// Copyright 2020 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package rlpx import ( "bytes" "crypto/ecdsa" "encoding/hex" "fmt" "io" "math/rand" "net" "reflect" "strings" "testing" "github.com/davecgh/go-spew/spew" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/crypto/ecies" "github.com/ethereum/go-ethereum/p2p/pipes" "github.com/ethereum/go-ethereum/rlp" "github.com/stretchr/testify/assert" ) type message struct { code uint64 data []byte err error } func TestHandshake(t *testing.T) { p1, p2 := createPeers(t) p1.Close() p2.Close() } // This test checks that messages can be sent and received through WriteMsg/ReadMsg. func TestReadWriteMsg(t *testing.T) { peer1, peer2 := createPeers(t) defer peer1.Close() defer peer2.Close() testCode := uint64(23) testData := []byte("test") checkMsgReadWrite(t, peer1, peer2, testCode, testData) t.Log("enabling snappy") peer1.SetSnappy(true) peer2.SetSnappy(true) checkMsgReadWrite(t, peer1, peer2, testCode, testData) } func checkMsgReadWrite(t *testing.T, p1, p2 *Conn, msgCode uint64, msgData []byte) { // Set up the reader. ch := make(chan message, 1) go func() { var msg message msg.code, msg.data, _, msg.err = p1.Read() ch <- msg }() // Write the message. _, err := p2.Write(msgCode, msgData) if err != nil { t.Fatal(err) } // Check it was received correctly. msg := <-ch assert.Equal(t, msgCode, msg.code, "wrong message code returned from ReadMsg") assert.Equal(t, msgData, msg.data, "wrong message data returned from ReadMsg") } func createPeers(t *testing.T) (peer1, peer2 *Conn) { conn1, conn2 := net.Pipe() key1, key2 := newkey(), newkey() peer1 = NewConn(conn1, &key2.PublicKey) // dialer peer2 = NewConn(conn2, nil) // listener doHandshake(t, peer1, peer2, key1, key2) return peer1, peer2 } func doHandshake(t *testing.T, peer1, peer2 *Conn, key1, key2 *ecdsa.PrivateKey) { keyChan := make(chan *ecdsa.PublicKey, 1) go func() { pubKey, err := peer2.Handshake(key2) if err != nil { t.Errorf("peer2 could not do handshake: %v", err) } keyChan <- pubKey }() pubKey2, err := peer1.Handshake(key1) if err != nil { t.Errorf("peer1 could not do handshake: %v", err) } pubKey1 := <-keyChan // Confirm the handshake was successful. if !reflect.DeepEqual(pubKey1, &key1.PublicKey) || !reflect.DeepEqual(pubKey2, &key2.PublicKey) { t.Fatal("unsuccessful handshake") } } // This test checks the frame data of written messages. func TestFrameReadWrite(t *testing.T) { conn := NewConn(nil, nil) hash := fakeHash([]byte{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}) conn.InitWithSecrets(Secrets{ AES: crypto.Keccak256(), MAC: crypto.Keccak256(), IngressMAC: hash, EgressMAC: hash, }) h := conn.session golden := unhex(` 00828ddae471818bb0bfa6b551d1cb42 01010101010101010101010101010101 ba628a4ba590cb43f7848f41c4382885 01010101010101010101010101010101 `) msgCode := uint64(8) msg := []uint{1, 2, 3, 4} msgEnc, _ := rlp.EncodeToBytes(msg) // Check writeFrame. The frame that's written should be equal to the test vector. buf := new(bytes.Buffer) if err := h.writeFrame(buf, msgCode, msgEnc); err != nil { t.Fatalf("WriteMsg error: %v", err) } if !bytes.Equal(buf.Bytes(), golden) { t.Fatalf("output mismatch:\n got: %x\n want: %x", buf.Bytes(), golden) } // Check readFrame on the test vector. content, err := h.readFrame(bytes.NewReader(golden)) if err != nil { t.Fatalf("ReadMsg error: %v", err) } wantContent := unhex("08C401020304") if !bytes.Equal(content, wantContent) { t.Errorf("frame