package metrics import ( "math" "math/rand" "runtime" "testing" "time" ) // Benchmark{Compute,Copy}{1000,1000000} demonstrate that, even for relatively // expensive computations like Variance, the cost of copying the Sample, as // approximated by a make and copy, is much greater than the cost of the // computation for small samples and only slightly less for large samples. func BenchmarkCompute1000(b *testing.B) { s := make([]int64, 1000) for i := 0; i < len(s); i++ { s[i] = int64(i) } b.ResetTimer() for i := 0; i < b.N; i++ { SampleVariance(s) } } func BenchmarkCompute1000000(b *testing.B) { s := make([]int64, 1000000) for i := 0; i < len(s); i++ { s[i] = int64(i) } b.ResetTimer() for i := 0; i < b.N; i++ { SampleVariance(s) } } func BenchmarkCopy1000(b *testing.B) { s := make([]int64, 1000) for i := 0; i < len(s); i++ { s[i] = int64(i) } b.ResetTimer() for i := 0; i < b.N; i++ { sCopy := make([]int64, len(s)) copy(sCopy, s) } } func BenchmarkCopy1000000(b *testing.B) { s := make([]int64, 1000000) for i := 0; i < len(s); i++ { s[i] = int64(i) } b.ResetTimer() for i := 0; i < b.N; i++ { sCopy := make([]int64, len(s)) copy(sCopy, s) } } func BenchmarkExpDecaySample257(b *testing.B) { benchmarkSample(b, NewExpDecaySample(257, 0.015)) } func BenchmarkExpDecaySample514(b *testing.B) { benchmarkSample(b, NewExpDecaySample(514, 0.015)) } func BenchmarkExpDecaySample1028(b *testing.B) { benchmarkSample(b, NewExpDecaySample(1028, 0.015)) } func BenchmarkUniformSample257(b *testing.B) { benchmarkSample(b, NewUniformSample(257)) } func BenchmarkUniformSample514(b *testing.B) { benchmarkSample(b, NewUniformSample(514)) } func BenchmarkUniformSample1028(b *testing.B) { benchmarkSample(b, NewUniformSample(1028)) } func TestExpDecaySample10(t *testing.T) { rand.Seed(1) s := NewExpDecaySample(100, 0.99) for i := 0; i < 10; i++ { s.Update(int64(i)) } if size := s.Count(); 10 != size { t.Errorf("s.Count(): 10 != %v\n", size) } if size := s.Size(); 10 != size { t.Errorf("s.Size(): 10 != %v\n", size) } if l := len(s.Values()); 10 != l { t.Errorf("len(s.Values()): 10 != %v\n", l) } for _, v := range s.Values() { if v > 10 || v < 0 { t.Errorf("out of range [0, 10): %v\n", v) } } } func TestExpDecaySample100(t *testing.T) { rand.Seed(1) s := NewExpDecaySample(1000, 0.01) for i := 0; i < 100; i++ { s.Update(int64(i)) } if size := s.Count(); 100 != size { t.Errorf("s.Count(): 100 != %v\n", size) } if size := s.Size(); 100 != size { t.Errorf("s.Size(): 100 != %v\n", size) } if l := len(s.Values()); 100 != l { t.Errorf("len(s.Values()): 100 != %v\n", l) } for _, v := range s.Values() { if v > 100 || v < 0 { t.Errorf("out of range [0, 100): %v\n", v) } } } func TestExpDecaySample1000(t *testing.T) { rand.Seed(1) s := NewExpDecaySample(100, 0.99) for i := 0; i < 1000; i++ { s.Update(int64(i)) } if size := s.Count(); 1000 != size { t.Errorf("s.Count(): 1000 != %v\n", size) } if size := s.Size(); 100 != size { t.Errorf("s.Size(): 100 != %v\n", size) } if l := len(s.Values()); 100 != l { t.Errorf("len(s.Values()): 100 != %v\n", l) } for _, v := range s.Values() { if v > 1000 || v < 0 { t.Errorf("out of range [0, 1000): %v\n", v) } } } // This test makes sure that the sample's priority is not amplified by using // nanosecond duration since start rather than second duration since start. // The priority becomes +Inf quickly after starting if this is done, // effectively freezing the set of samples until a rescale step happens. func TestExpDecaySampleNanosecondRegression(t *testing.T) { rand.Seed(1) s := NewExpDecaySample(100, 0.99) for i := 0; i < 100; i++ { s.Update(10) } time.Sleep(1 * time.Millisecond) for i := 0; i < 100; i++ { s.Update(20) } v := s.Values() avg := float64(0) for i := 0; i < len(v); i++ { avg += float64(v[i]) } avg /= float64(len(v)) if avg > 16 || avg < 14 { t.Errorf("out of range [14, 16]: %v\n", avg) } } func TestExpDecaySampleRescale(t *testing.T) { s := NewExpDecaySample(2, 0.001).(*ExpDecaySample) s.update(time.Now(), 1) s.update(time.Now().Add(time.Hour+time.Microsecond), 1) for _, v := range s.values.Values() { if v.k == 0.0 { t.Fatal("v.k == 0.0") } } } func TestExpDecaySampleSnapshot(t *testing.T) { now := time.Now() rand.Seed(1) s := NewExpDecaySample(100, 0.99) for i := 1; i <= 10000; i++ { s.