncMode) { tester := newTester() defer tester.terminate() chain := testChainBase.shorten(1) tester.newPeer("attack", protocol, chain.blocks[1:]) if err := tester.sync("attack", big.NewInt(1000000), mode); err != errStallingPeer { t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errStallingPeer) } } // Tests that misbehaving peers are disconnected, whilst behaving ones are not. func TestBlockHeaderAttackerDropping66(t *testing.T) { testBlockHeaderAttackerDropping(t, eth.ETH66) } func testBlockHeaderAttackerDropping(t *testing.T, protocol uint) { // Define the disconnection requirement for individual hash fetch errors tests := []struct { result error drop bool }{ {nil, false}, // Sync succeeded, all is well {errBusy, false}, // Sync is already in progress, no problem {errUnknownPeer, false}, // Peer is unknown, was already dropped, don't double drop {errBadPeer, true}, // Peer was deemed bad for some reason, drop it {errStallingPeer, true}, // Peer was detected to be stalling, drop it {errUnsyncedPeer, true}, // Peer was detected to be unsynced, drop it {errNoPeers, false}, // No peers to download from, soft race, no issue {errTimeout, true}, // No hashes received in due time, drop the peer {errEmptyHeaderSet, true}, // No headers were returned as a response, drop as it's a dead end {errPeersUnavailable, true}, // Nobody had the advertised blocks, drop the advertiser {errInvalidAncestor, true}, // Agreed upon ancestor is not acceptable, drop the chain rewriter {errInvalidChain, true}, // Hash chain was detected as invalid, definitely drop {errInvalidBody, false}, // A bad peer was detected, but not the sync origin {errInvalidReceipt, false}, // A bad peer was detected, but not the sync origin {errCancelContentProcessing, false}, // Synchronisation was canceled, origin may be innocent, don't drop } // Run the tests and check disconnection status tester := newTester() defer tester.terminate() chain := testChainBase.shorten(1) for i, tt := range tests { // Register a new peer and ensure its presence id := fmt.Sprintf("test %d", i) tester.newPeer(id, protocol, chain.blocks[1:]) if _, ok := tester.peers[id]; !ok { t.Fatalf("test %d: registered peer not found", i) } // Simulate a synchronisation and check the required result tester.downloader.synchroniseMock = func(string, common.Hash) error { return tt.result } tester.downloader.LegacySync(id, tester.chain.Genesis().Hash(), big.NewInt(1000), nil, FullSync) if _, ok := tester.peers[id]; !ok != tt.drop { t.Errorf("test %d: peer drop mismatch for %v: have %v, want %v", i, tt.result, !ok, tt.drop) } } } // Tests that synchronisation progress (origin block number, current block number // and highest block number) is tracked and updated correctly. func TestSyncProgress66Full(t *testing.T) { testSyncProgress(t, eth.ETH66, FullSync) } func TestSyncProgress66Snap(t *testing.T) { testSyncProgress(t, eth.ETH66, SnapSync) } func TestSyncProgress66Light(t *testing.T) { testSyncProgress(t, eth.ETH66, LightSync) } func testSyncProgress(t *testing.T, protocol uint, mode SyncMode) { tester := newTester() defer tester.terminate() chain := testChainBase.shorten(blockCacheMaxItems - 15) // Set a sync init hook to catch progress changes starting := make(chan struct{}) progress := make(chan struct{}) tester.downloader.syncInitHook = func(origin, latest uint64) { starting <- struct{}{} <-progress } checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{}) // Synchronise half the blocks and check initial progress tester.newPeer("peer-half", protocol, chain.shorten(len(chain.blocks) / 2).blocks[1:]) pending := new(sync.WaitGroup) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("peer-half", nil, mode); err != nil { panic(fmt.Sprintf("failed to synchronise blocks: %v", err)) } }() <-starting checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{ HighestBlock: uint64(len(chain.blocks)/2 - 1), }) progress <- struct{}{} pending.Wait() // Synchronise all the blocks and check continuation progress tester.newPeer("peer-full", protocol, chain.blocks[1:]) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("peer-full", nil, mode); err != nil { panic(fmt.Sprintf("failed to synchronise blocks: %v", err)) } }() <-starting checkProgress(t, tester.downloader, "completing", ethereum.SyncProgress{ StartingBlock: uint64(len(chain.blocks)/2 - 1), CurrentBlock: uint64(len(chain.blocks)/2 - 1), HighestBlock: uint64(len(chain.blocks) - 1), }) // Check final progress after successful sync progress <- struct{}{} pending.Wait() checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{ StartingBlock: uint64(len(chain.blocks)/2 - 1), CurrentBlock: uint64(len(chain.blocks) - 1), HighestBlock: uint64(len(chain.blocks) - 1), }) } func checkProgress(t *testing.T, d *Downloader, stage string, want ethereum.SyncProgress) { // Mark this method as a helper to report errors at callsite, not in here t.Helper() p := d.Progress() if p.StartingBlock != want.StartingBlock || p.CurrentBlock != want.CurrentBlock || p.HighestBlock != want.HighestBlock { t.Fatalf("%s progress mismatch:\nhave %+v\nwant %+v", stage, p, want) } } // Tests that synchronisation progress (origin block number and highest block // number) is tracked and updated correctly in case of a fork (or manual head // revertal). func TestForkedSyncProgress66Full(t *testing.T) { testForkedSyncProgress(t, eth.ETH66, FullSync) } func TestForkedSyncProgress66Snap(t *testing.T) { testForkedSyncProgress(t, eth.ETH66, SnapSync) } func TestForkedSyncProgress66Light(t *testing.T) { testForkedSyncProgress(t, eth.ETH66, LightSync) } func testForkedSyncProgress(t *testing.T, protocol uint, mode SyncMode) { tester := newTester() defer tester.terminate() chainA := testChainForkLightA.shorten(len(testChainBase.blocks) + MaxHeaderFetch) chainB := testChainForkLightB.shorten(len(testChainBase.blocks) + MaxHeaderFetch) // Set a sync init hook to catch progress changes starting := make(chan struct{}) progress := make(chan struct{}) tester.downloader.syncInitHook = func(origin, latest uint64) { starting <- struct{}{} <-progress } checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{}) // Synchronise with one of the forks and check progress tester.newPeer("fork A", protocol, chainA.blocks[1:]) pending := new(sync.WaitGroup) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("fork A", nil, mode); err != nil { panic(fmt.Sprintf("failed to synchronise blocks: %v", err)) } }() <-starting checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{ HighestBlock: uint64(len(chainA.blocks) - 1), }) progress <- struct{}{} pending.Wait() // Simulate a successful sync above the fork tester.downloader.syncStatsChainOrigin = tester.downloader.syncStatsChainHeight // Synchronise with the second fork and check progress resets tester.newPeer("fork B", protocol, chainB.blocks[1:]) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("fork B", nil, mode); err != nil { panic(fmt.Sprintf("failed to synchronise blocks: %v", err)) } }() <-starting checkProgress(t, tester.downloader, "forking", ethereum.SyncProgress{ StartingBlock: uint64(len(testChainBase.blocks)) - 1, CurrentBlock: uint64(len(chainA.blocks) - 1), HighestBlock: uint64(len(chainB.blocks) - 1), }) // Check final progress after successful sync progress <- struct{}{} pending.Wait() checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{ StartingBlock: uint64(len(testChainBase.blocks)) - 1, CurrentBlock: uint64(len(chainB.blocks) - 1), HighestBlock: uint64(len(chainB.blocks) - 1), }) } // Tests that if synchronisation is aborted due to some failure, then the progress // origin is not updated in the next sync cycle, as it should be considered the // continuation of the previous sync and not a new instance. func TestFailedSyncProgress66Full(t *testing.T) { testFailedSyncProgress(t, eth.ETH66, FullSync) } func TestFailedSyncProgress66Snap(t *testing.T) { testFailedSyncProgress(t, eth.ETH66, SnapSync) } func TestFailedSyncProgress66Light(t *testing.T) { testFailedSyncProgress(t, eth.ETH66, LightSync) } func testFailedSyncProgress(t *testing.T, protocol uint, mode SyncMode) { tester := newTester() defer tester.terminate() chain := testChainBase.shorten(blockCacheMaxItems - 15) // Set a sync init hook to catch progress changes starting := make(chan struct{}) progress := make(chan struct{}) tester.downloader.syncInitHook = func(origin, latest uint64) { starting <- struct{}{} <-progress } checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{}) // Attempt a full sync with a faulty peer missing := len(chain.blocks)/2 - 1 faulter := tester.newPeer("faulty", protocol, chain.blocks[1:]) faulter.withholdHeaders[chain.blocks[missing].Hash()] = struct{}{} pending := new(sync.WaitGroup) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("faulty", nil, mode); err == nil { panic("succeeded faulty synchronisation") } }() <-starting checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{ HighestBlock: uint64(len(chain.blocks) - 1), }) progress <- struct{}{} pending.Wait() afterFailedSync := tester.downloader.Progress() // Synchronise with a good peer and check that the progress origin remind the same // after a failure tester.newPeer("valid", protocol, chain.blocks[1:]) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("valid", nil, mode); err != nil { panic(fmt.Sprintf("failed to synchronise blocks: %v", err)) } }() <-starting checkProgress(t, tester.downloader, "completing", afterFailedSync) // Check final progress after successful sync progress <- struct{}{} pending.Wait() checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{ CurrentBlock: uint64(len(chain.blocks) - 1), HighestBlock: uint64(len(chain.blocks) - 1), }) } // Tests that if an attacker fakes a chain height, after the attack is detected, // the progress height is successfully reduced at the next sync invocation. func TestFakedSyncProgress66Full(t *testing.T) { testFakedSyncProgress(t, eth.ETH66, FullSync) } func TestFakedSyncProgress66Snap(t *testing.T) { testFakedSyncProgress(t, eth.ETH66, SnapSync) } func TestFakedSyncProgress66Light(t *testing.T) { testFakedSyncProgress(t, eth.ETH66, LightSync) } func testFakedSyncProgress(t *testing.T, protocol uint, mode SyncMode) { tester := newTester() defer tester.terminate() chain := testChainBase.shorten(blockCacheMaxItems - 15) // Set a sync init hook to catch progress changes starting := make(chan struct{}) progress := make(chan struct{}) tester.downloader.syncInitHook = func(origin, latest uint64) { starting <- struct{}{} <-progress } checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{}) // Create and sync with an attacker that promises a higher chain than available. attacker := tester.newPeer("attack", protocol, chain.blocks[1:]) numMissing := 5 for i := len(chain.blocks) - 2; i > len(chain.blocks)-numMissing; i-- { attacker.withholdHeaders[chain.blocks[i].Hash()] = struct{}{} } pending := new(sync.WaitGroup) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("attack", nil, mode); err == nil { panic("succeeded attacker synchronisation") } }() <-starting checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{ HighestBlock: uint64(len(chain.blocks) - 1), }) progress <- struct{}{} pending.Wait() afterFailedSync := tester.downloader.Progress() // Synchronise with a good peer and check that the progress height has been reduced to // the true value. validChain := chain.shorten(len(chain.blocks) - numMissing) tester.newPeer("valid", protocol, validChain.blocks[1:]) pending.Add(1) go func() { defer pending.Done() if err := tester.sync("valid", nil, mode); err != nil { panic(fmt.Sprintf("failed to synchronise blocks: %v", err)) } }() <-starting checkProgress(t, tester.downloader, "completing", ethereum.SyncProgress{ CurrentBlock: afterFailedSync.CurrentBlock, HighestBlock: uint64(len(validChain.blocks) - 1), }) // Check final progress after successful sync. progress <- struct{}{} pending.Wait() checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{ CurrentBlock: uint64(len(validChain.blocks) - 1), HighestBlock: uint64(len(validChain.blocks) - 1), }) } func TestRemoteHeaderRequestSpan(t *testing.T) { testCases := []struct { remoteHeight uint64 localHeight uint64 expected []int }{ // Remote is way higher. We should ask for the remote head and go backwards {1500, 1000, []int{1323, 1339, 1355, 1371, 1387, 1403, 1419, 1435, 1451, 1467, 1483, 1499}, }, {15000, 13006, []int{14823, 14839, 14855, 14871, 14887, 14903, 14919, 14935, 14951, 14967, 14983, 14999}, }, // Remote is pretty close to us. We don't have to fetch as many {1200, 1150, []int{1149, 1154, 1159, 1164, 1169, 1174, 1179, 1184, 1189, 1194, 1199}, }, // Remote is equal to us (so on a fork with higher td) // We should get the closest couple of ancestors {1500, 1500, []int{1497, 1499}, }, // We're higher than