content mismatch:\ngot %x\nwant %x", content, wantContent) } } type fakeHash []byte func (fakeHash) Write(p []byte) (int, error) { return len(p), nil } func (fakeHash) Reset() {} func (fakeHash) BlockSize() int { return 0 } func (h fakeHash) Size() int { return len(h) } func (h fakeHash) Sum(b []byte) []byte { return append(b, h...) } type handshakeAuthTest struct { input string wantVersion uint wantRest []rlp.RawValue } var eip8HandshakeAuthTests = []handshakeAuthTest{ // (Auth₂) EIP-8 encoding { input: ` 01b304ab7578555167be8154d5cc456f567d5ba302662433674222360f08d5f1534499d3678b513b 0fca474f3a514b18e75683032eb63fccb16c156dc6eb2c0b1593f0d84ac74f6e475f1b8d56116b84 9634a8c458705bf83a626ea0384d4d7341aae591fae42ce6bd5c850bfe0b999a694a49bbbaf3ef6c da61110601d3b4c02ab6c30437257a6e0117792631a4b47c1d52fc0f8f89caadeb7d02770bf999cc 147d2df3b62e1ffb2c9d8c125a3984865356266bca11ce7d3a688663a51d82defaa8aad69da39ab6 d5470e81ec5f2a7a47fb865ff7cca21516f9299a07b1bc63ba56c7a1a892112841ca44b6e0034dee 70c9adabc15d76a54f443593fafdc3b27af8059703f88928e199cb122362a4b35f62386da7caad09 c001edaeb5f8a06d2b26fb6cb93c52a9fca51853b68193916982358fe1e5369e249875bb8d0d0ec3 6f917bc5e1eafd5896d46bd61ff23f1a863a8a8dcd54c7b109b771c8e61ec9c8908c733c0263440e 2aa067241aaa433f0bb053c7b31a838504b148f570c0ad62837129e547678c5190341e4f1693956c 3bf7678318e2d5b5340c9e488eefea198576344afbdf66db5f51204a6961a63ce072c8926c `, wantVersion: 4, wantRest: []rlp.RawValue{}, }, // (Auth₃) RLPx v4 EIP-8 encoding with version 56, additional list elements { input: ` 01b8044c6c312173685d1edd268aa95e1d495474c6959bcdd10067ba4c9013df9e40ff45f5bfd6f7 2471f93a91b493f8e00abc4b80f682973de715d77ba3a005a242eb859f9a211d93a347fa64b597bf 280a6b88e26299cf263b01b8dfdb712278464fd1c25840b995e84d367d743f66c0e54a586725b7bb f12acca27170ae3283c1073adda4b6d79f27656993aefccf16e0d0409fe07db2dc398a1b7e8ee93b cd181485fd332f381d6a050fba4c7641a5112ac1b0b61168d20f01b479e19adf7fdbfa0905f63352 bfc7e23cf3357657455119d879c78d3cf8c8c06375f3f7d4861aa02a122467e069acaf513025ff19 6641f6d2810ce493f51bee9c966b15c5043505350392b57645385a18c78f14669cc4d960446c1757 1b7c5d725021babbcd786957f3d17089c084907bda22c2b2675b4378b114c601d858802a55345a15 116bc61da4193996187ed70d16730e9ae6b3bb8787ebcaea1871d850997ddc08b4f4ea668fbf3740 7ac044b55be0908ecb94d4ed172ece66fd31bfdadf2b97a8bc690163ee11f5b575a4b44e36e2bfb2 f0fce91676fd64c7773bac6a003f481fddd0bae0a1f31aa27504e2a533af4cef3b623f4791b2cca6 d490 `, wantVersion: 56, wantRest: []rlp.RawValue{{0x01}, {0x02}, {0xC2, 0x04, 0x05}}, }, } type handshakeAckTest struct { input string wantVersion uint wantRest []rlp.RawValue } var eip8HandshakeRespTests = []handshakeAckTest{ // (Ack₂) EIP-8 encoding { input: ` 01ea0451958701280a56482929d3b0757da8f7fbe5286784beead59d95089c217c9b917788989470 b0e330cc6e4fb383c0340ed85fab836ec9fb8a49672712aeabbdfd1e837c1ff4cace34311cd7f4de 05d59279e3524ab26ef753a0095637ac88f2b499b9914b5f64e143eae548a1066e14cd2f4bd7f814 c4652f11b254f8a2d0191e2f5546fae6055694aed14d906df79ad3b407d94692694e259191cde171 ad542fc588fa2b7333313d82a9f887332f1dfc36cea03f831cb9a23fea05b33deb999e85489e645f 6aab1872475d488d7bd6c7c120caf28dbfc5d6833888155ed69d34dbdc39c1f299be1057810f34fb e754d021bfca14dc989753d61c413d261934e1a9c67ee060a25eefb54e81a4d14baff922180c395d 3f998d70f46f6b58306f969627ae364497e73fc27f6d17ae45a413d322cb8814276be6ddd13b885b 201b943213656cde498fa0e9ddc8e0b8f8a53824fbd82254f3e2c17e8eaea009c38b4aa0a3f306e8 