// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package vm import ( "errors" "math/big" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/math" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/params" "golang.org/x/crypto/sha3" ) var ( bigZero = new(big.Int) tt255 = math.BigPow(2, 255) errWriteProtection = errors.New("evm: write protection") errReturnDataOutOfBounds = errors.New("evm: return data out of bounds") errExecutionReverted = errors.New("evm: execution reverted") errMaxCodeSizeExceeded = errors.New("evm: max code size exceeded") errInvalidJump = errors.New("evm: invalid jump destination") ) func opAdd(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { x, y := callContext.stack.pop(), callContext.stack.peek() math.U256(y.Add(x, y)) interpreter.intPool.putOne(x) return nil, nil } func opSub(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { x, y := callContext.stack.pop(), callContext.stack.peek() math.U256(y.Sub(x, y)) interpreter.intPool.putOne(x) return nil, nil } func opMul(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { x, y := callContext.stack.pop(), callContext.stack.pop() callContext.stack.push(math.U256(x.Mul(x, y))) interpreter.intPool.putOne(y) return nil, nil } func opDiv(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { x, y := callContext.stack.pop(), callContext.stack.peek() if y.Sign() != 0 { math.U256(y.Div(x, y)) } else { y.SetUint64(0) } interpreter.intPool.putOne(x) return nil, nil } func opSdiv(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { x, y := math.S256(callContext.stack.pop()), math.S256(callContext.stack.pop()) res := interpreter.intPool.getZero() if y.Sign() == 0 || x.Sign() == 0 { callContext.stack.push(res) } else { if x.Sign() != y.Sign() { res.Div(x.Abs(x), y.Abs(y)) res.Neg(res) } else { res.Div(x.Abs(x), y.Abs(y)) } callContext.stack.push(math.U256(res)) } interpreter.intPool.put(x, y) return nil, nil } func opMod(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { x, y := callContext.stack.pop(), callContext.stack.pop() if y.Sign() == 0 { callContext.stack.push(x.SetUint64(0)) } else { callContext.stack.push(math.U256(x.Mod(x, y))) } interpreter.intPool.putOne(y) return nil, nil } func opSmod(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { x, y := math.S256(callContext.stack.pop()), math.S256(callContext.stack.pop()) res := interpreter.intPool.getZero() if y.Sign() == 0 { callContext.stack.push(res) } else { if x.Sign() < 0 { res.Mod(x.Abs(x), y.Abs(y)) res.Neg(res) } else { res.Mod(x.Abs(x), y.Abs(y)) } callContext.stack.push(math.U256(res)) } interpreter.intPool.put(x, y) return nil, nil } func opExp(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { base, exponent := callContext.stack.pop(), callContext.stack.pop() // some shortcuts cmpToOne := exponent.Cmp(big1) if cmpToOne < 0 { // Exponent is zero // x ^ 0 == 1 callContext.stack.push(base.SetUint64(1)) } else if base.Sign() == 0 { // 0 ^ y, if y != 0, == 0 callContext.stack.push(base.SetUint64(0)) } else if cmpToOne == 0 { // Exponent is one // x ^ 1 == x callContext.stack.push(base) } else { callContext.stack.push(math.Exp(base, exponent)) interpreter.intPool.putOne(base) } interpreter.intPool.putOne(exponent) return nil, nil } func opSignExtend(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { back := callContext.stack.pop() if back.Cmp(big.NewInt(31)) < 0 { bit := uint(back.Uint64()*8 + 7) num := callContext.stack.pop() mask := back.Lsh(common.Big1, bit) mask.Sub(mask, common.Big1) if num.Bit(int(bit)) > 0 { num.Or(num, mask.Not(mask)) } else { num.And(num, mask) } callContext.stack.push(math.U256(num)) } interpreter.intPool.putOne(back) return nil, nil } func opNot(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { x := callContext.stack.peek() math.U256(x.Not(x)) return nil, nil } func opLt(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { x, y := callContext.stack.pop(), callContext.stack.peek() if x.Cmp(y) < 0 { y.SetUint64(1) } else { y.SetUint64(0) } interpreter.intPool.putOne(x) return nil, nil } func opGt(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { x, y := callContext.stack.pop(), callContext.stack.peek() if x.Cmp(y) > 0 { y.SetUint64(1) } else { y.SetUint64(0) } interpreter.intPool.putOne(x) return nil, nil } func opSlt(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { x, y := callContext.stack.pop(), callContext.stack.peek() xSign := x.Cmp(tt255) ySign := y.Cmp(tt255) switch { case xSign >= 0 && ySign < 0: y.SetUint64(1) case xSign < 0 && ySign >= 0: y.SetUint64(0) default: if x.Cmp(y) < 0 { y.SetUint64(1) } else { y.SetUint64(0) } } interpreter.intPool.putOne(x) return nil, nil } func opSgt(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { x, y := callContext.stack.pop(), callContext.stack.peek() xSign := x.Cmp(tt255) ySign := y.Cmp(tt255) switch { case xSign >= 0 && ySign < 0: y.SetUint64(0) case xSign < 0 && ySign >= 0: y.SetUint64(1) default: if x.Cmp(y) > 0 { y.SetUint64(1) } else { y.SetUint64(0) } } interpreter.intPool.putOne(x) return nil, nil } func opEq(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { x, y := callContext.stack.pop(), callContext.stack.peek() if x.Cmp(y) == 0 { y.SetUint64(1) } else { y.SetUint64(0) } interpreter.intPool.putOne(x) return nil, nil } func opIszero(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { x := callContext.stack.peek() if x.Sign() > 0 { x.SetUint64(0) } else { x.SetUint64(1) } return nil, nil } func opAnd(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { x, y := callContext.stack.pop(), callContext.stack.pop() callContext.stack.push(x.And(x, y)) interpreter.intPool.putOne(y) return nil, nil } func opOr(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { x, y := callContext.stack.pop(), callContext.stack.peek() y.Or(x, y) interpreter.intPool.putOne(x) return nil, nil } func opXor(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { x, y := callContext.stack.pop(), callContext.stack.peek() y.Xor(x, y) interpreter.intPool.putOne(x) return nil, nil } func opByte(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { th, val := callContext.stack.pop(), callContext.stack.peek() if th.Cmp(common.Big32) < 0 { b := math.Byte(val, 32, int(th.Int64())) val.SetUint64(uint64(b)) } else { val.SetUint64(0) } interpreter.intPool.putOne(th) return nil, nil } func opAddmod(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { x, y, z := callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop() if z.Cmp(bigZero) > 0 { x.Add(x, y) x.Mod(x, z) callContext.stack.push(math.U256(x)) } else { callContext.stack.push(x.SetUint64(0)) } interpreter.intPool.put(y, z) return nil, nil } func opMulmod(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { x, y, z := callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop() if z.Cmp(bigZero) > 0 { x.Mul(x, y) x.Mod(x, z) callContext.stack.push(math.U256(x)) } else { callContext.stack.push(x.SetUint64(0)) } interpreter.intPool.put(y, z) return nil, nil } // opSHL implements Shift Left // The SHL instruction (shift left) pops 2 values from the stack, first arg1 and then arg2, // and pushes on the stack arg2 shifted to the left by arg1 number of bits. func opSHL(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { // Note, second operand is left in the stack; accumulate result into it, and no need to push it afterwards shift, value := math.U256(callContext.stack.pop()), math.U256(callContext.stack.peek()) defer interpreter.intPool.putOne(shift) // First operand back into the pool if shift.Cmp(common.Big256) >= 0 { value.SetUint64(0) return nil, nil } n := uint(shift.Uint64()) math.U256(value.Lsh(value, n)) return nil, nil } // opSHR implements Logical Shift Right // The SHR instruction (logical shift right) pops 2 values from the stack, first arg1 and then arg2, // and pushes on the stack arg2 shifted to the right by arg1 number of bits with zero fill. func opSHR(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { // Note, second operand is left in the stack; accumulate result into it, and no need to push it afterwards shift, value := math.U256(callContext.stack.pop()), math.U256(callContext.stack.peek()) defer