(*ExpDecaySample).update(now.Add(time.Duration(i)), int64(i)) } snapshot := s.Snapshot() s.Update(1) testExpDecaySampleStatistics(t, snapshot) } func TestExpDecaySampleStatistics(t *testing.T) { now := time.Now() rand.Seed(1) s := NewExpDecaySample(100, 0.99) for i := 1; i <= 10000; i++ { s.(*ExpDecaySample).update(now.Add(time.Duration(i)), int64(i)) } testExpDecaySampleStatistics(t, s) } func TestUniformSample(t *testing.T) { rand.Seed(1) s := NewUniformSample(100) for i := 0; i < 1000; i++ { s.Update(int64(i)) } if size := s.Count(); 1000 != size { t.Errorf("s.Count(): 1000 != %v\n", size) } if size := s.Size(); 100 != size { t.Errorf("s.Size(): 100 != %v\n", size) } if l := len(s.Values()); 100 != l { t.Errorf("len(s.Values()): 100 != %v\n", l) } for _, v := range s.Values() { if v > 1000 || v < 0 { t.Errorf("out of range [0, 100): %v\n", v) } } } func TestUniformSampleIncludesTail(t *testing.T) { rand.Seed(1) s := NewUniformSample(100) max := 100 for i := 0; i < max; i++ { s.Update(int64(i)) } v := s.Values() sum := 0 exp := (max - 1) * max / 2 for i := 0; i < len(v); i++ { sum += int(v[i]) } if exp != sum { t.Errorf("sum: %v != %v\n", exp, sum) } } func TestUniformSampleSnapshot(t *testing.T) { s := NewUniformSample(100) for i := 1; i <= 10000; i++ { s.Update(int64(i)) } snapshot := s.Snapshot() s.Update(1) testUniformSampleStatistics(t, snapshot) } func TestUniformSampleStatistics(t *testing.T) { rand.Seed(1) s := NewUniformSample(100) for i := 1; i <= 10000; i++ { s.Update(int64(i)) } testUniformSampleStatistics(t, s) } func benchmarkSample(b *testing.B, s Sample) { var memStats runtime.MemStats runtime.ReadMemStats(&memStats) pauseTotalNs := memStats.PauseTotalNs b.ResetTimer() for i := 0; i < b.N; i++ { s.Update(1) } b.StopTimer() runtime.GC() runtime.ReadMemStats(&memStats) b.Logf("GC cost: %d ns/op", int(memStats.PauseTotalNs-pauseTotalNs)/b.N) } func testExpDecaySampleStatistics(t *testing.T, s Sample) { if count := s.Count(); 10000 != count { t.Errorf("s.Count(): 10000 != %v\n", count) } if min := s.Min(); 107 != min { t.Errorf("s.Min(): 107 != %v\n", min) } if max := s.Max(); 10000 != max { t.Errorf("s.Max(): 10000 != %v\n", max) } if mean := s.Mean(); 4965.98 != mean { t.Errorf("s.Mean(): 4965.98 != %v\n", mean) } if stdDev := s.StdDev(); 2959.825156930727 != stdDev { t.Errorf("s.StdDev(): 2959.825156930727 != %v\n", stdDev) } ps := s.Percentiles([]float64{0.5, 0.75, 0.99}) if 4615 != ps[0] { t.Errorf("median: 4615 != %v\n", ps[0]) } if 7672 != ps[1] { t.Errorf("75th percentile: 7672 != %v\n", ps[1]) } if 9998.99 != ps[2] { t.Errorf("99th percentile: 9998.99 != %v\n", ps[2]) } } func testUniformSampleStatistics(t *testing.T, s Sample) { if count := s.Count(); 10000 != count { t.Errorf("s.Count(): 10000 != %v\n", count) } if min := s.Min(); 37 != min { t.Errorf("s.Min(): 37 != %v\n", min) } if max := s.Max(); 9989 != max { t.Errorf("s.Max(): 9989 != %v\n", max) } if mean := s.Mean(); 4748.14 != mean { t.Errorf("s.Mean(): 4748.14 != %v\n", mean) } if stdDev := s.StdDev(); 2826.684117548333 != stdDev { t.Errorf("s.StdDev(): 2826.684117548333 != %v\n", stdDev) } ps := s.Percentiles([]float64{0.5, 0.75, 0.99}) if 4599 != ps[0] { t.Errorf("median: 4599 != %v\n", ps[0]) } if 7380.5 != ps[1] { t.Errorf("75th percentile: 7380.5 != %v\n", ps[1]) } if math.Abs(9986.429999999998-ps[2]) > epsilonPercentile { t.Errorf("99th percentile: 9986.429999999998 != %v\n", ps[2]) } } // TestUniformSampleConcurrentUpdateCount would expose data race problems with // concurrent Update and Count calls on Sample when test is called with -race // argument func TestUniformSampleConcurrentUpdateCount(t *testing.T) { if testing.Short() { t.Skip("skipping in short mode") } s := NewUniformSample(100) for i := 0; i < 100; i++ { s.Update(int64(i)) } quit := make(chan struct{}) go func() { t := time.NewTicker(10 * time.Millisecond) for { select { case <-t.C: s.Update(rand.Int63()) case <-quit: t.Stop() return } } }() for i := 0; i < 1000; i++ { s.Count() time.Sleep(5 * time.Millisecond) } quit <- struct{}{} }