// Copyright 2017 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Package math provides integer math utilities. package math import ( "fmt" "math/big" ) // Various big integer limit values. var ( tt255 = BigPow(2, 255) tt256 = BigPow(2, 256) tt256m1 = new(big.Int).Sub(tt256, big.NewInt(1)) tt63 = BigPow(2, 63) MaxBig256 = new(big.Int).Set(tt256m1) MaxBig63 = new(big.Int).Sub(tt63, big.NewInt(1)) ) const ( // number of bits in a big.Word wordBits = 32 << (uint64(^big.Word(0)) >> 63) // number of bytes in a big.Word wordBytes = wordBits / 8 ) // HexOrDecimal256 marshals big.Int as hex or decimal. type HexOrDecimal256 big.Int // NewHexOrDecimal256 creates a new HexOrDecimal256 func NewHexOrDecimal256(x int64) *HexOrDecimal256 { b := big.NewInt(x) h := HexOrDecimal256(*b) return &h } // UnmarshalJSON implements json.Unmarshaler. // // It is similar to UnmarshalText, but allows parsing real decimals too, not just // quoted decimal strings. func (i *HexOrDecimal256) UnmarshalJSON(input []byte) error { if len(input) > 0 && input[0] == '"' { input = input[1 : len(input)-1] } return i.UnmarshalText(input) } // UnmarshalText implements encoding.TextUnmarshaler. func (i *HexOrDecimal256) UnmarshalText(input []byte) error { bigint, ok := ParseBig256(string(input)) if !ok { return fmt.Errorf("invalid hex or decimal integer %q", input) } *i = HexOrDecimal256(*bigint) return nil } // MarshalText implements encoding.TextMarshaler. func (i *HexOrDecimal256) MarshalText() ([]byte, error) { if i == nil { return []byte("0x0"), nil } return []byte(fmt.Sprintf("%#x", (*big.Int)(i))), nil } // Decimal256 unmarshals big.Int as a decimal string. When unmarshalling, // it however accepts either "0x"-prefixed (hex encoded) or non-prefixed (decimal) type Decimal256 big.Int // NewDecimal256 creates a new Decimal256 func NewDecimal256(x int64) *Decimal256 { b := big.NewInt(x) d := Decimal256(*b) return &d } // UnmarshalText implements encoding.TextUnmarshaler. func (i *Decimal256) UnmarshalText(input []byte) error { bigint, ok := ParseBig256(string(input)) if !ok { return fmt.Errorf("invalid hex or decimal integer %q", input) } *i = Decimal256(*bigint) return nil } // MarshalText implements encoding.TextMarshaler. func (i *Decimal256) MarshalText() ([]byte, error) { return []byte(i.String()), nil } // String implements Stringer. func (i *Decimal256) String() string { if i == nil { return "0" } return fmt.Sprintf("%#d", (*big.Int)(i)) } // ParseBig256 parses s as a 256 bit integer in decimal or hexadecimal syntax. // Leading zeros are accepted. The empty string parses as zero. func ParseBig256(s string) (*big.Int, bool) { if s == "" { return new(big.Int), true } var bigint *big.Int var ok bool if len(s) >= 2 && (s[:2] == "0x" || s[:2] == "0X") { bigint, ok = new(big.Int).SetString(s[2:], 16) } else { bigint, ok = new(big.Int).SetString(s, 10) } if ok && bigint.BitLen() > 256 { bigint, ok = nil, false } return bigint, ok } // MustParseBig256 parses s as a 256 bit big integer and panics if the string is invalid. func MustParseBig256(s string) *big.Int { v, ok := ParseBig256(s) if !ok { panic("invalid 256 bit integer: " + s) } return v } // BigPow returns a ** b as a big integer. func BigPow(a, b int64) *big.Int { r := big.NewInt(a) return r.Exp(r, big.NewInt(b), nil) } // BigMax returns the larger of x or y. func BigMax(x, y *big.Int) *big.Int { if x.Cmp(y) < 0 { return y } return x } // BigMin returns the smaller of x or y. func BigMin(x, y *big.Int) *big.Int { if x.Cmp(y) > 0 { return y } return x } // FirstBitSet returns the index of the first 1 bit in v, counting from LSB. func FirstBitSet(v *big.Int) int { for i := 0; i < v.BitLen(); i++ { if v.Bit(i) > 0 { return i } } return v.BitLen() } // PaddedBigBytes encodes a big integer as a big-endian byte slice. The length // of the slice is at least n bytes. func PaddedBigBytes(bigint *big.Int, n int) []byte { if bigint.BitLen()/8 >= n { return bigint.Bytes() } ret := make([]byte, n) ReadBits(bigint, ret) return ret } // bigEndianByteAt returns the byte at position n, // in Big-Endian encoding // So n==0 returns the least significant byte func bigEndianByteAt(bigint *big.Int, n int) byte { words := bigint.Bits() // Check word-bucket the byte will reside in i := n / wordBytes if i >= len(words) { return byte(0) } word := words[i] // Offset of the byte shift := 8 * uint(n%wordBytes) return byte(word >> shift) } // Byte returns the byte at position n, // with the supplied padlength in Little-Endian encoding. // n==0 returns the MSB // Example: bigint '5', padlength 32, n=31 => 5 func Byte(bigint *big.Int, padlength, n int) byte { if n >= padlength { return byte(0) } return bigEndianByteAt(bigint, padlength-1-n) } // ReadBits encodes the absolute value of bigint as big-endian bytes. Callers must ensure // that buf has enough space. If buf is too short the result will be incomplete. func ReadBits(bigint *big.Int, buf []byte) { i := len(buf) for _, d := range bigint.Bits() { for j := 0; j < wordBytes && i > 0; j++ { i-- buf[i] = byte(d) d >>= 8 } } } // U256 encodes x as a 256 bit two's complement number. This operation is destructive. func U256(x *big.Int) *big.Int { return x.And(x, tt256m1) } // U256Bytes converts a big Int into a 256bit EVM number. // This operation is destructive. func U256Bytes(n *big.Int) []byte { return PaddedBigBytes(U256(n), 32) } // S256 interprets x as a two's complement number. // x must not exceed 256 bits (the result is undefined if it does) and is not modified. // // S256(0) = 0 // S256(1) = 1 // S256(2**255) = -2**255 // S256(2**256-1) = -1 func S256(x *big.Int) *big.Int { if x.Cmp(tt255) < 0 { return x } return new(big.Int).Sub(x, tt256) } // Exp implements exponentiation by squaring. // Exp returns a newly-allocated big integer and does not change // base or exponent. The result is truncated to 256 bits. // // Courtesy @karalabe and @chfast func Exp(base, exponent *big.Int) *big.Int { copyBase := new(big.Int).Set(base) result := big.NewInt(1) for _, word := range exponent.Bits() { for i := 0; i < wordBits; i++ { if word&1 == 1 { U256(result.Mul(result, copyBase)) } U256(copyBase.Mul(copyBase, copyBase)) word >>= 1 } } return result }