// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Package downloader contains the manual full chain synchronisation. package downloader import ( "errors" "fmt" "math/big" "sync" "sync/atomic" "time" "github.com/ethereum/go-ethereum" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/state/snapshot" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/eth/protocols/snap" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/triedb" ) var ( MaxBlockFetch = 128 // Number of blocks to be fetched per retrieval request MaxHeaderFetch = 192 // Number of block headers to be fetched per retrieval request MaxSkeletonSize = 128 // Number of header fetches needed for a skeleton assembly MaxReceiptFetch = 256 // Number of transaction receipts to allow fetching per request maxQueuedHeaders = 32 * 1024 // [eth/62] Maximum number of headers to queue for import (DOS protection) maxHeadersProcess = 2048 // Number of header download results to import at once into the chain maxResultsProcess = 2048 // Number of content download results to import at once into the chain fullMaxForkAncestry uint64 = params.FullImmutabilityThreshold // Maximum chain reorganisation (locally redeclared so tests can reduce it) lightMaxForkAncestry uint64 = params.LightImmutabilityThreshold // Maximum chain reorganisation (locally redeclared so tests can reduce it) reorgProtThreshold = 48 // Threshold number of recent blocks to disable mini reorg protection reorgProtHeaderDelay = 2 // Number of headers to delay delivering to cover mini reorgs fsHeaderSafetyNet = 2048 // Number of headers to discard in case a chain violation is detected fsHeaderContCheck = 3 * time.Second // Time interval to check for header continuations during state download fsMinFullBlocks = 64 // Number of blocks to retrieve fully even in snap sync ) var ( errBusy = errors.New("busy") errUnknownPeer = errors.New("peer is unknown or unhealthy") errBadPeer = errors.New("action from bad peer ignored") errStallingPeer = errors.New("peer is stalling") errUnsyncedPeer = errors.New("unsynced peer") errNoPeers = errors.New("no peers to keep download active") errTimeout = errors.New("timeout") errEmptyHeaderSet = errors.New("empty header set by peer") errPeersUnavailable = errors.New("no peers available or all tried for download") errInvalidAncestor = errors.New("retrieved ancestor is invalid") errInvalidChain = errors.New("retrieved hash chain is invalid") errInvalidBody = errors.New("retrieved block body is invalid") errInvalidReceipt = errors.New("retrieved receipt is invalid") errCancelStateFetch = errors.New("state data download canceled (requested)") errCancelContentProcessing = errors.New("content processing canceled (requested)") errCanceled = errors.New("syncing canceled (requested)") errTooOld = errors.New("peer's protocol version too old") errNoAncestorFound = errors.New("no common ancestor found") errNoPivotHeader = errors.New("pivot header is not found") ErrMergeTransition = errors.New("legacy sync reached the merge") ) // peerDropFn is a callback type for dropping a peer detected as malicious. type peerDropFn func(id string) // badBlockFn is a callback for the async beacon sync to notify the caller that // the origin header requested to sync to, produced a chain with a bad block. type badBlockFn func(invalid *types.Header, origin *types.Header) // headerTask is a set of downloaded headers to queue along with their precomputed // hashes to avoid constant rehashing. type headerTask struct { headers []*types.Header hashes []common.Hash } type Downloader struct { mode atomic.Uint32 // Synchronisation mode defining the strategy used (per sync cycle), use d.getMode() to get the SyncMode mux *event.TypeMux // Event multiplexer to announce sync operation events genesis uint64 // Genesis block number to limit sync to (e.g. light client CHT) queue *queue // Scheduler for selecting the hashes to download peers *peerSet // Set of active peers from which download can proceed stateDB ethdb.Database // Database to state sync into (and deduplicate via) // Statistics syncStatsChainOrigin uint64 // Origin block number where syncing started at syncStatsChainHeight uint64 // Highest block number known when syncing started syncStatsLock sync.RWMutex // Lock protecting the sync stats fields lightchain LightChain blockchain BlockChain // Callbacks dropPeer peerDropFn // Drops a peer for misbehaving badBlock badBlockFn // Reports a block as rejected by the chain // Status synchroniseMock func(id string, hash common.Hash) error // Replacement for synchronise during testing synchronising atomic.Bool notified atomic.Bool committed atomic.Bool ancientLimit uint64 // The maximum block number which can be regarded as ancient data. // Channels headerProcCh chan *headerTask // Channel to feed the header processor new tasks // Skeleton sync skeleton *skeleton // Header skeleton to backfill the chain with (eth2 mode) // State sync pivotHeader *types.Header // Pivot block header to dynamically push the syncing state root pivotLock sync.RWMutex // Lock protecting pivot header reads from updates SnapSyncer *snap.Syncer // TODO(karalabe): make private! hack for now stateSyncStart chan *stateSync // Cancellation and termination cancelPeer string // Identifier of the peer currently being used as the master (cancel on drop) cancelCh chan struct{} // Channel to cancel mid-flight syncs cancelLock sync.RWMutex // Lock to protect the cancel channel and peer in delivers cancelWg sync.WaitGroup // Make sure all fetcher goroutines have exited. quitCh chan struct{} // Quit channel to signal termination quitLock sync.Mutex // Lock to prevent double closes // Testing hooks syncInitHook func(uint64, uint64) // Method to call upon initiating a new sync run bodyFetchHook func([]*types.Header) // Method to call upon starting a block body fetch receiptFetchHook func([]*types.Header) // Method to call upon starting a receipt fetch chainInsertHook func([]*fetchResult) // Method to call upon inserting a chain of blocks (possibly in multiple invocations) // Progress reporting metrics syncStartBlock uint64 // Head snap block when Geth was started syncStartTime time.Time // Time instance when chain sync started syncLogTime time.Time // Time instance when status was last reported } // LightChain encapsulates functions required to synchronise a light chain. type LightChain interface { // HasHeader verifies a header's presence in the local chain. HasHeader(common.Hash, uint64) bool // GetHeaderByHash retrieves a header from the local chain. GetHeaderByHash(common.Hash) *types.Header // CurrentHeader retrieves the head header from the local chain. CurrentHeader() *types.Header // GetTd returns the total difficulty of a local block. GetTd(common.Hash, uint64) *big.Int // InsertHeaderChain inserts a batch of headers into the local chain. InsertHeaderChain([]*types.Header) (int, error) // SetHead rewinds the local chain to a new head. SetHead(uint64) error } // BlockChain encapsulates functions required to sync a (full or snap) blockchain. type BlockChain interface { LightChain // HasBlock verifies a block's presence in the local chain. HasBlock(common.Hash, uint64) bool // HasFastBlock verifies a snap block's presence in the local chain. HasFastBlock(common.Hash, uint64) bool // GetBlockByHash retrieves a block from the local chain. GetBlockByHash(common.Hash) *types.Block // CurrentBlock retrieves the head block from the local chain. CurrentBlock() *types.Header // CurrentSnapBlock retrieves the head snap block from the local chain. CurrentSnapBlock() *types.Header // SnapSyncCommitHead directly commits the head block to a certain entity. SnapSyncCommitHead(common.Hash) error // InsertChain inserts a batch of blocks into the local chain. InsertChain(types.Blocks) (int, error) // InsertReceiptChain inserts a batch of receipts into the local chain. InsertReceiptChain(types.Blocks, []types.Receipts, uint64) (int, error) // Snapshots returns the blockchain snapshot tree to paused it during sync. Snapshots() *snapshot.Tree // TrieDB retrieves the low level trie database used for interacting // with trie nodes. TrieDB() *triedb.Database } // New creates a new downloader to fetch hashes and blocks from remote peers. func New(stateDb ethdb.Database, mux *event.TypeMux, chain BlockChain, lightchain LightChain, dropPeer peerDropFn, success func()) *Downloader { if lightchain == nil { lightchain = chain } dl := &Downloader{ stateDB: stateDb, mux: mux, queue: newQueue(blockCacheMaxItems, blockCacheInitialItems), peers: newPeerSet(), blockchain: chain, lightchain: lightchain, dropPeer: dropPeer, headerProcCh: make(chan *headerTask, 1), quitCh: make(chan struct{}), SnapSyncer: snap.NewSyncer(stateDb, chain.TrieDB().Scheme()), stateSyncStart: make(chan *stateSync), syncStartBlock: chain.CurrentSnapBlock().Number.Uint64(), } // Create the post-merge skeleton syncer and start the process dl.skeleton = newSkeleton(stateDb, dl.peers, dropPeer, newBeaconBackfiller(dl, success)) go dl.stateFetcher() return dl } // Progress retrieves the synchronisation boundaries, specifically the origin // block where synchronisation started at (may have failed/suspended); the block // or header sync is currently at; and the latest known block which the sync targets. // // In addition, during the state download phase of snap synchronisation the number // of processed and the total number of known states are also returned. Otherwise // these are zero. func (d *Downloader) Progress() ethereum.SyncProgress { // Lock the current stats and return the progress d.syncStatsLock.RLock() defer d.syncStatsLock.RUnlock() current := uint64(0) mode := d.getMode() switch { case d.blockchain != nil && mode == FullSync: current = d.blockchain.CurrentBlock().Number.Uint64() case d.blockchain != nil && mode == SnapSync: current = d.blockchain.CurrentSnapBlock().Number.Uint64() case d.lightchain != nil: current = d.lightchain.CurrentHeader().Number.Uint64() default: log.Error("Unknown downloader chain/mode combo", "light", d.lightchain != nil, "full", d.blockchain != nil, "mode", mode) } progress, pending := d.SnapSyncer.Progress() return ethereum.SyncProgress{ StartingBlock: d.syncStatsChainOrigin, CurrentBlock: current, HighestBlock: d.syncStatsChainHeight, SyncedAccounts: progress.AccountSynced, SyncedAccountBytes: uint64(progress.AccountBytes), SyncedBytecodes: progress.BytecodeSynced, SyncedBytecodeBytes: uint64(progress.BytecodeBytes), SyncedStorage: progress.StorageSynced, SyncedStorageBytes: uint64(progress.StorageBytes), HealedTrienodes: progress.TrienodeHealSynced, HealedTrienodeBytes: uint64(progress.TrienodeHealBytes), HealedBytecodes: progress.BytecodeHealSynced, HealedBytecodeBytes: uint64(progress.BytecodeHealBytes), HealingTrienodes: pending.TrienodeHeal, HealingBytecode: pending.BytecodeHeal, } } // RegisterPeer injects a new download peer into the set of block source to be // used for fetching hashes and blocks from. func (d *Downloader) RegisterPeer(id string, version uint, peer Peer) error { var logger log.Logger if len(id) < 16 { // Tests use short IDs, don't choke on them logger = log.New("peer", id) } else { logger = log.New("peer", id[:8]) } logger.Trace("Registering sync peer") if err := d.peers.Register(newPeerConnection(id, version, peer, logger)); err != nil { logger.Error("Failed to register sync peer", "err", err) return err } return nil } // UnregisterPeer remove a peer from the known list, preventing any action from // the specified peer. An effort is also made to return any pending fetches into // the queue. func (d *Downloader) UnregisterPeer(id string) error { // Unregister the peer from the active peer set and revoke any fetch tasks var logger log.Logger if len(id) < 16 { // Tests use short IDs, don't choke on them logger = log.New("peer", id) } else { logger = log.New("peer", id[:8]) } logger.Trace("Unregistering sync peer") if err := d.peers.Unregister(id); err != nil { logger.Error("Failed to unregister sync peer", "err", err) return err } d.queue.Revoke(id) return nil } // LegacySync tries to sync up our local block chain with a remote peer, both // adding various sanity checks as well as wrapping it with various log entries. func (d *Downloader) LegacySync(id string, head common.Hash, td, ttd *big.Int, mode SyncMode) error { err := d.synchronise(id, head, td, ttd, mode, false, nil) switch err { case nil, errBusy, errCanceled: return err } if errors.Is(err, errInvalidChain) || errors.Is(err, errBadPeer) || errors.Is(err, errTimeout) || errors.Is(err, errStallingPeer) || errors.Is(err, errUnsyncedPeer) || errors.Is(err, errEmptyHeaderSet) || errors.Is(err, errPeersUnavailable) || errors.Is(err, errTooOld) || errors.Is(err, errInvalidAncestor) { log.Warn("Synchronisation failed, dropping peer", "peer", id, "err", err) if d.dropPeer == nil { // The dropPeer method is nil when `--copydb` is used for a local copy. // Timeouts can occur if e.g. compaction hits at the wrong time, and can be ignored log.Warn("Downloader wants to drop peer, but peerdrop-function is not set", "peer", id) } else { d.dropPeer(id) } return err } if errors.Is(err, ErrMergeTransition) { return err // This is an expected fault, don't keep printing it in a spin-loop } log.Warn("Synchronisation failed, retrying", "err", err) return err } // synchronise will select the peer and use it for synchronising. If an empty string is given // it will use the best peer possible and synchronize if its TD is higher than our own. If any of the // checks fail an error will be returned. This method is synchronous func (d *Downloader) synchronise(id string, hash common.Hash, td, ttd *big.Int, mode SyncMode, beaconMode bool, beaconPing chan struct{}) error { // The beacon header syncer is async. It will start this synchronization and // will continue doing other tasks. However, if synchronization needs to be // cancelled, the syncer needs to know if we reached the startup point (and // inited the cancel channel) or not yet. Make sure that we'll signal even in // case of a failure. if beaconPing != nil { defer func() { select { case <-beaconPing: // already notified default: close(beaconPing) // weird exit condition, notify that it's safe to cancel (the nothing) } }() } // Mock out the synchronisation if testing if d.synchroniseMock != nil { return d.synchroniseMock(id, hash) } // Make sure only one goroutine is ever allowed past this point at once if !d.synchronising.CompareAndSwap(false, true) { return errBusy } defer d.synchronising.Store(false) // Post a user notification of the sync (only once per session) if d.notified.CompareAndSwap(false, true) { log.Info("Block synchronisation started") } if mode == SnapSync { // Snap sync will directly modify the persistent state, making the entire // trie database unusable until the state is fully synced. To prevent any // subsequent state reads, explicitly disable the trie database and state // syncer is responsible to address and correct any state missing. if d.blockchain.TrieDB().Scheme() == rawdb.PathScheme { if err := d.blockchain.TrieDB().Disable(); err != nil { return err } } // Snap sync uses the snapshot namespace to store potentially flaky data until // sync completely heals and finishes. Pause snapshot maintenance in the mean- // time to prevent access. if snapshots := d.blockchain.Snapshots(); snapshots != nil { // Only nil in tests snapshots.Disable() } } // Reset the queue, peer set and wake channels to clean any internal leftover state d.queue.Reset(blockCacheMaxItems, blockCacheInitialItems) d.peers.Reset() for _, ch := range []chan bool{d.queue.blockWakeCh, d.queue.receiptWakeCh} { select { case <-ch: default: } } for empty := false; !empty; { select { case <-d.headerProcCh: default: empty = true } } // Create cancel channel for aborting mid-flight and mark the master peer d.cancelLock.Lock() d.cancelCh = make(chan struct{}) d.cancelPeer = id d.cancelLock.Unlock() defer d.Cancel() // No matter what, we can't leave the cancel channel open // Atomically set the requested sync mode d.mode.Store(uint32(mode)) // Retrieve