// Copyright 2017 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . //go:build nacl || js || !cgo || gofuzz // +build nacl js !cgo gofuzz package crypto import ( "crypto/ecdsa" "errors" "fmt" "math/big" "github.com/decred/dcrd/dcrec/secp256k1/v4" decred_ecdsa "github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa" ) // Ecrecover returns the uncompressed public key that created the given signature. func Ecrecover(hash, sig []byte) ([]byte, error) { pub, err := sigToPub(hash, sig) if err != nil { return nil, err } bytes := pub.SerializeUncompressed() return bytes, err } func sigToPub(hash, sig []byte) (*secp256k1.PublicKey, error) { if len(sig) != SignatureLength { return nil, errors.New("invalid signature") } // Convert to secp256k1 input format with 'recovery id' v at the beginning. btcsig := make([]byte, SignatureLength) btcsig[0] = sig[RecoveryIDOffset] + 27 copy(btcsig[1:], sig) pub, _, err := decred_ecdsa.RecoverCompact(btcsig, hash) return pub, err } // SigToPub returns the public key that created the given signature. func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) { pub, err := sigToPub(hash, sig) if err != nil { return nil, err } // We need to explicitly set the curve here, because we're wrapping // the original curve to add (un-)marshalling return &ecdsa.PublicKey{ Curve: S256(), X: pub.X(), Y: pub.Y(), }, nil } // Sign calculates an ECDSA signature. // // This function is susceptible to chosen plaintext attacks that can leak // information about the private key that is used for signing. Callers must // be aware that the given hash cannot be chosen by an adversary. Common // solution is to hash any input before calculating the signature. // // The produced signature is in the [R || S || V] format where V is 0 or 1. func Sign(hash []byte, prv *ecdsa.PrivateKey) ([]byte, error) { if len(hash) != 32 { return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash)) } if prv.Curve != S256() { return nil, errors.New("private key curve is not secp256k1") } // ecdsa.PrivateKey -> secp256k1.PrivateKey var priv secp256k1.PrivateKey if overflow := priv.Key.SetByteSlice(prv.D.Bytes()); overflow || priv.Key.IsZero() { return nil, errors.New("invalid private key") } defer priv.Zero() sig := decred_ecdsa.SignCompact(&priv, hash, false) // ref uncompressed pubkey // Convert to Ethereum signature format with 'recovery id' v at the end. v := sig[0] - 27 copy(sig, sig[1:]) sig[RecoveryIDOffset] = v return sig, nil } // VerifySignature checks that the given public key created signature over hash. // The public key should be in compressed (33 bytes) or uncompressed (65 bytes) format. // The signature should have the 64 byte [R || S] format. func VerifySignature(pubkey, hash, signature []byte) bool { if len(signature) != 64 { return false } var r, s secp256k1.ModNScalar if r.SetByteSlice(signature[:32]) { return false // overflow } if s.SetByteSlice(signature[32:]) { return false } sig := decred_ecdsa.NewSignature(&r, &s) key, err := secp256k1.ParsePubKey(pubkey) if err != nil { return false } // Reject malleable signatures. libsecp256k1 does this check but decred doesn't. if s.IsOverHalfOrder() { return false } return sig.Verify(hash, key) } // DecompressPubkey parses a public key in the 33-byte compressed format. func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) { if len(pubkey) != 33 { return nil, errors.New("invalid compressed public key length") } key, err := secp256k1.ParsePubKey(pubkey) if err != nil { return nil, err } // We need to explicitly set the curve here, because we're wrapping // the original curve to add (un-)marshalling return &ecdsa.PublicKey{ Curve: S256(), X: key.X(), Y: key.Y(), }, nil } // CompressPubkey encodes a public key to the 33-byte compressed format. The // provided PublicKey must be valid. Namely, the coordinates must not be larger // than 32 bytes each, they must be less than the field prime, and it must be a // point on the secp256k1 curve. This is the case for a PublicKey constructed by // elliptic.Unmarshal (see UnmarshalPubkey), or by ToECDSA and ecdsa.GenerateKey // when constructing a PrivateKey. func CompressPubkey(pubkey *ecdsa.PublicKey) []byte { // NOTE: the coordinates may be validated with // secp256k1.ParsePubKey(FromECDSAPub(pubkey)) var x, y secp256k1.FieldVal x.SetByteSlice(pubkey.X.Bytes()) y.SetByteSlice(pubkey.Y.Bytes()) return secp256k1.NewPublicKey(&x, &y).SerializeCompressed() } // S256 returns an instance of the secp256k1 curve. func S256() EllipticCurve { return btCurve{secp256k1.S256()} } type btCurve struct { *secp256k1.KoblitzCurve } // Marshal converts a point given as (x, y) into a byte slice. func (curve btCurve) Marshal(x, y *big.Int) []byte { byteLen := (curve.Params().BitSize + 7) / 8 ret := make([]byte, 1+2*byteLen) ret[0] = 4 // uncompressed point x.FillBytes(ret[1 : 1+byteLen]) y.FillBytes(ret[1+byteLen : 1+2*byteLen]) return ret } // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On // error, x = nil. func (curve btCurve) Unmarshal(data []byte) (x, y *big.Int) { byteLen := (curve.Params().BitSize + 7) / 8 if len(data) != 1+2*byteLen { return nil, nil } if data[0] != 4 { // uncompressed form return nil, nil } x = new(big.Int).SetBytes(data[1 : 1+byteLen]) y = new(big.Int).SetBytes(data[1+byteLen:]) return }