the remote! Odd {1000, 1500, []int{997, 999}, }, // Check some weird edgecases that it behaves somewhat rationally {0, 1500, []int{0, 2}, }, {6000000, 0, []int{5999823, 5999839, 5999855, 5999871, 5999887, 5999903, 5999919, 5999935, 5999951, 5999967, 5999983, 5999999}, }, {0, 0, []int{0, 2}, }, } reqs := func(from, count, span int) []int { var r []int num := from for len(r) < count { r = append(r, num) num += span + 1 } return r } for i, tt := range testCases { from, count, span, max := calculateRequestSpan(tt.remoteHeight, tt.localHeight) data := reqs(int(from), count, span) if max != uint64(data[len(data)-1]) { t.Errorf("test %d: wrong last value %d != %d", i, data[len(data)-1], max) } failed := false if len(data) != len(tt.expected) { failed = true t.Errorf("test %d: length wrong, expected %d got %d", i, len(tt.expected), len(data)) } else { for j, n := range data { if n != tt.expected[j] { failed = true break } } } if failed { res := strings.Replace(fmt.Sprint(data), " ", ",", -1) exp := strings.Replace(fmt.Sprint(tt.expected), " ", ",", -1) t.Logf("got: %v\n", res) t.Logf("exp: %v\n", exp) t.Errorf("test %d: wrong values", i) } } } // Tests that peers below a pre-configured checkpoint block are prevented from // being fast-synced from, avoiding potential cheap eclipse attacks. func TestCheckpointEnforcement66Full(t *testing.T) { testCheckpointEnforcement(t, eth.ETH66, FullSync) } func TestCheckpointEnforcement66Snap(t *testing.T) { testCheckpointEnforcement(t, eth.ETH66, SnapSync) } func TestCheckpointEnforcement66Light(t *testing.T) { testCheckpointEnforcement(t, eth.ETH66, LightSync) } func testCheckpointEnforcement(t *testing.T, protocol uint, mode SyncMode) { // Create a new tester with a particular hard coded checkpoint block tester := newTester() defer tester.terminate() tester.downloader.checkpoint = uint64(fsMinFullBlocks) + 256 chain := testChainBase.shorten(int(tester.downloader.checkpoint) - 1) // Attempt to sync with the peer and validate the result tester.newPeer("peer", protocol, chain.blocks[1:]) var expect error if mode == SnapSync || mode == LightSync { expect = errUnsyncedPeer } if err := tester.sync("peer", nil, mode); !errors.Is(err, expect) { t.Fatalf("block sync error mismatch: have %v, want %v", err, expect) } if mode == SnapSync || mode == LightSync { assertOwnChain(t, tester, 1) } else { assertOwnChain(t, tester, len(chain.blocks)) } } // Tests that peers below a pre-configured checkpoint block are prevented from // being fast-synced from, avoiding potential cheap eclipse attacks. func TestBeaconSync66Full(t *testing.T) { testBeaconSync(t, eth.ETH66, FullSync) } func TestBeaconSync66Snap(t *testing.T) { testBeaconSync(t, eth.ETH66, SnapSync) } func testBeaconSync(t *testing.T, protocol uint, mode SyncMode) { //log.Root().SetHandler(log.LvlFilterHandler(log.LvlInfo, log.StreamHandler(os.Stderr, log.TerminalFormat(true)))) var cases = []struct { name string // The name of testing scenario local int // The length of local chain(canonical chain assumed), 0 means genesis is the head }{ {name: "Beacon sync since genesis", local: 0}, {name: "Beacon sync with short local chain", local: 1}, {name: "Beacon sync with long local chain", local: blockCacheMaxItems - 15 - fsMinFullBlocks/2}, {name: "Beacon sync with full local chain", local: blockCacheMaxItems - 15 - 1}, } for _, c := range cases { t.Run(c.name, func(t *testing.T) { success := make(chan struct{}) tester := newTesterWithNotification(func() { close(success) }) defer tester.terminate() chain := testChainBase.shorten(blockCacheMaxItems - 15) tester.newPeer("peer", protocol, chain.blocks[1:]) // Build the local chain segment if it's required if c.local > 0 { tester.chain.InsertChain(chain.blocks[1 : c.local+1]) } if err := tester.downloader.BeaconSync(mode, chain.blocks[len(chain.blocks)-1].Header()); err != nil { t.Fatalf("Failed to beacon sync chain %v %v", c.name, err) } select { case <-success: // Ok, downloader fully cancelled after sync cycle if bs := int(tester.chain.CurrentBlock().NumberU64()) + 1; bs != len(chain.blocks) { t.Fatalf("synchronised blocks mismatch: have %v, want %v", bs, len(chain.blocks)) } case <-time.NewTimer(time.Second * 3).C: t.Fatalf("Failed to sync chain in three seconds") } }) } }