// Copyright (c) 2013 Kyle Isom // Copyright (c) 2012 The Go Authors. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. package ecies import ( "bytes" "crypto" "crypto/elliptic" "crypto/sha1" "crypto/sha256" "crypto/sha512" "encoding/asn1" "encoding/pem" "fmt" "hash" "math/big" ethcrypto "github.com/ethereum/go-ethereum/crypto" ) var ( secgScheme = []int{1, 3, 132, 1} shaScheme = []int{2, 16, 840, 1, 101, 3, 4, 2} ansiX962Scheme = []int{1, 2, 840, 10045} x963Scheme = []int{1, 2, 840, 63, 0} ) var ErrInvalidPrivateKey = fmt.Errorf("ecies: invalid private key") func doScheme(base, v []int) asn1.ObjectIdentifier { var oidInts asn1.ObjectIdentifier oidInts = append(oidInts, base...) return append(oidInts, v...) } // curve OID code taken from crypto/x509, including // - oidNameCurve* // - namedCurveFromOID // - oidFromNamedCurve // RFC 5480, 2.1.1.1. Named Curve // // secp224r1 OBJECT IDENTIFIER ::= { // iso(1) identified-organization(3) certicom(132) curve(0) 33 } // // secp256r1 OBJECT IDENTIFIER ::= { // iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3) // prime(1) 7 } // // secp384r1 OBJECT IDENTIFIER ::= { // iso(1) identified-organization(3) certicom(132) curve(0) 34 } // // secp521r1 OBJECT IDENTIFIER ::= { // iso(1) identified-organization(3) certicom(132) curve(0) 35 } // // NB: secp256r1 is equivalent to prime256v1 type secgNamedCurve asn1.ObjectIdentifier var ( secgNamedCurveS256 = secgNamedCurve{1, 3, 132, 0, 10} secgNamedCurveP256 = secgNamedCurve{1, 2, 840, 10045, 3, 1, 7} secgNamedCurveP384 = secgNamedCurve{1, 3, 132, 0, 34} secgNamedCurveP521 = secgNamedCurve{1, 3, 132, 0, 35} rawCurveP256 = []byte{6, 8, 4, 2, 1, 3, 4, 7, 2, 2, 0, 6, 6, 1, 3, 1, 7} rawCurveP384 = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 4} rawCurveP521 = []byte{6, 5, 4, 3, 1, 2, 9, 4, 0, 3, 5} ) func rawCurve(curve elliptic.Curve) []byte { switch curve { case elliptic.P256(): return rawCurveP256 case elliptic.P384(): return rawCurveP384 case elliptic.P521(): return rawCurveP521 default: return nil } } func (curve secgNamedCurve) Equal(curve2 secgNamedCurve) bool { if len(curve) != len(curve2) { return false } for i := range curve { if curve[i] != curve2[i] { return false } } return true } func namedCurveFromOID(curve secgNamedCurve) elliptic.Curve { switch { case curve.Equal(secgNamedCurveS256): return ethcrypto.S256() case curve.Equal(secgNamedCurveP256): return elliptic.P256() case curve.Equal(secgNamedCurveP384): return elliptic.P384() case curve.Equal(secgNamedCurveP521): return elliptic.P521() } return nil } func oidFromNamedCurve(curve elliptic.Curve) (secgNamedCurve, bool) { switch curve { case elliptic.P256(): return secgNamedCurveP256, true case elliptic.P384(): return secgNamedCurveP384, true case elliptic.P521(): return secgNamedCurveP521, true case ethcrypto.S256(): return secgNamedCurveS256, true } return nil, false } // asnAlgorithmIdentifier represents the ASN.1 structure of the same name. See RFC // 5280, section 4.1.1.2. type asnAlgorithmIdentifier struct { Algorithm asn1.ObjectIdentifier Parameters