// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie import ( "bytes" "fmt" "testing" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/ethdb/memorydb" "github.com/ethereum/go-ethereum/trie/trienode" ) // makeTestTrie create a sample test trie to test node-wise reconstruction. func makeTestTrie(scheme string) (ethdb.Database, *Database, *StateTrie, map[string][]byte) { // Create an empty trie db := rawdb.NewMemoryDatabase() triedb := newTestDatabase(db, scheme) trie, _ := NewStateTrie(TrieID(types.EmptyRootHash), triedb) // Fill it with some arbitrary data content := make(map[string][]byte) for i := byte(0); i < 255; i++ { // Map the same data under multiple keys key, val := common.LeftPadBytes([]byte{1, i}, 32), []byte{i} content[string(key)] = val trie.MustUpdate(key, val) key, val = common.LeftPadBytes([]byte{2, i}, 32), []byte{i} content[string(key)] = val trie.MustUpdate(key, val) // Add some other data to inflate the trie for j := byte(3); j < 13; j++ { key, val = common.LeftPadBytes([]byte{j, i}, 32), []byte{j, i} content[string(key)] = val trie.MustUpdate(key, val) } } root, nodes, _ := trie.Commit(false) if err := triedb.Update(root, types.EmptyRootHash, trienode.NewWithNodeSet(nodes), nil); err != nil { panic(fmt.Errorf("failed to commit db %v", err)) } if err := triedb.Commit(root, false); err != nil { panic(err) } // Re-create the trie based on the new state trie, _ = NewStateTrie(TrieID(root), triedb) return db, triedb, trie, content } // checkTrieContents cross references a reconstructed trie with an expected data // content map. func checkTrieContents(t *testing.T, db ethdb.Database, scheme string, root []byte, content map[string][]byte) { // Check root availability and trie contents ndb := newTestDatabase(db, scheme) trie, err := NewStateTrie(TrieID(common.BytesToHash(root)), ndb) if err != nil { t.Fatalf("failed to create trie at %x: %v", root, err) } if err := checkTrieConsistency(db, scheme, common.BytesToHash(root)); err != nil { t.Fatalf("inconsistent trie at %x: %v", root, err) } for key, val := range content { if have := trie.MustGet([]byte(key)); !bytes.Equal(have, val) { t.Errorf("entry %x: content mismatch: have %x, want %x", key, have, val) } } } // checkTrieConsistency checks that all nodes in a trie are indeed present. func checkTrieConsistency(db ethdb.Database, scheme string, root common.Hash) error { ndb := newTestDatabase(db, scheme) trie, err := NewStateTrie(TrieID(root), ndb) if err != nil { return nil // Consider a non existent state consistent } it := trie.MustNodeIterator(nil) for it.Next(true) { } return it.Error() } // trieElement represents the element in the state trie(bytecode or trie node). type trieElement struct { path string hash common.Hash syncPath SyncPath } // Tests that an empty trie is not scheduled for syncing. func TestEmptySync(t *testing.T) { dbA := NewDatabase(rawdb.NewMemoryDatabase()) dbB := NewDatabase(rawdb.NewMemoryDatabase()) //dbC := newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.PathScheme) //dbD := newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.PathScheme) emptyA := NewEmpty(dbA) emptyB, _ := New(TrieID(types.EmptyRootHash), dbB) //emptyC := NewEmpty(dbC) //emptyD, _ := New(TrieID(types.EmptyRootHash), dbD) for i, trie := range []*Trie{emptyA, emptyB /*emptyC, emptyD*/} { sync := NewSync(trie.Hash(), memorydb.New(), nil, []*Database{dbA, dbB /*dbC, dbD*/}[i].Scheme()) if paths, nodes, codes := sync.Missing(1); len(paths) != 0 || len(nodes) != 0 || len(codes) != 0 { t.Errorf("test %d: content requested for empty trie: %v, %v, %v", i, paths, nodes, codes) } } } // Tests that given a root hash, a trie can sync iteratively on a single thread, // requesting retrieval tasks and returning all of them in one go. func TestIterativeSync(t *testing.T) { testIterativeSync(t, 1, false, rawdb.HashScheme) testIterativeSync(t, 100, false, rawdb.HashScheme) testIterativeSync(t, 1, true, rawdb.HashScheme) testIterativeSync(t, 100, true, rawdb.HashScheme) // testIterativeSync(t, 1, false, rawdb.PathScheme) // testIterativeSync(t, 100, false, rawdb.PathScheme) // testIterativeSync(t, 1, true, rawdb.PathScheme) // testIterativeSync(t, 100, true, rawdb.PathScheme) } func testIterativeSync(t *testing.T, count int, bypath bool, scheme string) { // Create a random trie