797db43c25d68e86f262e564086f59a2fc60511c42abfb3057c247a8a8fe4fb3ccbadde17514b7ac 8000cdb6a912778426260c47f38919a91f25f4b5ffb455d6aaaf150f7e5529c100ce62d6d92826a7 1778d809bdf60232ae21ce8a437eca8223f45ac37f6487452ce626f549b3b5fdee26afd2072e4bc7 5833c2464c805246155289f4 `, wantVersion: 4, wantRest: []rlp.RawValue{}, }, // (Ack₃) EIP-8 encoding with version 57, additional list elements { input: ` 01f004076e58aae772bb101ab1a8e64e01ee96e64857ce82b1113817c6cdd52c09d26f7b90981cd7 ae835aeac72e1573b8a0225dd56d157a010846d888dac7464baf53f2ad4e3d584531fa203658fab0 3a06c9fd5e35737e417bc28c1cbf5e5dfc666de7090f69c3b29754725f84f75382891c561040ea1d dc0d8f381ed1b9d0d4ad2a0ec021421d847820d6fa0ba66eaf58175f1b235e851c7e2124069fbc20 2888ddb3ac4d56bcbd1b9b7eab59e78f2e2d400905050f4a92dec1c4bdf797b3fc9b2f8e84a482f3 d800386186712dae00d5c386ec9387a5e9c9a1aca5a573ca91082c7d68421f388e79127a5177d4f8 590237364fd348c9611fa39f78dcdceee3f390f07991b7b47e1daa3ebcb6ccc9607811cb17ce51f1 c8c2c5098dbdd28fca547b3f58c01a424ac05f869f49c6a34672ea2cbbc558428aa1fe48bbfd6115 8b1b735a65d99f21e70dbc020bfdface9f724a0d1fb5895db971cc81aa7608baa0920abb0a565c9c 436e2fd13323428296c86385f2384e408a31e104670df0791d93e743a3a5194ee6b076fb6323ca59 3011b7348c16cf58f66b9633906ba54a2ee803187344b394f75dd2e663a57b956cb830dd7a908d4f 39a2336a61ef9fda549180d4ccde21514d117b6c6fd07a9102b5efe710a32af4eeacae2cb3b1dec0 35b9593b48b9d3ca4c13d245d5f04169b0b1 `, wantVersion: 57, wantRest: []rlp.RawValue{{0x06}, {0xC2, 0x07, 0x08}, {0x81, 0xFA}}, }, } var ( keyA, _ = crypto.HexToECDSA("49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee") keyB, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") ) func TestHandshakeForwardCompatibility(t *testing.T) { var ( pubA = crypto.FromECDSAPub(&keyA.PublicKey)[1:] pubB = crypto.FromECDSAPub(&keyB.PublicKey)[1:] ephA, _ = crypto.HexToECDSA("869d6ecf5211f1cc60418a13b9d870b22959d0c16f02bec714c960dd2298a32d") ephB, _ = crypto.HexToECDSA("e238eb8e04fee6511ab04c6dd3c89ce097b11f25d584863ac2b6d5b35b1847e4") ephPubA = crypto.FromECDSAPub(&ephA.PublicKey)[1:] ephPubB = crypto.FromECDSAPub(&ephB.PublicKey)[1:] nonceA = unhex("7e968bba13b6c50e2c4cd7f241cc0d64d1ac25c7f5952df231ac6a2bda8ee5d6") nonceB = unhex("559aead08264d5795d3909718cdd05abd49572e84fe55590eef31a88a08fdffd") _, _, _, _ = pubA, pubB, ephPubA, ephPubB authSignature = unhex("299ca6acfd35e3d72d8ba3d1e2b60b5561d5af5218eb5bc182045769eb4226910a301acae3b369fffc4a4899d6b02531e89fd4fe36a2cf0d93607ba470b50f7800") _ = authSignature ) makeAuth := func(test handshakeAuthTest) *authMsgV4 { msg := &authMsgV4{Version: test.wantVersion, Rest: test.wantRest} copy(msg.Signature[:], authSignature) copy(msg.InitiatorPubkey[:], pubA) copy(msg.Nonce[:], nonceA) return msg } makeAck := func(test handshakeAckTest) *authRespV4 { msg := &authRespV4{Version: test.wantVersion, Rest: test.wantRest} copy(msg.RandomPubkey[:], ephPubB) copy(msg.Nonce[:], nonceB) return msg } // check auth msg parsing for _, test := range eip8HandshakeAuthTests { var h handshakeState r := bytes.NewReader(unhex(test.input)) msg := new(authMsgV4) ciphertext, err := h.readMsg(msg, keyB, r) if err != nil { t.Errorf("error for input %x:\n %v", unhex(test.input), err) continue } if !bytes.Equal(ciphertext, unhex(test.input)) { t.Errorf("wrong ciphertext for input %x:\n %x", unhex(test.input), ciphertext) } want := makeAuth(test) if !reflect.DeepEqual(msg, want) { t.Errorf("wrong msg for input %x:\ngot %s\nwant %s", unhex(test.input), spew.Sdump(msg), spew.Sdump(want)) } } // check