interpreter.intPool.putOne(shift) // First operand back into the pool if shift.Cmp(common.Big256) >= 0 { value.SetUint64(0) return nil, nil } n := uint(shift.Uint64()) math.U256(value.Rsh(value, n)) return nil, nil } // opSAR implements Arithmetic Shift Right // The SAR instruction (arithmetic shift right) pops 2 values from the stack, first arg1 and then arg2, // and pushes on the stack arg2 shifted to the right by arg1 number of bits with sign extension. func opSAR(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { // Note, S256 returns (potentially) a new bigint, so we're popping, not peeking this one shift, value := math.U256(callContext.stack.pop()), math.S256(callContext.stack.pop()) defer interpreter.intPool.putOne(shift) // First operand back into the pool if shift.Cmp(common.Big256) >= 0 { if value.Sign() >= 0 { value.SetUint64(0) } else { value.SetInt64(-1) } callContext.stack.push(math.U256(value)) return nil, nil } n := uint(shift.Uint64()) value.Rsh(value, n) callContext.stack.push(math.U256(value)) return nil, nil } func opSha3(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { offset, size := callContext.stack.pop(), callContext.stack.pop() data := callContext.memory.GetPtr(offset.Int64(), size.Int64()) if interpreter.hasher == nil { interpreter.hasher = sha3.NewLegacyKeccak256().(keccakState) } else { interpreter.hasher.Reset() } interpreter.hasher.Write(data) interpreter.hasher.Read(interpreter.hasherBuf[:]) evm := interpreter.evm if evm.vmConfig.EnablePreimageRecording { evm.StateDB.AddPreimage(interpreter.hasherBuf, data) } callContext.stack.push(interpreter.intPool.get().SetBytes(interpreter.hasherBuf[:])) interpreter.intPool.put(offset, size) return nil, nil } func opAddress(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { callContext.stack.push(interpreter.intPool.get().SetBytes(callContext.contract.Address().Bytes())) return nil, nil } func opBalance(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { slot := callContext.stack.peek() slot.Set(interpreter.evm.StateDB.GetBalance(common.BigToAddress(slot))) return nil, nil } func opOrigin(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { callContext.stack.push(interpreter.intPool.get().SetBytes(interpreter.evm.Origin.Bytes())) return nil, nil } func opCaller(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { callContext.stack.push(interpreter.intPool.get().SetBytes(callContext.contract.Caller().Bytes())) return nil, nil } func opCallValue(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { callContext.stack.push(interpreter.intPool.get().Set(callContext.contract.value)) return nil, nil } func opCallDataLoad(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { callContext.stack.push(interpreter.intPool.get().SetBytes(getDataBig(callContext.contract.Input, callContext.stack.pop(), big32))) return nil, nil } func opCallDataSize(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { callContext.stack.push(interpreter.intPool.get().SetInt64(int64(len(callContext.contract.Input)))) return nil, nil } func opCallDataCopy(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { var ( memOffset = callContext.stack.pop() dataOffset = callContext.stack.pop() length = callContext.stack.pop() ) callContext.memory.Set(memOffset.Uint64(), length.Uint64(), getDataBig(callContext.contract.Input, dataOffset, length)) interpreter.intPool.put(memOffset, dataOffset, length) return nil, nil } func opReturnDataSize(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { callContext.stack.push(interpreter.intPool.get().SetUint64(uint64(len(interpreter.returnData)))) return nil, nil } func opReturnDataCopy(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { var ( memOffset = callContext.stack.pop() dataOffset = callContext.stack.pop() length = callContext.stack.pop() end = interpreter.intPool.get().Add(dataOffset, length) ) defer interpreter.intPool.put(memOffset, dataOffset, length, end) if !end.IsUint64() || uint64(len(interpreter.returnData)) < end.Uint64() { return nil, errReturnDataOutOfBounds } callContext.memory.Set(memOffset.Uint64(), length.Uint64(), interpreter.returnData[dataOffset.Uint64():end.Uint64()]) return nil, nil } func opExtCodeSize(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { slot := callContext.stack.peek() slot.SetUint64(uint64(interpreter.evm.StateDB.GetCodeSize(common.BigToAddress(slot)))) return nil, nil } func opCodeSize(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { l := interpreter.intPool.get().SetInt64(int64(len(callContext.contract.Code))) callContext.stack.push(l) return nil, nil } func opCodeCopy(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { var ( memOffset = callContext.stack.pop() codeOffset = callContext.stack.pop() length = callContext.stack.pop() ) codeCopy := getDataBig(callContext.contract.Code, codeOffset, length) callContext.memory.Set(memOffset.Uint64(), length.Uint64(), codeCopy) interpreter.intPool.put(memOffset, codeOffset, length) return nil, nil } func opExtCodeCopy(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { var ( addr = common.BigToAddress(callContext.stack.pop()) memOffset = callContext.stack.pop() codeOffset = callContext.stack.pop() length = callContext.stack.pop() ) codeCopy := getDataBig(interpreter.evm.StateDB.GetCode(addr), codeOffset, length) callContext.memory.Set(memOffset.Uint64(), length.Uint64(), codeCopy) interpreter.intPool.put(memOffset, codeOffset, length) return nil, nil } // opExtCodeHash returns the code hash of a specified account. // There are several cases when the function is called, while we can relay everything // to `state.GetCodeHash` function to ensure the correctness. // (1) Caller tries to get the code hash of a normal contract account, state // should return the relative code hash and set it as the result. // // (2) Caller tries to get the code hash of a non-existent account, state should // return common.Hash{} and zero will be set as the result. // // (3) Caller tries to get the code hash for an account without contract code, // state should return emptyCodeHash(0xc5d246...) as the result. // // (4) Caller tries to get the code hash of a precompiled account, the result // should be zero or emptyCodeHash. // // It is worth noting that in order to avoid unnecessary create and clean, // all precompile accounts on mainnet have been transferred 1 wei, so the return // here should be emptyCodeHash. // If the precompile account is not transferred any amount on a private or // customized chain, the return value will be zero. // // (5) Caller tries to get the code hash for an account which is marked as suicided // in the current transaction, the code hash of this account should be returned. // // (6) Caller tries to get the code hash for an account which is marked as deleted, // this account should be regarded as a non-existent account and zero should be returned. func opExtCodeHash(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { slot := callContext.stack.peek() address := common.BigToAddress(slot) if interpreter.evm.StateDB.Empty(address) { slot.SetUint64(0) } else { slot.SetBytes(interpreter.evm.StateDB.GetCodeHash(address).Bytes()) } return nil, nil } func opGasprice(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { callContext.stack.push(interpreter.intPool.get().Set(interpreter.evm.GasPrice)) return nil, nil } func opBlockhash(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { num := callContext.stack.pop() n := interpreter.intPool.get().Sub(interpreter.evm.BlockNumber, common.Big257) if num.Cmp(n) > 0 && num.Cmp(interpreter.evm.BlockNumber) < 0 { callContext.stack.push(interpreter.evm.GetHash(num.Uint64()).Big()) } else { callContext.stack.push(interpreter.intPool.getZero()) } interpreter.intPool.put(num, n) return nil, nil } func opCoinbase(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { callContext.stack.push(interpreter.intPool.get().SetBytes(interpreter.evm.Coinbase.Bytes())) return nil, nil } func opTimestamp(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { callContext.stack.push(math.U256(interpreter.intPool.get().Set(interpreter.evm.Time))) return nil, nil } func opNumber(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { callContext.stack.push(math.U256(interpreter.intPool.get().Set(interpreter.evm.BlockNumber))) return nil, nil } func opDifficulty(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { callContext.stack.push(math.U256(interpreter.intPool.get().Set(interpreter.evm.Difficulty))) return nil, nil } func opGasLimit(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { callContext.stack.push(math.U256(interpreter.intPool.get().SetUint64(interpreter.evm.GasLimit))) return nil, nil } func opPop(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { interpreter.intPool.putOne(callContext.stack.pop()) return nil, nil } func opMload(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { v := callContext.stack.peek() offset := v.Int64() v.SetBytes(callContext.memory.GetPtr(offset, 32)) return nil, nil } func opMstore(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { // pop value of the stack mStart, val := callContext.stack.pop(), callContext.stack.pop() callContext.memory.Set32(mStart.Uint64(), val) interpreter.intPool.put(mStart, val) return nil, nil } func opMstore8(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { off, val := callContext.stack.pop().Int64(), callContext.stack.pop().Int64() callContext.memory.store[off] = byte(val & 0xff) return nil, nil } func opSload(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { loc := callContext.stack.peek() val := interpreter.evm.StateDB.GetState(callContext.contract.Address(), common.BigToHash(loc)) loc.SetBytes(val.Bytes()) return nil, nil } func opSstore(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { loc := common.BigToHash(callContext.stack.pop()) val := callContext.stack.pop() interpreter.evm.StateDB.SetState(callContext.contract.Address(), loc, common.BigToHash(val)) interpreter.intPool.putOne(val) return nil, nil } func opJump(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { pos := callContext.stack.pop() if !callContext.contract.validJumpdest(pos) { return nil, errInvalidJump } *pc = pos.Uint64() interpreter.intPool.putOne(pos) return nil, nil } func opJumpi(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { pos, cond := callContext.stack.pop(), callContext.stack.pop() if cond.Sign() != 0 { if !callContext.contract.validJumpdest(pos) { return nil, errInvalidJump } *pc = pos.Uint64() } else { *pc++ } interpreter.intPool.put(pos, cond) return nil, nil } func opJumpdest(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { return nil, nil } func opPc(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { callContext.stack.push(interpreter.intPool.get().SetUint64(*pc)) return nil, nil } func opMsize(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { callContext.stack.push(interpreter.intPool.get().SetInt64(int64(callContext.memory.Len()))) return nil, nil } func opGas(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { callContext.stack.push(interpreter.intPool.get().SetUint64(callContext.contract.Gas)) return nil, nil } func opCreate(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { var ( value = callContext.stack.pop() offset, size = callContext.stack.pop(), callContext.stack.pop() input = callContext.memory.GetCopy(offset.Int64(), size.Int64()) gas = callContext.contract.Gas ) if interpreter.evm.chainRules.IsEIP150 { gas -= gas / 64 } callContext.contract.UseGas(gas) res, addr, returnGas, suberr := interpreter.evm.Create(callContext.contract, input, gas, value) // Push item on the stack based on the returned error. If the ruleset is // homestead we must check for CodeStoreOutOfGasError (homestead only // rule) and treat as an error, if the ruleset is frontier we must // ignore this error and pretend the operation was successful. if interpreter.evm.chainRules.IsHomestead && suberr == ErrCodeStoreOutOfGas { callContext.stack.push(interpreter.intPool.getZero()) } else if suberr != nil && suberr != ErrCodeStoreOutOfGas { callContext.stack.push(interpreter.intPool.getZero()) } else { callContext.stack.push(interpreter.intPool.get().SetBytes(addr.Bytes())) } callContext.contract.Gas += returnGas interpreter.intPool.put(value, offset, size) if