the origin peer and initiate the downloading process var p *peerConnection if !beaconMode { // Beacon mode doesn't need a peer to sync from p = d.peers.Peer(id) if p == nil { return errUnknownPeer } } if beaconPing != nil { close(beaconPing) } return d.syncWithPeer(p, hash, td, ttd, beaconMode) } func (d *Downloader) getMode() SyncMode { return SyncMode(d.mode.Load()) } // syncWithPeer starts a block synchronization based on the hash chain from the // specified peer and head hash. func (d *Downloader) syncWithPeer(p *peerConnection, hash common.Hash, td, ttd *big.Int, beaconMode bool) (err error) { d.mux.Post(StartEvent{}) defer func() { // reset on error if err != nil { d.mux.Post(FailedEvent{err}) } else { latest := d.lightchain.CurrentHeader() d.mux.Post(DoneEvent{latest}) } }() mode := d.getMode() if !beaconMode { log.Debug("Synchronising with the network", "peer", p.id, "eth", p.version, "head", hash, "td", td, "mode", mode) } else { log.Debug("Backfilling with the network", "mode", mode) } defer func(start time.Time) { log.Debug("Synchronisation terminated", "elapsed", common.PrettyDuration(time.Since(start))) }(time.Now()) // Look up the sync boundaries: the common ancestor and the target block var latest, pivot, final *types.Header if !beaconMode { // In legacy mode, use the master peer to retrieve the headers from latest, pivot, err = d.fetchHead(p) if err != nil { return err } } else { // In beacon mode, use the skeleton chain to retrieve the headers from latest, _, final, err = d.skeleton.Bounds() if err != nil { return err } if latest.Number.Uint64() > uint64(fsMinFullBlocks) { number := latest.Number.Uint64() - uint64(fsMinFullBlocks) // Retrieve the pivot header from the skeleton chain segment but // fallback to local chain if it's not found in skeleton space. if pivot = d.skeleton.Header(number); pivot == nil { _, oldest, _, _ := d.skeleton.Bounds() // error is already checked if number < oldest.Number.Uint64() { count := int(oldest.Number.Uint64() - number) // it's capped by fsMinFullBlocks headers := d.readHeaderRange(oldest, count) if len(headers) == count { pivot = headers[len(headers)-1] log.Warn("Retrieved pivot header from local", "number", pivot.Number, "hash", pivot.Hash(), "latest", latest.Number, "oldest", oldest.Number) } } } // Print an error log and return directly in case the pivot header // is still not found. It means the skeleton chain is not linked // correctly with local chain. if pivot == nil { log.Error("Pivot header is not found", "number", number) return errNoPivotHeader } } } // If no pivot block was returned, the head is below the min full block // threshold (i.e. new chain). In that case we won't really snap sync // anyway, but still need a valid pivot block to avoid some code hitting // nil panics on access. if mode == SnapSync && pivot == nil { pivot = d.blockchain.CurrentBlock() } height := latest.Number.Uint64() var origin uint64 if !beaconMode { // In legacy mode, reach out to the network and find the ancestor origin, err = d.findAncestor(p, latest) if err != nil { return err } } else { // In beacon mode, use the skeleton chain for the ancestor lookup origin, err = d.findBeaconAncestor() if err != nil { return err } } d.syncStatsLock.Lock() if d.syncStatsChainHeight <= origin || d.syncStatsChainOrigin > origin { d.syncStatsChainOrigin = origin } d.syncStatsChainHeight = height d.syncStatsLock.Unlock() // Ensure our origin point is below any snap sync pivot point if mode == SnapSync { if height <= uint64(fsMinFullBlocks) { origin = 0 } else { pivotNumber := pivot.Number.Uint64() if pivotNumber <= origin { origin = pivotNumber - 1 } // Write out the pivot into the database so a rollback beyond it will // reenable snap sync rawdb.WriteLastPivotNumber(d.stateDB, pivotNumber) } } d.committed.Store(true) if mode == SnapSync && pivot.Number.Uint64() != 0 { d.committed.Store(false) } if mode == SnapSync { // Set the ancient data limitation. If we are running snap sync, all block // data older than ancientLimit will be written to the ancient store. More // recent data will be written to the active database and will wait for the // freezer to migrate. // // If the network is post-merge, use either the last announced finalized // block as the ancient limit, or if we haven't yet received one, the head- // a max fork ancestry limit. One quirky case if we've already passed the // finalized block, in which case the skeleton.Bounds will return nil and // we'll revert to head - 90K. That's fine, we're finishing sync anyway. // // For non-merged networks, if there is a checkpoint available, then calculate // the ancientLimit through that. Otherwise calculate the ancient limit through // the advertised height of the remote peer. This most is mostly a fallback for // legacy networks, but should eventually be dropped. TODO(karalabe). if beaconMode { // Beacon sync, use the latest finalized block as the ancient limit // or a reasonable height if no finalized block is yet announced. if final != nil { d.ancientLimit = final.Number.Uint64() } else if height > fullMaxForkAncestry+1 { d.ancientLimit = height - fullMaxForkAncestry - 1 } else { d.ancientLimit = 0 } } else { // Legacy sync, use the best announcement we have from the remote peer. // TODO(karalabe): Drop this pathway. if height > fullMaxForkAncestry+1 { d.ancientLimit = height - fullMaxForkAncestry - 1 } else { d.ancientLimit = 0 } } frozen, _ := d.stateDB.Ancients() // Ignore the error here since light client can also hit here. // If a part of blockchain data has already been written into active store, // disable the ancient style insertion explicitly. if origin >= frozen && frozen != 0 { d.ancientLimit = 0 log.Info("Disabling direct-ancient mode", "origin", origin, "ancient", frozen-1) } else if d.ancientLimit > 0 { log.Debug("Enabling direct-ancient mode", "ancient", d.ancientLimit) } // Rewind the ancient store and blockchain if reorg happens. if origin+1 < frozen { if err := d.lightchain.SetHead(origin); err != nil { return err } log.Info("Truncated excess ancient chain segment", "oldhead", frozen-1, "newhead", origin) } } // Initiate the sync using a concurrent header and content retrieval algorithm d.queue.Prepare(origin+1, mode) if d.syncInitHook != nil { d.syncInitHook(origin, height) } var headerFetcher func() error if !beaconMode { // In legacy mode, headers are retrieved from the network headerFetcher = func() error { return d.fetchHeaders(p, origin+1, latest.Number.Uint64()) } } else { // In beacon mode, headers are served by the skeleton syncer headerFetcher = func() error { return d.fetchBeaconHeaders(origin + 1) } } fetchers := []func() error{ headerFetcher, // Headers are always retrieved func() error { return d.fetchBodies(origin+1, beaconMode) }, // Bodies are retrieved during normal and snap sync func() error { return d.fetchReceipts(origin+1, beaconMode) }, // Receipts are retrieved during snap sync func() error { return d.processHeaders(origin+1, td, ttd, beaconMode) }, } if mode == SnapSync { d.pivotLock.Lock() d.pivotHeader = pivot d.pivotLock.Unlock() fetchers = append(fetchers, func() error { return d.processSnapSyncContent() }) } else if mode == FullSync { fetchers = append(fetchers, func() error { return d.processFullSyncContent(ttd, beaconMode) }) } return d.spawnSync(fetchers) } // spawnSync runs d.process and all given fetcher functions to completion in // separate goroutines, returning the first error that appears. func (d *Downloader) spawnSync(fetchers []func() error) error { errc := make(chan error, len(fetchers)) d.cancelWg.Add(len(fetchers)) for _, fn := range fetchers { fn := fn go func() { defer d.cancelWg.Done(); errc <- fn() }() } // Wait for the first error, then terminate the others. var err error for i := 0; i < len(fetchers); i++ { if i == len(fetchers)-1 { // Close the queue when all fetchers have exited. // This will cause the block processor to end when // it has processed the queue. d.queue.Close() } if got := <-errc; got != nil { err = got