auth resp parsing for _, test := range eip8HandshakeRespTests { var h handshakeState input := unhex(test.input) r := bytes.NewReader(input) msg := new(authRespV4) ciphertext, err := h.readMsg(msg, keyA, r) if err != nil { t.Errorf("error for input %x:\n %v", input, err) continue } if !bytes.Equal(ciphertext, input) { t.Errorf("wrong ciphertext for input %x:\n %x", input, err) } want := makeAck(test) if !reflect.DeepEqual(msg, want) { t.Errorf("wrong msg for input %x:\ngot %s\nwant %s", input, spew.Sdump(msg), spew.Sdump(want)) } } // check derivation for (Auth₂, Ack₂) on recipient side var ( hs = &handshakeState{ initiator: false, respNonce: nonceB, randomPrivKey: ecies.ImportECDSA(ephB), } authCiphertext = unhex(eip8HandshakeAuthTests[0].input) authRespCiphertext = unhex(eip8HandshakeRespTests[0].input) authMsg = makeAuth(eip8HandshakeAuthTests[0]) wantAES = unhex("80e8632c05fed6fc2a13b0f8d31a3cf645366239170ea067065aba8e28bac487") wantMAC = unhex("2ea74ec5dae199227dff1af715362700e989d889d7a493cb0639691efb8e5f98") wantFooIngressHash = unhex("0c7ec6340062cc46f5e9f1e3cf86f8c8c403c5a0964f5df0ebd34a75ddc86db5") ) if err := hs.handleAuthMsg(authMsg, keyB); err != nil { t.Fatalf("handleAuthMsg: %v", err) } derived, err := hs.secrets(authCiphertext, authRespCiphertext) if err != nil { t.Fatalf("secrets: %v", err) } if !bytes.Equal(derived.AES, wantAES) { t.Errorf("aes-secret mismatch:\ngot %x\nwant %x", derived.AES, wantAES) } if !bytes.Equal(derived.MAC, wantMAC) { t.Errorf("mac-secret mismatch:\ngot %x\nwant %x", derived.MAC, wantMAC) } io.WriteString(derived.IngressMAC, "foo") fooIngressHash := derived.IngressMAC.Sum(nil) if !bytes.Equal(fooIngressHash, wantFooIngressHash) { t.Errorf("ingress-mac('foo') mismatch:\ngot %x\nwant %x", fooIngressHash, wantFooIngressHash) } } func BenchmarkHandshakeRead(b *testing.B) { var input = unhex(eip8HandshakeAuthTests[0].input) for i := 0; i < b.N; i++ { var ( h handshakeState r = bytes.NewReader(input) msg = new(authMsgV4) ) if _, err := h.readMsg(msg, keyB, r); err != nil { b.Fatal(err) } } } func BenchmarkThroughput(b *testing.B) { pipe1, pipe2, err := pipes.TCPPipe() if err != nil { b.Fatal(err) } var ( conn1, conn2 = NewConn(pipe1, nil), NewConn(pipe2, &keyA.PublicKey) handshakeDone = make(chan error, 1) msgdata = make([]byte, 1024) rand = rand.New(rand.NewSource(1337)) ) rand.Read(msgdata) // Server side. go func() { defer conn1.Close() // Perform handshake. _, err := conn1.Handshake(keyA) handshakeDone <- err if err != nil { return } conn1.SetSnappy(true) // Keep sending messages until connection closed. for { if _, err := conn1.Write(0, msgdata); err != nil { return } } }() // Set up client side. defer conn2.Close() if _, err := conn2.Handshake(keyB); err != nil { b.Fatal("client handshake error:", err) } conn2.SetSnappy(true) if err := <-handshakeDone; err != nil { b.Fatal("server handshake error:", err) } // Read N messages. b.SetBytes(int64(len(msgdata))) b.ReportAllocs() for i := 0; i < b.N; i++ { _, _, _, err := conn2.Read() if err != nil { b.Fatal("read error:", err) } } } func unhex(str string) []byte { r := strings.NewReplacer("\t", "", " ", "", "\n", "") b, err := hex.DecodeString(r.Replace(str)) if err != nil { panic(fmt.Sprintf("invalid hex string: %q", str)) } return b } func newkey() *ecdsa.PrivateKey { key, err := crypto.GenerateKey() if err != nil { panic("couldn't generate key: " + err.Error()) } return key }