asn1.RawValue `asn1:"optional"` } func (a asnAlgorithmIdentifier) Cmp(b asnAlgorithmIdentifier) bool { if len(a.Algorithm) != len(b.Algorithm) { return false } for i := range a.Algorithm { if a.Algorithm[i] != b.Algorithm[i] { return false } } return true } type asnHashFunction asnAlgorithmIdentifier var ( oidSHA1 = asn1.ObjectIdentifier{1, 3, 14, 3, 2, 26} oidSHA224 = doScheme(shaScheme, []int{4}) oidSHA256 = doScheme(shaScheme, []int{1}) oidSHA384 = doScheme(shaScheme, []int{2}) oidSHA512 = doScheme(shaScheme, []int{3}) ) func hashFromOID(oid asn1.ObjectIdentifier) func() hash.Hash { switch { case oid.Equal(oidSHA1): return sha1.New case oid.Equal(oidSHA224): return sha256.New224 case oid.Equal(oidSHA256): return sha256.New case oid.Equal(oidSHA384): return sha512.New384 case oid.Equal(oidSHA512): return sha512.New } return nil } func oidFromHash(hash crypto.Hash) (asn1.ObjectIdentifier, bool) { switch hash { case crypto.SHA1: return oidSHA1, true case crypto.SHA224: return oidSHA224, true case crypto.SHA256: return oidSHA256, true case crypto.SHA384: return oidSHA384, true case crypto.SHA512: return oidSHA512, true default: return nil, false } } var ( asnAlgoSHA1 = asnHashFunction{ Algorithm: oidSHA1, } asnAlgoSHA224 = asnHashFunction{ Algorithm: oidSHA224, } asnAlgoSHA256 = asnHashFunction{ Algorithm: oidSHA256, } asnAlgoSHA384 = asnHashFunction{ Algorithm: oidSHA384, } asnAlgoSHA512 = asnHashFunction{ Algorithm: oidSHA512, } ) // type ASNasnSubjectPublicKeyInfo struct { // // } // type asnSubjectPublicKeyInfo struct { Algorithm asn1.ObjectIdentifier PublicKey asn1.BitString Supplements ecpksSupplements `asn1:"optional"` } type asnECPKAlgorithms struct { Type asn1.ObjectIdentifier } var idPublicKeyType = doScheme(ansiX962Scheme, []int{2}) var idEcPublicKey = doScheme(idPublicKeyType, []int{1}) var idEcPublicKeySupplemented = doScheme(idPublicKeyType, []int{0}) func curveToRaw(curve elliptic.Curve) (rv asn1.RawValue, ok bool) { switch curve { case elliptic.P256(), elliptic.P384(), elliptic.P521(): raw := rawCurve(curve) return asn1.RawValue{ Tag: 30, Bytes: raw[2:], FullBytes: raw, }, true default: return rv, false } } func asnECPublicKeyType(curve elliptic.Curve) (algo asnAlgorithmIdentifier, ok bool) { raw, ok := curveToRaw(curve) if !ok { return } else { return asnAlgorithmIdentifier{Algorithm: idEcPublicKey, Parameters: raw}, true } } type asnECPrivKeyVer int var asnECPrivKeyVer1 asnECPrivKeyVer = 1 type asnPrivateKey struct { Version asnECPrivKeyVer Private []byte Curve secgNamedCurve `asn1:"optional"` Public asn1.BitString } var asnECDH = doScheme(secgScheme, []int{12}) type asnECDHAlgorithm asnAlgorithmIdentifier var ( dhSinglePass_stdDH_sha1kdf = asnECDHAlgorithm{ Algorithm: doScheme(x963Scheme, []int{2}), } dhSinglePass_stdDH_sha256kdf = asnECDHAlgorithm{ Algorithm: doScheme(secgScheme, []int{11, 1}), } dhSinglePass_stdDH_sha384kdf = asnECDHAlgorithm{ Algorithm: doScheme(secgScheme, []int{11, 2}), } dhSinglePass_stdDH_sha224kdf = asnECDHAlgorithm{ Algorithm: doScheme(secgScheme, []int{11, 0}), } dhSinglePass_stdDH_sha512kdf = asnECDHAlgorithm{ Algorithm: doScheme(secgScheme, []int{11, 3}), } ) func (a asnECDHAlgorithm) Cmp(b asnECDHAlgorithm) bool { if len(a.Algorithm) != len(b.Algorithm) { return false } for i := range a.Algorithm { if a.Algorithm[i] != b.Algorithm[i] { return false } } return true } // asnNISTConcatenation is the only supported KDF at this time. type asnKeyDerivationFunction asnAlgorithmIdentifier var asnNISTConcatenationKDF = asnKeyDerivationFunction{ Algorithm: doScheme(secgScheme, []int{17, 1}), } func (a asnKeyDerivationFunction) Cmp(b asnKeyDerivationFunction) bool { if len(a.Algorithm) != len(b.Algorithm) { return false } for i := range a.Algorithm { if a.Algorithm[i] != b.Algorithm[i] { return false } } return true } var eciesRecommendedParameters = doScheme(secgScheme, []int{7}) var eciesSpecifiedParameters = doScheme(secgScheme, []int{8}) type asnECIESParameters struct { KDF asnKeyDerivationFunction `asn1:"optional"` Sym asnSymmetricEncryption `asn1:"optional"` MAC asnMessageAuthenticationCode `asn1:"optional"` } type asnSymmetricEncryption asnAlgorithmIdentifier var ( aes128CTRinECIES = asnSymmetricEncryption{ Algorithm: doScheme(secgScheme, []int{21, 0}), } aes192CTRinECIES = asnSymmetricEncryption{ Algorithm: doScheme(secgScheme, []int{21, 1}), } aes256CTRinECIES = asnSymmetricEncryption{ Algorithm: doScheme(secgScheme, []int{21, 2}), } ) func (a asnSymmetricEncryption) Cmp(b asnSymmetricEncryption) bool { if len(a.Algorithm) != len(b.Algorithm) { return false } for i := range a.Algorithm { if a.Algorithm[i] != b.Algorithm[i] { return false } } return true } type asnMessageAuthenticationCode asnAlgorithmIdentifier var ( hmacFull = asnMessageAuthenticationCode{ Algorithm: doScheme(secgScheme, []int{22}), } ) func (a asnMessageAuthenticationCode) Cmp(b asnMessageAuthenticationCode) bool { if len(a.Algorithm) != len(b.Algorithm) { return false } for i := range a.Algorithm { if a.Algorithm[i] != b.Algorithm[i] { return false } } return true } type ecpksSupplements struct { ECDomain secgNamedCurve ECCAlgorithms eccAlgorithmSet } type eccAlgorithmSet struct { ECDH asnECDHAlgorithm `asn1:"optional"` ECIES asnECIESParameters `asn1:"optional"` } func marshalSubjectPublicKeyInfo(pub *PublicKey) (subj asnSubjectPublicKeyInfo, err error) { subj.Algorithm = idEcPublicKeySupplemented curve, ok := oidFromNamedCurve(pub.Curve) if !ok { err = ErrInvalidPublicKey return } subj.Supplements.ECDomain = curve if pub.Params != nil { subj.Supplements.ECCAlgorithms.ECDH = paramsToASNECDH(pub.Params) subj.Supplements.ECCAlgorithms.ECIES = paramsToASNECIES(pub.Params) } pubkey := elliptic.Marshal(pub.Curve, pub.X, pub.Y) subj.PublicKey = asn1.BitString{ BitLength: len(pubkey) * 8, Bytes: pubkey, } return } // Encode a public key to DER format. func MarshalPublic(pub *PublicKey) ([]byte, error) { subj, err := marshalSubjectPublicKeyInfo(pub) if err != nil { return nil, err } return asn1.Marshal(subj) } // Decode a DER-encoded public key. func UnmarshalPublic(in []byte) (pub *PublicKey, err error) { var subj asnSubjectPublicKeyInfo