if got != errCanceled { break // receive a meaningful error, bubble it up } } } d.queue.Close() d.Cancel() return err } // cancel aborts all of the operations and resets the queue. However, cancel does // not wait for the running download goroutines to finish. This method should be // used when cancelling the downloads from inside the downloader. func (d *Downloader) cancel() { // Close the current cancel channel d.cancelLock.Lock() defer d.cancelLock.Unlock() if d.cancelCh != nil { select { case <-d.cancelCh: // Channel was already closed default: close(d.cancelCh) } } } // Cancel aborts all of the operations and waits for all download goroutines to // finish before returning. func (d *Downloader) Cancel() { d.cancel() d.cancelWg.Wait() } // Terminate interrupts the downloader, canceling all pending operations. // The downloader cannot be reused after calling Terminate. func (d *Downloader) Terminate() { // Close the termination channel (make sure double close is allowed) d.quitLock.Lock() select { case <-d.quitCh: default: close(d.quitCh) // Terminate the internal beacon syncer d.skeleton.Terminate() } d.quitLock.Unlock() // Cancel any pending download requests d.Cancel() } // fetchHead retrieves the head header and prior pivot block (if available) from // a remote peer. func (d *Downloader) fetchHead(p *peerConnection) (head *types.Header, pivot *types.Header, err error) { p.log.Debug("Retrieving remote chain head") mode := d.getMode() // Request the advertised remote head block and wait for the response latest, _ := p.peer.Head() fetch := 1 if mode == SnapSync { fetch = 2 // head + pivot headers } headers, hashes, err := d.fetchHeadersByHash(p, latest, fetch, fsMinFullBlocks-1, true) if err != nil { return nil, nil, err } // Make sure the peer gave us at least one and at most the requested headers if len(headers) == 0 || len(headers) > fetch { return nil, nil, fmt.Errorf("%w: returned headers %d != requested %d", errBadPeer, len(headers), fetch) } // The first header needs to be the head, validate against the request. If // only 1 header was returned, make sure there's no pivot or there was not // one requested. head = headers[0] if len(headers) == 1 { if mode == SnapSync && head.Number.Uint64() > uint64(fsMinFullBlocks) { return nil, nil, fmt.Errorf("%w: no pivot included along head header", errBadPeer) } p.log.Debug("Remote head identified, no pivot", "number", head.Number, "hash", hashes[0]) return head, nil, nil } // At this point we have 2 headers in total and the first is the // validated head of the chain. Check the pivot number and return, pivot = headers[1] if pivot.Number.Uint64() != head.Number.Uint64()-uint64(fsMinFullBlocks) { return nil, nil, fmt.Errorf("%w: remote pivot %d != requested %d", errInvalidChain, pivot.Number, head.Number.Uint64()-uint64(fsMinFullBlocks)) } return head, pivot, nil } // calculateRequestSpan calculates what headers to request from a peer when trying to determine the // common ancestor. // It returns parameters to be used for peer.RequestHeadersByNumber: // // from - starting block number // count - number of headers to request // skip - number of headers to skip // // and also returns 'max', the last block which is expected to be returned by the remote peers, // given the (from,count,skip) func calculateRequestSpan(remoteHeight, localHeight uint64) (int64, int, int, uint64) { var ( from int count int MaxCount = MaxHeaderFetch / 16 ) // requestHead is the highest block that we will ask for. If requestHead is not offset, // the highest block that we will get is 16 blocks back from head, which means we // will fetch 14 or 15 blocks unnecessarily in the case the height difference // between us and the peer is 1-2 blocks, which is most common requestHead := int(remoteHeight) - 1 if requestHead < 0 { requestHead = 0 } // requestBottom is the lowest block we want included in the query // Ideally, we want to include the one just below our own head requestBottom := int(localHeight - 1) if requestBottom < 0 { requestBottom = 0 } totalSpan := requestHead - requestBottom span := 1 + totalSpan/MaxCount if span < 2 { span = 2 } if span > 16 { span = 16 } count = 1 + totalSpan/span if count > MaxCount { count = MaxCount } if count < 2 { count = 2 } from = requestHead - (count-1)*span if from < 0 { from = 0 } max := from + (count-1)*span return int64(from), count, span - 1, uint64(max) } // findAncestor tries to locate the common ancestor link of the local chain and // a remote peers blockchain. In the general case when our node was in sync and // on the correct chain, checking the top N links should already get us a match. // In the rare scenario when we ended up on a long reorganisation (i.e. none of // the head links match), we do a binary search to find the common ancestor. func (d *Downloader) findAncestor(p *peerConnection, remoteHeader *types.Header) (uint64, error) { // Figure out the valid ancestor range to prevent rewrite attacks var ( floor = int64(-1) localHeight uint64 remoteHeight = remoteHeader.Number.Uint64() ) mode := d.getMode() switch mode { case FullSync: localHeight = d.blockchain.CurrentBlock().Number.Uint64() case SnapSync: localHeight = d.blockchain.CurrentSnapBlock().Number.Uint64() default: localHeight = d.lightchain.CurrentHeader().Number.Uint64() } p.log.Debug("Looking for common ancestor", "local", localHeight, "remote", remoteHeight) // Recap floor value for binary search maxForkAncestry := fullMaxForkAncestry if d.getMode() == LightSync { maxForkAncestry = lightMaxForkAncestry } if localHeight >= maxForkAncestry { // We're above the max reorg threshold, find the earliest fork point floor = int64(localHeight - maxForkAncestry) } // If we're doing a light sync, ensure the floor doesn't go below the CHT, as // all headers before that point will be missing. if mode == LightSync { // If we don't know the current CHT position, find it if d.genesis == 0 { header := d.lightchain.CurrentHeader() for header != nil { d.genesis = header.Number.Uint64() if floor >= int64(d.genesis)-1 { break } header = d.lightchain.GetHeaderByHash(header.ParentHash) } } // We already know the "genesis" block number, cap floor to that if floor < int64(d.genesis)-1 { floor = int64(d.genesis) - 1 } } ancestor, err := d.findAncestorSpanSearch(p, mode, remoteHeight, localHeight, floor) if err == nil { return ancestor, nil } // The returned error was not nil. // If the error returned does not reflect that a common ancestor was not found, return it. // If the error reflects that a common ancestor was not found, continue to binary search, // where the error value will be reassigned. if !errors.Is(err, errNoAncestorFound) { return 0, err } ancestor, err = d.findAncestorBinarySearch(p, mode, remoteHeight, floor) if err != nil { return 0, err } return ancestor, nil } func (d *Downloader) findAncestorSpanSearch(p *peerConnection, mode SyncMode, remoteHeight, localHeight uint64, floor int64) (uint64, error) { from, count, skip, max := calculateRequestSpan(remoteHeight, localHeight) p.log.Trace("Span searching for common ancestor", "count", count, "from", from, "skip", skip) headers, hashes, err := d.fetchHeadersByNumber(p, uint64(from), count, skip, false) if err != nil { return 0, err } // Wait for the remote response to the head fetch number, hash := uint64(0), common.Hash{} // Make sure the peer actually gave something valid if len(headers) == 0 { p.log.Warn("Empty head header set") return 0, errEmptyHeaderSet } // Make sure the peer's reply conforms to the request for i, header := range headers { expectNumber := from + int64(i)*int64(skip+1) if number := header.Number.Int64(); number != expectNumber { p.log.Warn("Head headers broke chain ordering", "index", i, "requested", expectNumber, "received", number) return 0, fmt.Errorf("%w: %v", errInvalidChain, errors.New("head headers broke chain ordering")) } } // Check if a common ancestor was found for i := len(headers) - 1; i >= 0; i-- { // Skip any headers that underflow/overflow our requested set if