to copy _, srcDb, srcTrie, srcData := makeTestTrie(scheme) // Create a destination trie and sync with the scheduler diskdb := rawdb.NewMemoryDatabase() sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme()) // The code requests are ignored here since there is no code // at the testing trie. paths, nodes, _ := sched.Missing(count) var elements []trieElement for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) } reader, err := srcDb.Reader(srcTrie.Hash()) if err != nil { t.Fatalf("State is not available %x", srcTrie.Hash()) } for len(elements) > 0 { results := make([]NodeSyncResult, len(elements)) if !bypath { for i, element := range elements { owner, inner := ResolvePath([]byte(element.path)) data, err := reader.Node(owner, inner, element.hash) if err != nil { t.Fatalf("failed to retrieve node data for hash %x: %v", element.hash, err) } results[i] = NodeSyncResult{element.path, data} } } else { for i, element := range elements { data, _, err := srcTrie.GetNode(element.syncPath[len(element.syncPath)-1]) if err != nil { t.Fatalf("failed to retrieve node data for path %x: %v", element.path, err) } results[i] = NodeSyncResult{element.path, data} } } for _, result := range results { if err := sched.ProcessNode(result); err != nil { t.Fatalf("failed to process result %v", err) } } batch := diskdb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() paths, nodes, _ = sched.Missing(count) elements = elements[:0] for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) } } // Cross check that the two tries are in sync checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData) } // Tests that the trie scheduler can correctly reconstruct the state even if only // partial results are returned, and the others sent only later. func TestIterativeDelayedSync(t *testing.T) { testIterativeDelayedSync(t, rawdb.HashScheme) //testIterativeDelayedSync(t, rawdb.PathScheme) } func testIterativeDelayedSync(t *testing.T, scheme string) { // Create a random trie to copy _, srcDb, srcTrie, srcData := makeTestTrie(scheme) // Create a destination trie and sync with the scheduler diskdb := rawdb.NewMemoryDatabase() sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme()) // The code requests are ignored here since there is no code // at the testing trie. paths, nodes, _ := sched.Missing(10000) var elements []trieElement for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) } reader, err := srcDb.Reader(srcTrie.Hash()) if err != nil { t.Fatalf("State is not available %x", srcTrie.Hash()) } for len(elements) > 0 { // Sync only half of the scheduled nodes results := make([]NodeSyncResult, len(elements)/2+1) for i, element := range elements[:len(results)] { owner, inner := ResolvePath([]byte(element.path)) data, err := reader.Node(owner, inner, element.hash) if err != nil { t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err) } results[i] = NodeSyncResult{element.path, data} } for _, result := range results { if err := sched.ProcessNode(result); err != nil { t.Fatalf("failed to process result %v", err) } } batch := diskdb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() paths, nodes, _ = sched.Missing(10000) elements = elements[len(results):] for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) } } // Cross check that the two tries are in sync checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData) } // Tests that given a root hash, a trie can sync iteratively on a single thread, // requesting retrieval tasks and returning all of them in one go, however in a // random order. func TestIterativeRandomSyncIndividual(t *testing.T) { testIterativeRandomSync(t, 1, rawdb.HashScheme) testIterativeRandomSync(t, 100, rawdb.HashScheme) // testIterativeRandomSync(t, 1, rawdb.PathScheme) // testIterativeRandomSync(t, 100, rawdb.PathScheme) } func testIterativeRandomSync(t *testing.T, count int, scheme string) { // Create a random trie to copy _, srcDb, srcTrie, srcData := makeTestTrie(scheme) // Create a destination trie and sync with the scheduler diskdb := rawdb.NewMemoryDatabase() sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme()) // The code requests are ignored here since there is no code // at the testing trie. paths, nodes, _ := sched.Missing(count) queue := make(map[string]trieElement) for i, path := range paths { queue[path] = trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), } } reader, err := srcDb.Reader(srcTrie.Hash()) if err != nil { t.Fatalf("State is not available %x", srcTrie.Hash()) } for len(queue) > 0 { // Fetch all the queued nodes in a random order results := make([]NodeSyncResult, 0, len(queue)) for path, element := range queue { owner, inner := ResolvePath([]byte(element.path)) data, err := reader.Node(owner, inner, element.hash) if err != nil { t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err) } results = append(results, NodeSyncResult{path, data}) } // Feed the retrieved results back and queue new tasks for _, result := range results { if err := sched.ProcessNode(result); err != nil { t.Fatalf("failed to process result %v", err) } } batch := diskdb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() paths, nodes, _ = sched.Missing(count) queue = make(map[string]trieElement) for i, path := range paths { queue[path] = trieElement{ path: path, hash: nodes[i], syncPath: NewSyncPath([]byte(path)), } } } // Cross check that the two tries are in sync checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData) } // Tests that the trie scheduler can correctly reconstruct the state even if only // partial results are returned (Even those randomly), others sent only later. func TestIterativeRandomDelayedSync(t *testing.T) { testIterativeRandomDelayedSync(t, rawdb.HashScheme) // testIterativeRandomDelayedSync(t, rawdb.PathScheme) } func testIterativeRandomDelayedSync(t *testing.T, scheme string) { // Create a random trie to copy _, srcDb, srcTrie, srcData := makeTestTrie(scheme) // Create a destination trie and sync with the scheduler diskdb := rawdb.NewMemoryDatabase() sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme()) // The code requests are ignored here since there is no code // at the testing trie. paths, nodes, _ := sched.Missing(10000) queue := make(map[string]trieElement) for i, path := range paths { queue[path] = trieElement{ path: path, hash: nodes[i], syncPath: NewSyncPath([]byte(path)), } } reader, err := srcDb.Reader(srcTrie.Hash()) if err != nil { t.Fatalf("State is not available %x", srcTrie.Hash()) } for len(queue) > 0 { // Sync only half of the scheduled nodes, even those in random order results := make([]NodeSyncResult, 0, len(queue)/2+1) for path, element := range queue { owner, inner := ResolvePath([]byte(element.path)) data, err := reader.Node(owner, inner, element.hash) if err != nil { t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err) } results = append(results, NodeSyncResult{path, data}) if len(results) >= cap(results) { break } } // Feed the retrieved results back and queue new tasks for _, result := range results { if err := sched.ProcessNode(result); err != nil { t.Fatalf("failed to process result %v", err) } } batch := diskdb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() for _, result := range results { delete(queue, result.Path) } paths, nodes, _ = sched.Missing(10000) for i, path := range paths { queue[path] = trieElement{ path: path, hash: nodes[i], syncPath: NewSyncPath([]byte(path)), } } } // Cross check that the two tries are in sync checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData) } // Tests that a trie sync will not request nodes multiple times, even if they // have such references. func TestDuplicateAvoidanceSync(t *testing.T) { testDuplicateAvoidanceSync(t, rawdb.HashScheme) // testDuplicateAvoidanceSync(t, rawdb.PathScheme) } func testDuplicateAvoidanceSync(t *testing.T, scheme string) { // Create a random trie to copy _, srcDb, srcTrie, srcData := makeTestTrie(scheme) // Create a destination trie and sync with the scheduler diskdb := rawdb.NewMemoryDatabase() sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme()) // The code requests are ignored here since there is no code // at the testing trie. paths, nodes, _ := sched.Missing(0) var elements []trieElement for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) } reader, err := srcDb.Reader(srcTrie.Hash()) if err != nil { t.Fatalf("State is not available %x", srcTrie.Hash()) } requested := make(map[common.Hash]struct{}) for len(elements) > 0 { results := make([]NodeSyncResult, len(elements)) for i, element := range elements { owner, inner := ResolvePath([]byte(element.path)) data, err := reader.Node(owner, inner, element.hash) if err != nil { t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err) } if _, ok := requested[element.hash]; ok { t.Errorf("hash %x already requested once", element.hash) } requested[element.hash] = struct{}{} results[i] = NodeSyncResult{element.path, data} } for _, result := range results { if err := sched.ProcessNode(result); err != nil { t.Fatalf("failed to process result %v", err) } } batch := diskdb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() paths, nodes, _ = sched.Missing(0) elements = elements[:0] for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) } } // Cross check that the two tries are in sync checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData) } // Tests that at any point in time during a sync, only complete sub-tries are in // the database. func TestIncompleteSyncHash(t *testing.T) { testIncompleteSync(t, rawdb.HashScheme) // testIncompleteSync(t, rawdb.PathScheme) } func testIncompleteSync(t *testing.T, scheme string) { t.Parallel() // Create a random trie to copy _, srcDb, srcTrie, _ := makeTestTrie(scheme) // Create a destination trie and sync with the scheduler diskdb := rawdb.NewMemoryDatabase() sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme()) // The code requests are ignored here since there is no code // at the testing trie. var ( addedKeys []string addedHashes []common.Hash elements []trieElement root = srcTrie.Hash() ) paths, nodes, _ := sched.Missing(1) for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) } reader, err := srcDb.Reader(srcTrie.Hash()) if err != nil { t.Fatalf("State is not available %x", srcTrie.Hash()) } for len(elements) > 0 { // Fetch a batch of trie nodes results := make([]NodeSyncResult, len(elements)) for i, element := range elements { owner, inner := ResolvePath([]byte(element.path)) data, err := reader.Node(owner, inner, element.hash) if err != nil { t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err) } results[i] = NodeSyncResult{element.path, data} } // Process each of the trie nodes for _, result := range results { if err := sched.ProcessNode(result); err != nil { t.Fatalf("failed to process result %v", err) } } batch := diskdb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() for _, result := range results { hash := crypto.Keccak256Hash(result.Data) if hash != root { addedKeys = append(addedKeys, result.Path) addedHashes = append(addedHashes, crypto.Keccak256Hash(result.Data)) } } // Fetch the next batch to retrieve paths, nodes, _ = sched.Missing(1) elements = elements[:0] for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) } } // Sanity check that removing any node from the database is detected for i, path := range addedKeys { owner, inner := ResolvePath([]byte(path)) nodeHash := addedHashes[i] value := rawdb.ReadTrieNode(diskdb, owner, inner, nodeHash, scheme) rawdb.DeleteTrieNode(diskdb, owner, inner, nodeHash, scheme) if err := checkTrieConsistency(diskdb, srcDb.Scheme(), root); err == nil { t.Fatalf("trie inconsistency not caught, missing: %x", path) } rawdb.WriteTrieNode(diskdb, owner, inner, nodeHash, value, scheme) } } // Tests that trie nodes get scheduled lexicographically when having the same // depth. func TestSyncOrdering(t *testing.T) { testSyncOrdering(t, rawdb.HashScheme) // testSyncOrdering(t, rawdb.PathScheme) } func testSyncOrdering(t *testing.T, scheme string) { // Create a random trie to copy _, srcDb, srcTrie, srcData := makeTestTrie(scheme) // Create a destination trie and sync with the scheduler, tracking the requests diskdb := rawdb.NewMemoryDatabase() sched := NewSync(srcTrie.Hash(), diskdb, nil, srcDb.Scheme()) // The code requests are ignored here since there is no code // at the testing trie. var ( reqs []SyncPath elements []trieElement ) paths, nodes, _ := sched.Missing(1) for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) reqs = append(reqs, NewSyncPath([]byte(paths[i]))) } reader, err := srcDb.Reader(srcTrie.Hash()) if err != nil { t.Fatalf("State is not available %x", srcTrie.Hash()) } for len(elements) > 0 { results := make([]NodeSyncResult, len(elements)) for i, element := range elements { owner, inner := ResolvePath([]byte(element.path)) data, err := reader.Node(owner, inner, element.hash) if err != nil { t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err) } results[i] = NodeSyncResult{element.path, data} } for _, result := range results { if err := sched.ProcessNode(result); err != nil { t.Fatalf("failed to process result %v", err) } } batch := diskdb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() paths, nodes, _ = sched.Missing(1) elements = elements[:0] for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) reqs = append(reqs, NewSyncPath([]byte(paths[i]))) } } // Cross check that the two tries are in sync checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData) // Check that the trie nodes have been requested path-ordered for i := 0; i < len(reqs)-1; i++ { if len(reqs[i]) > 1 || len(reqs[i+1]) > 1 { // In the case of the trie tests, there's no storage so the tuples // must always be single items. 2-tuples should be tested in state. t.Errorf("Invalid request tuples: len(%v) or len(%v) > 1", reqs[i], reqs[i+1]) } if bytes.Compare(compactToHex(reqs[i][0]), compactToHex(reqs[i+1][0])) > 0 { t.Errorf("Invalid request order: %v before %v", compactToHex(reqs[i][0]), compactToHex(reqs[i+1][0])) } } } func syncWith(t *testing.T, root common.Hash, db ethdb.Database, srcDb *Database) { // Create a destination trie and sync with the scheduler sched := NewSync(root, db, nil, srcDb.Scheme()) // The code requests are ignored here since there is no code // at the testing trie. paths, nodes, _ := sched.Missing(1) var elements []trieElement for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) } reader, err := srcDb.Reader(root) if err != nil { t.Fatalf("State is not available %x", root) } for len(elements) > 0 { results := make([]NodeSyncResult, len(elements)) for i, element := range elements { owner, inner := ResolvePath([]byte(element.path)) data, err := reader.Node(owner, inner, element.hash) if err != nil { t.Fatalf("failed to retrieve node data for hash %x: %v", element.hash, err) } results[i] = NodeSyncResult{element.path, data} } for index, result := range results { if err := sched.ProcessNode(result); err != nil { t.Fatalf("failed to process result[%d][%v] data %v %v", index, []byte(result.Path), result.Data, err) } } batch := db.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() paths, nodes, _ = sched.Missing(1) elements = elements[:0] for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) } } } // Tests that the syncing target is keeping moving which may overwrite the stale // states synced in the last cycle. func TestSyncMovingTarget(t *testing.T) { testSyncMovingTarget(t, rawdb.HashScheme) // testSyncMovingTarget(t, rawdb.PathScheme) } func testSyncMovingTarget(t *testing.T, scheme string) { // Create a random trie to copy _, srcDb, srcTrie, srcData := makeTestTrie(scheme) // Create a destination trie and sync with the scheduler diskdb := rawdb.NewMemoryDatabase() syncWith(t, srcTrie.Hash(), diskdb, srcDb) checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), srcData) // Push more modifications into the src trie, to see if dest trie can still // sync with it(overwrite stale states) var ( preRoot = srcTrie.Hash() diff = make(map[string][]byte) ) for i := byte(0); i < 10; i++ { key, val := randBytes(32), randBytes(32) srcTrie.MustUpdate(key, val) diff[string(key)] = val } root, nodes, _ := srcTrie.Commit(false) if err := srcDb.Update(root, preRoot, trienode.NewWithNodeSet(nodes), nil); err != nil { panic(err) } if err := srcDb.Commit(root, false); err != nil { panic(err) } preRoot = root srcTrie, _ = NewStateTrie(TrieID(root), srcDb) syncWith(t, srcTrie.Hash(), diskdb, srcDb) checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), diff) // Revert added modifications from the src trie, to see if dest trie can still // sync with it(overwrite reverted states) var reverted = make(map[string][]byte) for k := range diff { srcTrie.MustDelete([]byte(k)) reverted[k] = nil } for k := range srcData { val := randBytes(32) srcTrie.MustUpdate([]byte(k), val) reverted[k] = val } root, nodes, _ = srcTrie.Commit(false) if err := srcDb.Update(root, preRoot, trienode.NewWithNodeSet(nodes), nil); err != nil { panic(err) } if err := srcDb.Commit(root, false); err != nil { panic(err) } srcTrie, _ = NewStateTrie(TrieID(root), srcDb) syncWith(t, srcTrie.Hash(), diskdb, srcDb) checkTrieContents(t, diskdb, srcDb.Scheme(), srcTrie.Hash().Bytes(), reverted) }