if _, err = asn1.Unmarshal(in, &subj); err != nil { return } if !subj.Algorithm.Equal(idEcPublicKeySupplemented) { err = ErrInvalidPublicKey return } pub = new(PublicKey) pub.Curve = namedCurveFromOID(subj.Supplements.ECDomain) x, y := elliptic.Unmarshal(pub.Curve, subj.PublicKey.Bytes) if x == nil { err = ErrInvalidPublicKey return } pub.X = x pub.Y = y pub.Params = new(ECIESParams) asnECIEStoParams(subj.Supplements.ECCAlgorithms.ECIES, pub.Params) asnECDHtoParams(subj.Supplements.ECCAlgorithms.ECDH, pub.Params) if pub.Params == nil { if pub.Params = ParamsFromCurve(pub.Curve); pub.Params == nil { err = ErrInvalidPublicKey } } return } func marshalPrivateKey(prv *PrivateKey) (ecprv asnPrivateKey, err error) { ecprv.Version = asnECPrivKeyVer1 ecprv.Private = prv.D.Bytes() var ok bool ecprv.Curve, ok = oidFromNamedCurve(prv.PublicKey.Curve) if !ok { err = ErrInvalidPrivateKey return } var pub []byte if pub, err = MarshalPublic(&prv.PublicKey); err != nil { return } else { ecprv.Public = asn1.BitString{ BitLength: len(pub) * 8, Bytes: pub, } } return } // Encode a private key to DER format. func MarshalPrivate(prv *PrivateKey) ([]byte, error) { ecprv, err := marshalPrivateKey(prv) if err != nil { return nil, err } return asn1.Marshal(ecprv) } // Decode a private key from a DER-encoded format. func UnmarshalPrivate(in []byte) (prv *PrivateKey, err error) { var ecprv asnPrivateKey if _, err = asn1.Unmarshal(in, &ecprv); err != nil { return } else if ecprv.Version != asnECPrivKeyVer1 { err = ErrInvalidPrivateKey return } privateCurve := namedCurveFromOID(ecprv.Curve) if privateCurve == nil { err = ErrInvalidPrivateKey return } prv = new(PrivateKey) prv.D = new(big.Int).SetBytes(ecprv.Private) if pub, err := UnmarshalPublic(ecprv.Public.Bytes); err != nil { return nil, err } else { prv.PublicKey = *pub } return } // Export a public key to PEM format. func ExportPublicPEM(pub *PublicKey) (out []byte, err error) { der, err := MarshalPublic(pub) if err != nil { return } var block pem.Block block.Type = "ELLIPTIC CURVE PUBLIC KEY" block.Bytes = der buf := new(bytes.Buffer) err = pem.Encode(buf, &block) if err != nil { return } else { out = buf.Bytes() } return } // Export a private key to PEM format. func ExportPrivatePEM(prv *PrivateKey) (out []byte, err error) { der, err := MarshalPrivate(prv) if err != nil { return } var block pem.Block block.Type = "ELLIPTIC CURVE PRIVATE KEY" block.Bytes = der buf := new(bytes.Buffer) err = pem.Encode(buf, &block) if err != nil { return } else { out = buf.Bytes() } return } // Import a PEM-encoded public key. func ImportPublicPEM(in []byte) (pub *PublicKey, err error) { p, _ := pem.Decode(in) if p == nil || p.Type != "ELLIPTIC CURVE PUBLIC KEY" { return nil, ErrInvalidPublicKey } pub, err = UnmarshalPublic(p.Bytes) return } // Import a PEM-encoded private key. func ImportPrivatePEM(in []byte) (prv *PrivateKey, err error) { p, _ := pem.Decode(in) if p == nil || p.Type != "ELLIPTIC CURVE PRIVATE KEY" { return nil, ErrInvalidPrivateKey } prv, err = UnmarshalPrivate(p.Bytes) return }