headers[i].Number.Int64() < from || headers[i].Number.Uint64() > max { continue } // Otherwise check if we already know the header or not h := hashes[i] n := headers[i].Number.Uint64() var known bool switch mode { case FullSync: known = d.blockchain.HasBlock(h, n) case SnapSync: known = d.blockchain.HasFastBlock(h, n) default: known = d.lightchain.HasHeader(h, n) } if known { number, hash = n, h break } } // If the head fetch already found an ancestor, return if hash != (common.Hash{}) { if int64(number) <= floor { p.log.Warn("Ancestor below allowance", "number", number, "hash", hash, "allowance", floor) return 0, errInvalidAncestor } p.log.Debug("Found common ancestor", "number", number, "hash", hash) return number, nil } return 0, errNoAncestorFound } func (d *Downloader) findAncestorBinarySearch(p *peerConnection, mode SyncMode, remoteHeight uint64, floor int64) (uint64, error) { hash := common.Hash{} // Ancestor not found, we need to binary search over our chain start, end := uint64(0), remoteHeight if floor > 0 { start = uint64(floor) } p.log.Trace("Binary searching for common ancestor", "start", start, "end", end) for start+1 < end { // Split our chain interval in two, and request the hash to cross check check := (start + end) / 2 headers, hashes, err := d.fetchHeadersByNumber(p, check, 1, 0, false) if err != nil { return 0, err } // Make sure the peer actually gave something valid if len(headers) != 1 { p.log.Warn("Multiple headers for single request", "headers", len(headers)) return 0, fmt.Errorf("%w: multiple headers (%d) for single request", errBadPeer, len(headers)) } // Modify the search interval based on the response h := hashes[0] n := headers[0].Number.Uint64() var known bool switch mode { case FullSync: known = d.blockchain.HasBlock(h, n) case SnapSync: known = d.blockchain.HasFastBlock(h, n) default: known = d.lightchain.HasHeader(h, n) } if !known { end = check continue } header := d.lightchain.GetHeaderByHash(h) // Independent of sync mode, header surely exists if header.Number.Uint64() != check { p.log.Warn("Received non requested header", "number", header.Number, "hash", header.Hash(), "request", check) return 0, fmt.Errorf("%w: non-requested header (%d)", errBadPeer, header.Number) } start = check hash = h } // Ensure valid ancestry and return if int64(start) <= floor { p.log.Warn("Ancestor below allowance", "number", start, "hash", hash, "allowance", floor) return 0, errInvalidAncestor } p.log.Debug("Found common ancestor", "number", start, "hash", hash) return start, nil } // fetchHeaders keeps retrieving headers concurrently from the number // requested, until no more are returned, potentially throttling on the way. To // facilitate concurrency but still protect against malicious nodes sending bad // headers, we construct a header chain skeleton using the "origin" peer we are // syncing with, and fill in the missing headers using anyone else. Headers from // other peers are only accepted if they map cleanly to the skeleton. If no one // can fill in the skeleton - not even the origin peer - it's assumed invalid and // the origin is dropped. func (d *Downloader) fetchHeaders(p *peerConnection, from uint64, head uint64) error { p.log.Debug("Directing header downloads", "origin", from) defer p.log.Debug("Header download terminated") // Start pulling the header chain skeleton until all is done var ( skeleton = true // Skeleton assembly phase or finishing up pivoting = false // Whether the next request is pivot verification ancestor = from mode = d.getMode() ) for { // Pull the next batch of headers, it either: // - Pivot check to see if the chain moved too far // - Skeleton retrieval to permit concurrent header fetches // - Full header retrieval if we're near the chain head var ( headers []*types.Header hashes []common.Hash err error ) switch { case pivoting: d.pivotLock.RLock() pivot := d.pivotHeader.Number.Uint64() d.pivotLock.RUnlock() p.log.Trace("Fetching next pivot header", "number", pivot+uint64(fsMinFullBlocks)) headers, hashes, err = d.fetchHeadersByNumber(p, pivot+uint64(fsMinFullBlocks), 2, fsMinFullBlocks-9, false) // move +64 when it's 2x64-8 deep case skeleton: p.log.Trace("Fetching skeleton headers", "count", MaxHeaderFetch, "from", from) headers, hashes, err = d.fetchHeadersByNumber(p, from+uint64(MaxHeaderFetch)-1, MaxSkeletonSize, MaxHeaderFetch-1, false) default: p.log.Trace("Fetching full headers", "count", MaxHeaderFetch, "from", from) headers, hashes, err = d.fetchHeadersByNumber(p, from, MaxHeaderFetch, 0, false) } switch err { case nil: // Headers retrieved, continue with processing case errCanceled: // Sync cancelled, no issue, propagate up return err default: // Header retrieval either timed out, or the peer failed in some strange way // (e.g. disconnect). Consider the master peer bad and drop d.dropPeer(p.id) // Finish the sync gracefully instead of dumping the gathered data though for _, ch := range []chan bool{d.queue.blockWakeCh, d.queue.receiptWakeCh} { select { case ch <- false: case <-d.cancelCh: } } select { case d.headerProcCh <- nil: case <-d.cancelCh: } return fmt.Errorf("%w: header request failed: %v", errBadPeer, err) } // If the pivot is being checked, move if it became stale and run the real retrieval var pivot uint64 d.pivotLock.RLock() if d.pivotHeader != nil { pivot = d.pivotHeader.Number.Uint64() } d.pivotLock.RUnlock() if pivoting { if len(headers) == 2 { if have, want := headers[0].Number.Uint64(), pivot+uint64(fsMinFullBlocks); have != want { log.Warn("Peer sent invalid next pivot", "have", have, "want", want) return fmt.Errorf("%w: next pivot number %d != requested %d", errInvalidChain, have, want) } if have, want := headers[1].Number.Uint64(), pivot+2*uint64(fsMinFullBlocks)-8; have != want { log.Warn("Peer sent invalid pivot confirmer", "have", have, "want", want) return fmt.Errorf("%w: next pivot confirmer number %d != requested %d", errInvalidChain, have, want) } log.Warn("Pivot seemingly stale, moving", "old", pivot, "new", headers[0].Number) pivot = headers[0].Number.Uint64() d.pivotLock.Lock() d.pivotHeader = headers[0] d.pivotLock.Unlock() // Write out the pivot into the database so a rollback beyond // it will reenable snap sync and update the state root that // the state syncer will be downloading. rawdb.WriteLastPivotNumber(d.stateDB, pivot) } // Disable the pivot check and fetch the next batch of headers pivoting = false continue } // If the skeleton's finished, pull any remaining head headers directly from the origin if skeleton && len(headers) == 0 { // A malicious node might withhold advertised headers indefinitely if from+uint64(MaxHeaderFetch)-1 <= head { p.log.Warn("Peer withheld skeleton headers", "advertised", head, "withheld", from+uint64(MaxHeaderFetch)-1) return fmt.Errorf("%w: withheld skeleton headers: advertised %d, withheld #%d", errStallingPeer, head, from+uint64(MaxHeaderFetch)-1) } p.log.Debug("No skeleton, fetching headers directly") skeleton = false continue } // If no more headers are inbound, notify the content fetchers and return if len(headers) == 0 { // Don't abort header fetches while the pivot is downloading if !d.committed.Load() && pivot <= from { p.log.Debug("No headers, waiting for pivot commit") select { case <-time.After(fsHeaderContCheck): continue case <-d.cancelCh: return errCanceled } } // Pivot done (or not in snap sync) and no more headers, terminate the process p.log.Debug("No more headers available") select { case d.headerProcCh <- nil: return nil case <-d.cancelCh: return errCanceled } } // If we received a skeleton batch, resolve internals concurrently var progressed bool if skeleton { filled, hashset, proced, err := d.fillHeaderSkeleton(from, headers) if err != nil { p.log.Debug("Skeleton chain invalid", "err", err) return fmt.Errorf("%w: %v", errInvalidChain, err) } headers = filled[proced:] hashes = hashset[proced:] progressed = proced > 0 from += uint64(proced) } else { // A malicious node might withhold advertised headers indefinitely if n := len(headers); n < MaxHeaderFetch && headers[n-1].Number.Uint64() < head { p.log.Warn("Peer withheld headers", "advertised", head, "delivered", headers[n-1].Number.Uint64()) return fmt.Errorf("%w: withheld headers: advertised %d, delivered %d", errStallingPeer, head, headers[n-1].Number.Uint64()) } // If we're closing in on the chain head, but haven't yet reached it, delay // the last few headers so mini reorgs on the head don't cause invalid hash // chain errors. if n := len(headers); n > 0 { // Retrieve the current head we're at var head uint64 if mode == LightSync { head = d.lightchain.CurrentHeader().Number.Uint64() } else { head = d.blockchain.CurrentSnapBlock().Number.Uint64() if full := d.blockchain.CurrentBlock().Number.Uint64(); head < full { head = full } } // If the head is below the common ancestor, we're actually deduplicating // already existing chain segments, so use the ancestor as the fake head. // Otherwise, we might end up delaying header deliveries pointlessly. if head < ancestor { head = ancestor } // If the head is way older than this batch, delay the last few headers if head+uint64(reorgProtThreshold) < headers[n-1].Number.Uint64() { delay := reorgProtHeaderDelay if delay > n { delay = n } headers = headers[:n-delay] hashes = hashes[:n-delay] } } } // If no headers have been delivered, or all of them have been delayed, // sleep a bit and retry. Take care with headers already consumed during // skeleton filling if len(headers) == 0 && !progressed { p.log.Trace("All headers delayed, waiting") select { case <-time.After(fsHeaderContCheck): continue case <-d.cancelCh: return errCanceled } } // Insert any remaining new headers and fetch the next batch if len(headers) > 0 { p.log.Trace("Scheduling new headers", "count", len(headers), "from", from) select { case d.headerProcCh <- &headerTask{ headers: headers, hashes: hashes, }: case <-d.cancelCh: return errCanceled } from += uint64(len(headers)) } // If we're still skeleton filling snap sync, check pivot staleness // before continuing to the next skeleton filling if skeleton && pivot > 0 { pivoting = true } } } // fillHeaderSkeleton concurrently retrieves headers from all our available peers // and maps them to the provided skeleton header chain. // // Any partial results from the beginning of the skeleton is (if possible) forwarded // immediately to the header processor to keep the rest of the pipeline full even // in the case of header stalls. // // The method returns the entire filled skeleton and also the number of headers // already forwarded for processing. func (d *Downloader) fillHeaderSkeleton(from uint64, skeleton []*types.Header) ([]*types.Header, []common.Hash, int, error) { log.Debug("Filling up skeleton", "from", from) d.queue.ScheduleSkeleton(from, skeleton) err := d.concurrentFetch((*headerQueue)(d), false) if err != nil { log.Debug("Skeleton fill failed", "err", err) } filled, hashes, proced := d.queue.RetrieveHeaders() if err == nil { log.Debug("Skeleton fill succeeded", "filled", len(filled), "processed", proced) } return filled, hashes, proced, err } // fetchBodies iteratively downloads the scheduled block bodies, taking any // available peers, reserving a chunk of blocks for each, waiting for delivery // and also periodically checking for timeouts. func (d *Downloader) fetchBodies(from uint64, beaconMode bool) error { log.Debug("Downloading block bodies", "origin", from) err := d.concurrentFetch((*bodyQueue)(d), beaconMode) log.Debug("Block body download terminated", "err", err) return err } // fetchReceipts iteratively downloads the scheduled block receipts, taking any // available peers, reserving a chunk of receipts for each, waiting for delivery // and also periodically checking for timeouts. func (d *Downloader) fetchReceipts(from uint64, beaconMode bool) error { log.Debug("Downloading receipts", "origin", from) err := d.concurrentFetch((*receiptQueue)(d), beaconMode) log.Debug("Receipt download terminated", "err", err) return err } // processHeaders takes batches of retrieved headers from an input channel and // keeps processing and scheduling them into the header chain and downloader's // queue until the stream ends or a failure occurs. func (d *Downloader) processHeaders(origin uint64, td, ttd *big.Int, beaconMode bool) error { var ( mode = d.getMode() gotHeaders = false // Wait for batches of headers to process ) for { select { case <-d.cancelCh: return errCanceled case task := <-d.headerProcCh: // Terminate header processing if we synced up if task == nil || len(task.headers) == 0 { // Notify everyone that headers are fully processed for _, ch := range []chan bool{d.queue.blockWakeCh, d.queue.receiptWakeCh} { select { case ch <- false: case <-d.cancelCh: } } // If we're in legacy sync mode, we need to check total difficulty // violations from malicious peers. That is not needed in beacon // mode and we can skip to terminating sync. if !beaconMode { // If no headers were retrieved at all, the peer violated its TD promise that it had a // better chain compared to ours. The only exception is if its promised blocks were // already imported by other means (e.g. fetcher): // // R , L : Both at block 10 // R: Mine block 11, and propagate it to L // L: Queue block 11 for import // L: Notice that R's head and TD increased compared to ours, start sync // L: Import of block 11 finishes // L: Sync begins, and finds common ancestor at 11 // L: Request new headers up from 11 (R's TD was higher, it must have something) // R: Nothing to give if mode != LightSync { head := d.blockchain.CurrentBlock() if !gotHeaders && td.Cmp(d.blockchain.GetTd(head.Hash(), head.Number.Uint64())) > 0 { return errStallingPeer } } // If snap or light syncing, ensure promised headers are indeed delivered. This is // needed to detect scenarios where an attacker feeds a bad pivot and then bails out // of delivering the post-pivot blocks that would flag the invalid content. // // This check cannot be executed "as is" for full imports, since blocks may still be // queued for processing when the header download completes. However, as long as the // peer gave us something useful, we're already happy/progressed (above check). if mode == SnapSync || mode == LightSync { head := d.lightchain.CurrentHeader() if td.Cmp(d.lightchain.GetTd(head.Hash(), head.Number.Uint64())) > 0 { return errStallingPeer } } } return nil } // Otherwise split the chunk of headers into batches and process them headers, hashes := task.headers, task.hashes gotHeaders = true for len(headers) > 0 { // Terminate if something failed in between processing chunks select { case <-d.cancelCh: return errCanceled default: } // Select the next chunk of headers to import limit := maxHeadersProcess if limit > len(headers) { limit = len(headers) } chunkHeaders := headers[:limit] chunkHashes := hashes[:limit] // In case of header only syncing, validate the chunk immediately if mode == SnapSync || mode == LightSync { // Although the received headers might be all valid, a legacy // PoW/PoA sync must not accept post-merge headers. Make sure // that any transition is rejected at this point. var ( rejected []*types.Header td *big.Int ) if !beaconMode && ttd != nil { td = d.blockchain.GetTd(chunkHeaders[0].ParentHash, chunkHeaders[0].Number.Uint64()-1) if td == nil { // This should never really happen, but handle gracefully for now log.Error("Failed to retrieve parent header TD", "number", chunkHeaders[0].Number.Uint64()-1, "hash", chunkHeaders[0].ParentHash) return fmt.Errorf("%w: parent TD missing", errInvalidChain) } for i, header := range chunkHeaders { td = new(big.Int).Add(td, header.Difficulty) if td.Cmp(ttd) >= 0 { // Terminal total difficulty reached, allow the last header in if new(big.Int).Sub(td, header.Difficulty).Cmp(ttd) < 0 { chunkHeaders, rejected = chunkHeaders[:i+1], chunkHeaders[i+1:] if len(rejected) > 0 { // Make a nicer user log as to the first TD truly rejected td = new(big.Int).Add(td, rejected[0].Difficulty) } } else { chunkHeaders, rejected = chunkHeaders[:i], chunkHeaders[i:] } break } } } if len(chunkHeaders) > 0 { if n, err := d.lightchain.InsertHeaderChain(chunkHeaders); err != nil { log.Warn("Invalid header encountered", "number", chunkHeaders[n].Number, "hash", chunkHashes[n], "parent", chunkHeaders[n].ParentHash, "err", err) return fmt.Errorf("%w: %v", errInvalidChain, err) } } if len(rejected) != 0 { log.Info("Legacy sync reached merge threshold", "number", rejected[0].Number, "hash", rejected[0].Hash(), "td", td, "ttd", ttd) return ErrMergeTransition } } // Unless we're doing light chains, schedule the headers for associated content retrieval if mode == FullSync || mode == SnapSync { // If we've reached the allowed number of pending headers, stall a bit for d.queue.PendingBodies() >= maxQueuedHeaders || d.queue.PendingReceipts() >= maxQueuedHeaders { select { case <-d.cancelCh: return errCanceled case <-time.After(time.Second): } } // Otherwise insert the headers for content retrieval inserts := d.queue.Schedule(chunkHeaders, chunkHashes, origin) if len(inserts) != len(chunkHeaders) { return fmt.Errorf("%w: stale headers", errBadPeer) } } headers = headers[limit:] hashes = hashes[limit:] origin += uint64(limit) } // Update the highest block number we know if a higher one is found. d.syncStatsLock.Lock() if d.syncStatsChainHeight < origin { d.syncStatsChainHeight = origin - 1 } d.syncStatsLock.Unlock() // Signal the content downloaders of the availability of new tasks for _, ch := range []chan bool{d.queue.blockWakeCh, d.queue.receiptWakeCh} { select { case ch <- true: default: } } } } } // processFullSyncContent takes fetch results from the queue and imports them into the chain. func (d *Downloader) processFullSyncContent(ttd *big.Int, beaconMode bool) error { for { results := d.queue.Results(true) if len(results) == 0 { return nil } if d.chainInsertHook != nil { d.chainInsertHook(results) } // Although the received blocks might be all valid, a legacy PoW/PoA sync // must not accept post-merge blocks. Make sure that pre-merge blocks are // imported, but post-merge ones are rejected. var ( rejected []*fetchResult td *big.Int ) if !beaconMode && ttd != nil { td = d.blockchain.GetTd(results[0].Header.ParentHash, results[0].Header.Number.Uint64()-1) if td == nil { // This should never really happen, but handle gracefully for now log.Error("Failed to retrieve parent block TD", "number", results[0].Header.Number.Uint64()-1, "hash", results[0].Header.ParentHash) return fmt.Errorf("%w: parent TD missing", errInvalidChain) } for i, result := range results { td = new(big.Int).Add(td, result.Header.Difficulty) if td.Cmp(ttd) >= 0 { // Terminal total difficulty reached, allow the last block in if new(big.Int).Sub(td, result.Header.Difficulty).Cmp(ttd) < 0 { results, rejected = results[:i+1], results[i+1:] if len(rejected) > 0 { // Make a nicer user log as to the first TD truly rejected td = new(big.Int).Add(td, rejected[0].Header.Difficulty) } } else { results, rejected = results[:i], results[i:] } break } } } if err := d.importBlockResults(results); err != nil { return err } if len(rejected) != 0 { log.Info("Legacy sync reached merge threshold", "number", rejected[0].Header.Number, "hash", rejected[0].Header.Hash(), "td", td, "ttd", ttd) return ErrMergeTransition } } } func (d *Downloader) importBlockResults(results []*fetchResult) error { // Check for any early termination requests if len(results) == 0 { return nil } select { case <-d.quitCh: return errCancelContentProcessing default: } // Retrieve a batch of results to import first, last := results[0].Header, results[len(results)-1].Header log.Debug("Inserting downloaded chain", "items", len(results), "firstnum", first.Number, "firsthash", first.Hash(), "lastnum", last.Number, "lasthash", last.Hash(), ) blocks := make([]*types.Block, len(results)) for i, result := range results { blocks[i] = types.NewBlockWithHeader(result.Header).WithBody(result.Transactions, result.Uncles).WithWithdrawals(result.Withdrawals) } // Downloaded blocks are always regarded as trusted after the // transition. Because the downloaded chain is guided by the // consensus-layer. if index, err := d.blockchain.InsertChain(blocks); err != nil { if index < len(results) { log.Debug("Downloaded item processing failed", "number", results[index].Header.Number, "hash", results[index].Header.Hash(), "err", err) // In post-merge, notify the engine API of encountered bad chains if d.badBlock != nil { head, _, _, err := d.skeleton.Bounds() if err != nil { log.Error("Failed to retrieve beacon bounds for bad block reporting", "err", err) } else { d.badBlock(blocks[index].Header(), head) } } } else { // The InsertChain method in blockchain.go will sometimes return an out-of-bounds index, // when it needs to preprocess blocks to import a sidechain. // The importer will put together a new list of blocks to import, which is a superset // of the blocks delivered from the downloader, and the indexing will be off. log.Debug("Downloaded item processing failed on sidechain import", "index", index, "err", err) } return fmt.Errorf("%w: %v", errInvalidChain, err) } return nil } // processSnapSyncContent takes fetch results from the queue and writes them to the // database. It also controls the synchronisation of state nodes of the pivot block. func (d *Downloader) processSnapSyncContent() error { // Start syncing state of the reported head block. This should get us most of // the state of the pivot block. d.pivotLock.RLock() sync := d.syncState(d.pivotHeader.Root) d.pivotLock.RUnlock() defer func() { // The `sync` object is replaced every time the pivot moves. We need to // defer close the very last active one, hence the lazy evaluation vs. // calling defer sync.Cancel() !!! sync.Cancel() }() closeOnErr := func(s *stateSync) { if err := s.Wait(); err != nil && err != errCancelStateFetch && err != errCanceled && err != snap.ErrCancelled { d.queue.Close() // wake up Results } } go closeOnErr(sync) // To cater for moving pivot points, track the pivot block and subsequently // accumulated download results separately. // // These will be nil up to the point where we reach the pivot, and will only // be set temporarily if the synced blocks are piling up, but the pivot is // still busy downloading. In that case, we need to occasionally check for // pivot moves, so need to unblock the loop. These fields will accumulate // the results in the meantime. // // Note, there's no issue with memory piling up since after 64 blocks the // pivot will forcefully move so these accumulators will be dropped. var ( oldPivot *fetchResult // Locked in pivot block, might change eventually oldTail []*fetchResult // Downloaded content after the pivot ) for { // Wait for the next batch of downloaded data to be available. If we have // not yet reached the pivot point, wait blockingly as there's no need to // spin-loop check for pivot moves. If we reached the pivot but have not // yet processed it, check for results async, so we might notice pivot // moves while state syncing. If the pivot was passed fully, block again // as there's no more reason to check for pivot moves at all. results := d.queue.Results(oldPivot == nil) if len(results) == 0 { // If pivot sync is done, stop if d.committed.Load() { d.reportSnapSyncProgress(true) return sync.Cancel() } // If sync failed, stop select { case <-d.cancelCh: sync.Cancel() return errCanceled default: } } if d.chainInsertHook != nil { d.chainInsertHook(results) } d.reportSnapSyncProgress(false) // If we haven't downloaded the pivot block yet, check pivot staleness // notifications from the header downloader d.pivotLock.RLock() pivot := d.pivotHeader d.pivotLock.RUnlock() if oldPivot == nil { // no results piling up, we can move the pivot if !d.committed.Load() { // not yet passed the pivot, we can move the pivot if pivot.Root != sync.root { // pivot position changed, we can move the pivot sync.Cancel() sync = d.syncState(pivot.Root) go closeOnErr(sync) } } } else { // results already piled up, consume before handling pivot move results = append(append([]*fetchResult{oldPivot}, oldTail...), results...) } // Split around the pivot block and process the two sides via snap/full sync if !d.committed.Load() { latest := results[len(results)-1].Header // If the height is above the pivot block by 2 sets, it means the pivot // become stale in the network, and it was garbage collected, move to a // new pivot. // // Note, we have `reorgProtHeaderDelay` number of blocks withheld, Those // need to be taken into account, otherwise we're detecting the pivot move // late and will drop peers due to unavailable state!!! if height := latest.Number.Uint64(); height >= pivot.Number.Uint64()+2*uint64(fsMinFullBlocks)-uint64(reorgProtHeaderDelay) { log.Warn("Pivot became stale, moving", "old", pivot.Number.Uint64(), "new", height-uint64(fsMinFullBlocks)+uint64(reorgProtHeaderDelay)) pivot = results[len(results)-1-fsMinFullBlocks+reorgProtHeaderDelay].Header // must exist as lower old pivot is uncommitted d.pivotLock.Lock() d.pivotHeader = pivot d.pivotLock.Unlock() // Write out the pivot into the database so a rollback beyond it will // reenable snap sync rawdb.WriteLastPivotNumber(d.stateDB, pivot.Number.Uint64()) } } P, beforeP, afterP := splitAroundPivot(pivot.Number.Uint64(), results) if err := d.commitSnapSyncData(beforeP, sync); err != nil { return err } if P != nil { // If new pivot block found, cancel old state retrieval and restart if oldPivot != P { sync.Cancel() sync = d.syncState(P.Header.Root) go closeOnErr(sync) oldPivot = P } // Wait for completion, occasionally checking for pivot staleness select { case <-sync.done: if sync.err != nil { return sync.err } if err := d.commitPivotBlock(P); err != nil { return err } oldPivot = nil case <-time.After(time.Second): oldTail = afterP continue } } // Fast sync done, pivot commit done, full import if err := d.importBlockResults(afterP); err != nil { return err } } } func splitAroundPivot(pivot uint64, results []*fetchResult) (p *fetchResult, before, after []*fetchResult) { if len(results) == 0 { return nil, nil, nil } if lastNum := results[len(results)-1].Header.Number.Uint64(); lastNum < pivot { // the pivot is somewhere in the future return nil, results, nil } // This can also be optimized, but only happens very seldom for _, result := range results { num := result.Header.Number.Uint64() switch { case num < pivot: before = append(before, result) case num == pivot: p = result default: after = append(after, result) } } return p, before, after } func (d *Downloader) commitSnapSyncData(results []*fetchResult, stateSync *stateSync) error { // Check for any early termination requests if len(results) == 0 { return nil } select { case <-d.quitCh: return errCancelContentProcessing case <-stateSync.done: if err := stateSync.Wait(); err != nil { return err } default: } // Retrieve the batch of results to import first, last := results[0].Header, results[len(results)-1].Header log.Debug("Inserting snap-sync blocks", "items", len(results), "firstnum", first.Number, "firsthash", first.Hash(), "lastnumn", last.Number, "lasthash", last.Hash(), ) blocks := make([]*types.Block, len(results)) receipts := make([]types.Receipts, len(results)) for i, result := range results { blocks[i] = types.NewBlockWithHeader(result.Header).WithBody(result.Transactions, result.Uncles).WithWithdrawals(result.Withdrawals) receipts[i] = result.Receipts } if index, err := d.blockchain.InsertReceiptChain(blocks, receipts, d.ancientLimit); err != nil { log.Debug("Downloaded item processing failed", "number", results[index].Header.Number, "hash", results[index].Header.Hash(), "err", err) return fmt.Errorf("%w: %v", errInvalidChain, err) } return nil } func (d *Downloader) commitPivotBlock(result *fetchResult) error { block := types.NewBlockWithHeader(result.Header).WithBody(result.Transactions, result.Uncles).WithWithdrawals(result.Withdrawals) log.Debug("Committing snap sync pivot as new head", "number", block.Number(), "hash", block.Hash()) // Commit the pivot block as the new head, will require full sync from here on if _, err := d.blockchain.InsertReceiptChain([]*types.Block{block}, []types.Receipts{result.Receipts}, d.ancientLimit); err != nil { return err } if err := d.blockchain.SnapSyncCommitHead(block.Hash()); err != nil { return err } d.committed.Store(true) return nil } // DeliverSnapPacket is invoked from a peer's message handler when it transmits a // data packet for the local node to consume. func (d *Downloader) DeliverSnapPacket(peer *snap.Peer, packet snap.Packet) error { switch packet := packet.(type) { case *snap.AccountRangePacket: hashes, accounts, err := packet.Unpack() if err != nil { return err } return d.SnapSyncer.OnAccounts(peer, packet.ID, hashes, accounts, packet.Proof) case *snap.StorageRangesPacket: hashset, slotset := packet.Unpack() return d.SnapSyncer.OnStorage(peer, packet.ID, hashset, slotset, packet.Proof) case *snap.ByteCodesPacket: return d.SnapSyncer.OnByteCodes(peer, packet.ID, packet.Codes) case *snap.TrieNodesPacket: return d.SnapSyncer.OnTrieNodes(peer, packet.ID, packet.Nodes) default: return fmt.Errorf("unexpected snap packet type: %T", packet) } } // readHeaderRange returns a list of headers, using the given last header as the base, // and going backwards towards genesis. This method assumes that the caller already has // placed a reasonable cap on count. func (d *Downloader) readHeaderRange(last *types.Header, count int) []*types.Header { var ( current = last headers []*types.Header ) for { parent := d.lightchain.GetHeaderByHash(current.ParentHash) if parent == nil { break // The chain is not continuous, or the chain is exhausted } headers = append(headers, parent) if len(headers) >= count { break } current = parent } return headers } // reportSnapSyncProgress calculates various status reports and provides it to the user. func (d *Downloader) reportSnapSyncProgress(force bool) { // Initialize the sync start time if it's the first time we're reporting if d.syncStartTime.IsZero() { d.syncStartTime = time.Now().Add(-time.Millisecond) // -1ms offset to avoid division by zero } // Don't report all the events, just occasionally if !force && time.Since(d.syncLogTime) < 8*time.Second { return } // Don't report anything until we have a meaningful progress var ( headerBytes, _ = d.stateDB.AncientSize(rawdb.ChainFreezerHeaderTable) bodyBytes, _ = d.stateDB.AncientSize(rawdb.ChainFreezerBodiesTable) receiptBytes, _ = d.stateDB.AncientSize(rawdb.ChainFreezerReceiptTable) ) syncedBytes := common.StorageSize(headerBytes + bodyBytes + receiptBytes) if syncedBytes == 0 { return } var ( header = d.blockchain.CurrentHeader() block = d.blockchain.CurrentSnapBlock() ) syncedBlocks := block.Number.Uint64() - d.syncStartBlock if syncedBlocks == 0 { return } // Retrieve the current chain head and calculate the ETA latest, _, _, err := d.skeleton.Bounds() if err != nil { // We're going to cheat for non-merged networks, but that's fine latest = d.pivotHeader } if latest == nil { // This should really never happen, but add some defensive code for now. // TODO(karalabe): Remove it eventually if we don't see it blow. log.Error("Nil latest block in sync progress report") return } var ( left = latest.Number.Uint64() - block.Number.Uint64() eta = time.Since(d.syncStartTime) / time.Duration(syncedBlocks) * time.Duration(left) progress = fmt.Sprintf("%.2f%%", float64(block.Number.Uint64())*100/float64(latest.Number.Uint64())) headers = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(header.Number.Uint64()), common.StorageSize(headerBytes).TerminalString()) bodies = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(block.Number.Uint64()), common.StorageSize(bodyBytes).TerminalString()) receipts = fmt.Sprintf("%v@%v", log.FormatLogfmtUint64(block.Number.Uint64()), common.StorageSize(receiptBytes).TerminalString()) ) log.Info("Syncing: chain download in progress", "synced", progress, "chain", syncedBytes, "headers", headers, "bodies", bodies, "receipts", receipts, "eta", common.PrettyDuration(eta)) d.syncLogTime = time.Now() }