suberr == errExecutionReverted { return res, nil } return nil, nil } func opCreate2(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { var ( endowment = callContext.stack.pop() offset, size = callContext.stack.pop(), callContext.stack.pop() salt = callContext.stack.pop() input = callContext.memory.GetCopy(offset.Int64(), size.Int64()) gas = callContext.contract.Gas ) // Apply EIP150 gas -= gas / 64 callContext.contract.UseGas(gas) res, addr, returnGas, suberr := interpreter.evm.Create2(callContext.contract, input, gas, endowment, salt) // Push item on the stack based on the returned error. if suberr != nil { callContext.stack.push(interpreter.intPool.getZero()) } else { callContext.stack.push(interpreter.intPool.get().SetBytes(addr.Bytes())) } callContext.contract.Gas += returnGas interpreter.intPool.put(endowment, offset, size, salt) if suberr == errExecutionReverted { return res, nil } return nil, nil } func opCall(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { // Pop gas. The actual gas in interpreter.evm.callGasTemp. interpreter.intPool.putOne(callContext.stack.pop()) gas := interpreter.evm.callGasTemp // Pop other call parameters. addr, value, inOffset, inSize, retOffset, retSize := callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop() toAddr := common.BigToAddress(addr) value = math.U256(value) // Get the arguments from the memory. args := callContext.memory.GetPtr(inOffset.Int64(), inSize.Int64()) if value.Sign() != 0 { gas += params.CallStipend } ret, returnGas, err := interpreter.evm.Call(callContext.contract, toAddr, args, gas, value) if err != nil { callContext.stack.push(interpreter.intPool.getZero()) } else { callContext.stack.push(interpreter.intPool.get().SetUint64(1)) } if err == nil || err == errExecutionReverted { callContext.memory.Set(retOffset.Uint64(), retSize.Uint64(), ret) } callContext.contract.Gas += returnGas interpreter.intPool.put(addr, value, inOffset, inSize, retOffset, retSize) return ret, nil } func opCallCode(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { // Pop gas. The actual gas is in interpreter.evm.callGasTemp. interpreter.intPool.putOne(callContext.stack.pop()) gas := interpreter.evm.callGasTemp // Pop other call parameters. addr, value, inOffset, inSize, retOffset, retSize := callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop() toAddr := common.BigToAddress(addr) value = math.U256(value) // Get arguments from the memory. args := callContext.memory.GetPtr(inOffset.Int64(), inSize.Int64()) if value.Sign() != 0 { gas += params.CallStipend } ret, returnGas, err := interpreter.evm.CallCode(callContext.contract, toAddr, args, gas, value) if err != nil { callContext.stack.push(interpreter.intPool.getZero()) } else { callContext.stack.push(interpreter.intPool.get().SetUint64(1)) } if err == nil || err == errExecutionReverted { callContext.memory.Set(retOffset.Uint64(), retSize.Uint64(), ret) } callContext.contract.Gas += returnGas interpreter.intPool.put(addr, value, inOffset, inSize, retOffset, retSize) return ret, nil } func opDelegateCall(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { // Pop gas. The actual gas is in interpreter.evm.callGasTemp. interpreter.intPool.putOne(callContext.stack.pop()) gas := interpreter.evm.callGasTemp // Pop other call parameters. addr, inOffset, inSize, retOffset, retSize := callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop() toAddr := common.BigToAddress(addr) // Get arguments from the memory. args := callContext.memory.GetPtr(inOffset.Int64(), inSize.Int64()) ret, returnGas, err := interpreter.evm.DelegateCall(callContext.contract, toAddr, args, gas) if err != nil { callContext.stack.push(interpreter.intPool.getZero()) } else { callContext.stack.push(interpreter.intPool.get().SetUint64(1)) } if err == nil || err == errExecutionReverted { callContext.memory.Set(retOffset.Uint64(), retSize.Uint64(), ret) } callContext.contract.Gas += returnGas interpreter.intPool.put(addr, inOffset, inSize, retOffset, retSize) return ret, nil } func opStaticCall(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { // Pop gas. The actual gas is in interpreter.evm.callGasTemp. interpreter.intPool.putOne(callContext.stack.pop()) gas := interpreter.evm.callGasTemp // Pop other call parameters. addr, inOffset, inSize, retOffset, retSize := callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop(), callContext.stack.pop() toAddr := common.BigToAddress(addr) // Get arguments from the memory. args := callContext.memory.GetPtr(inOffset.Int64(), inSize.Int64()) ret, returnGas, err := interpreter.evm.StaticCall(callContext.contract, toAddr, args, gas) if err != nil { callContext.stack.push(interpreter.intPool.getZero()) } else { callContext.stack.push(interpreter.intPool.get().SetUint64(1)) } if err == nil || err == errExecutionReverted { callContext.memory.Set(retOffset.Uint64(), retSize.Uint64(), ret) } callContext.contract.Gas += returnGas interpreter.intPool.put(addr, inOffset, inSize, retOffset, retSize) return ret, nil } func opReturn(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { offset, size := callContext.stack.pop(), callContext.stack.pop() ret := callContext.memory.GetPtr(offset.Int64(), size.Int64()) interpreter.intPool.put(offset, size) return ret, nil } func opRevert(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { offset, size := callContext.stack.pop(), callContext.stack.pop() ret := callContext.memory.GetPtr(offset.Int64(), size.Int64()) interpreter.intPool.put(offset, size) return ret, nil } func opStop(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { return nil, nil } func opSuicide(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { balance := interpreter.evm.StateDB.GetBalance(callContext.contract.Address()) interpreter.evm.StateDB.AddBalance(common.BigToAddress(callContext.stack.pop()), balance) interpreter.evm.StateDB.Suicide(callContext.contract.Address()) return nil, nil } // following functions are used by the instruction jump table // make log instruction function func makeLog(size int) executionFunc { return func(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { topics := make([]common.Hash, size) mStart, mSize := callContext.stack.pop(), callContext.stack.pop() for i := 0; i < size; i++ { topics[i] = common.BigToHash(callContext.stack.pop()) } d := callContext.memory.GetCopy(mStart.Int64(), mSize.Int64()) interpreter.evm.StateDB.AddLog(&types.Log{ Address: callContext.contract.Address(), Topics: topics, Data: d, // This is a non-consensus field, but assigned here because // core/state doesn't know the current block number. BlockNumber: interpreter.evm.BlockNumber.Uint64(), }) interpreter.intPool.put(mStart, mSize) return nil, nil } } // opPush1 is a specialized version of pushN func opPush1(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { var ( codeLen = uint64(len(callContext.contract.Code)) integer = interpreter.intPool.get() ) *pc += 1 if *pc < codeLen { callContext.stack.push(integer.SetUint64(uint64(callContext.contract.Code[*pc]))) } else { callContext.stack.push(integer.SetUint64(0)) } return nil, nil } // make push instruction function func makePush(size uint64, pushByteSize int) executionFunc { return func(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { codeLen := len(callContext.contract.Code) startMin := codeLen if int(*pc+1) < startMin { startMin = int(*pc + 1) } endMin := codeLen if startMin+pushByteSize < endMin { endMin = startMin + pushByteSize } integer := interpreter.intPool.get() callContext.stack.push(integer.SetBytes(common.RightPadBytes(callContext.contract.Code[startMin:endMin], pushByteSize))) *pc += size return nil, nil } } // make dup instruction function func makeDup(size int64) executionFunc { return func(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { callContext.stack.dup(interpreter.intPool, int(size)) return nil, nil } } // make swap instruction function func makeSwap(size int64) executionFunc { // switch n + 1 otherwise n would be swapped with n size++ return func(pc *uint64, interpreter *EVMInterpreter, callContext *callCtx) ([]byte, error) { callContext.stack.swap(int(size)) return nil, nil } }