pragma solidity >=0.4.21 <0.6.0; contract Test1 { function isSameAddress(address a, address b) public returns(bool){ //Simply add the two arguments and return if (a == b) return true; return false; } } contract OpCodes { Test1 test1; constructor() public { //Constructor function test1 = new Test1(); //Create new "Test1" function } modifier onlyOwner(address _owner) { require(msg.sender == _owner); _; } // Add a todo to the list function test() public { //simple_instructions /*assembly { pop(sub(dup1, mul(dup1, dup1))) }*/ //keywords assembly { pop(address) return(2, byte(2,1)) } //label_complex /*assembly { 7 abc: 8 eq jump(abc) jumpi(eq(7, 8), abc) pop } assembly { pop(jumpi(eq(7, 8), abc)) jump(abc) }*/ //functional /*assembly { let x := 2 add(7, mul(6, x)) mul(7, 8) add =: x }*/ //for_statement assembly { for { let i := 1 } lt(i, 5) { i := add(i, 1) } {} } assembly { for { let i := 6 } gt(i, 5) { i := add(i, 1) } {} } assembly { for { let i := 1 } slt(i, 5) { i := add(i, 1) } {} } assembly { for { let i := 6 } sgt(i, 5) { i := add(i, 1) } {} } //no_opcodes_in_strict assembly { pop(callvalue()) } //no_dup_swap_in_strict /*assembly { swap1() }*/ //print_functional assembly { let x := mul(sload(0x12), 7) } //print_if assembly { if 2 { pop(mload(0)) }} //function_definitions_multiple_args assembly { function f(a, d){ mstore(a, d) } function g(a, d) -> x, y {}} //sstore assembly { function f(a, d){ sstore(a, d) } function g(a, d) -> x, y {}} //mstore8 assembly { function f(a, d){ mstore8(a, d) } function g(a, d) -> x, y {}} //calldatacopy assembly { let a := mload(0x40) let b := add(a, 32) calldatacopy(a, 4, 32) /*calldatacopy(b, add(4, 32), 32)*/ /*result := add(mload(a), mload(b))*/ } //codecopy assembly { let a := mload(0x40) let b := add(a, 32) codecopy(a, 4, 32) } //codecopy assembly { let a := mload(0x40) let b := add(a, 32) extcodecopy(0, a, 4, 32) } //for_statement assembly { let x := calldatasize() for { let i := 0} lt(i, x) { i := add(i, 1) } { mstore(i, 2) } } //keccak256 assembly { pop(keccak256(0,0)) } //returndatasize assembly { let r := returndatasize } //returndatacopy assembly { returndatacopy(64, 32, 0) } //byzantium vs const Constantinople //staticcall assembly { pop(staticcall(10000, 0x123, 64, 0x10, 128, 0x10)) } /*//create2 Constantinople assembly { pop(create2(10, 0x123, 32, 64)) }*/ //create Constantinople assembly { pop(create(10, 0x123, 32)) } //shift Constantinople /*assembly { pop(shl(10, 32)) } assembly { pop(shr(10, 32)) } assembly { pop(sar(10, 32)) }*/ //not assembly { pop( not(0x1f)) } //exp assembly { pop( exp(2, 226)) } //mod assembly { pop( mod(3, 9)) } //smod assembly { pop( smod(3, 9)) } //div assembly { pop( div(4, 2)) } //sdiv assembly { pop( sdiv(4, 2)) } //iszero assembly { pop(iszero(1)) } //and assembly { pop(and(2,3)) } //or assembly { pop(or(3,3)) } //xor assembly { pop(xor(3,3)) } //addmod assembly { pop(addmod(3,3,6)) } //mulmod assembly { pop(mulmod(3,3,3)) } //signextend assembly { pop(signextend(1, 10)) } //sha3 assembly { pop(calldataload(0)) } //blockhash assembly { pop(blockhash(sub(number(), 1))) } //balance assembly { pop(balance(0x0)) } //caller assembly { pop(caller()) } //codesize assembly { pop(codesize()) } //extcodesize assembly { pop(extcodesize(0x1)) } //origin assembly { pop(origin()) } //gas assembly { pop(gas())} //msize assembly { pop(msize())} //pc assembly { pop(pc())} //gasprice assembly { pop(gasprice())} //coinbase assembly { pop(coinbase())} //timestamp assembly { pop(timestamp())} //number assembly { pop(number())} //difficulty assembly { pop(difficulty())} //gaslimit assembly { pop(gaslimit())} //call address contractAddr = address(test1); bytes4 sig = bytes4(keccak256("isSameAddress(address,address)")); //Function signature address a = msg.sender; assembly { let x := mload(0x40) //Find empty storage location using "free memory pointer" mstore(x,sig) //Place signature at beginning of empty storage mstore(add(x,0x04),a) // first address parameter. just after signature mstore(add(x,0x24),a) // 2nd address parameter - first padded. add 32 bytes (not 20 bytes) mstore(0x40,add(x,0x64)) // this is missing in other examples. Set free pointer before function call. so it is used by called function. // new free pointer position after the output values of the called function. let success := call( 5000, //5k gas contractAddr, //To addr 0, //No wei passed x, // Inputs are at location x 0x44, //Inputs size two padded, so 68 bytes x, //Store output over input 0x20) //Output is 32 bytes long } //callcode assembly { let x := mload(0x40) //Find empty storage location using "free memory pointer" mstore(x,sig) //Place signature at beginning of empty storage mstore(add(x,0x04),a) // first address parameter. just after signature mstore(add(x,0x24),a) // 2nd address parameter - first padded. add 32 bytes (not 20 bytes) mstore(0x40,add(x,0x64)) // this is missing in other examples. Set free pointer before function call. so it is used by called function. // new free pointer position after the output values of the called function. let success := callcode( 5000, //5k gas contractAddr, //To addr 0, //No wei passed x, // Inputs are at location x 0x44, //Inputs size two padded, so 68 bytes x, //Store output over input 0x20) //Output is 32 bytes long } //delegatecall assembly { let x := mload(0x40) //Find empty storage location using "free memory pointer" mstore(x,sig) //Place signature at beginning of empty storage mstore(add(x,0x04),a) // first address parameter. just after signature mstore(add(x,0x24),a) // 2nd address parameter - first padded. add 32 bytes (not 20 bytes) mstore(0x40,add(x,0x64)) // this is missing in other examples. Set free pointer before function call. so it is used by called function. // new free pointer position after the output values of the called function. let success := delegatecall( 5000, //5k gas contractAddr, //To addr x, // Inputs are at location x 0x44, //Inputs size two padded, so 68 bytes x, //Store output over input 0x20) //Output is 32 bytes long } uint256 _id = 0x420042; //log0 log0( bytes32(0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20) ); //log1 log1( bytes32(0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20), bytes32(0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20) ); //log2 log2( bytes32(0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20), bytes32(0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20), bytes32(uint256(msg.sender)) ); //log3 log3( bytes32(0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20), bytes32(0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20), bytes32(uint256(msg.sender)), bytes32(_id) ); //log4 log4( bytes32(0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20), bytes32(0x50cb9fe53daa9737b786ab3646f04d0150dc50ef4e75f59509d83667ad5adb20), bytes32(uint256(msg.sender)), bytes32(_id), bytes32(_id) ); //selfdestruct assembly { selfdestruct(0x02) } } function test_revert() public { //revert assembly{ revert(0, 0) } } function test_invalid() public { //revert assembly{ invalid() } } function test_stop() public { //revert assembly{ stop() } } }