// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package eth import ( "errors" "math" "math/big" "sync" "sync/atomic" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/forkid" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/eth/downloader" "github.com/ethereum/go-ethereum/eth/fetcher" "github.com/ethereum/go-ethereum/eth/protocols/eth" "github.com/ethereum/go-ethereum/eth/protocols/snap" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/p2p" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/trie" ) const ( // txChanSize is the size of channel listening to NewTxsEvent. // The number is referenced from the size of tx pool. txChanSize = 4096 ) var ( syncChallengeTimeout = 15 * time.Second // Time allowance for a node to reply to the sync progress challenge ) // txPool defines the methods needed from a transaction pool implementation to // support all the operations needed by the Ethereum chain protocols. type txPool interface { // Has returns an indicator whether txpool has a transaction // cached with the given hash. Has(hash common.Hash) bool // Get retrieves the transaction from local txpool with given // tx hash. Get(hash common.Hash) *types.Transaction // AddRemotes should add the given transactions to the pool. AddRemotes([]*types.Transaction) []error // Pending should return pending transactions. // The slice should be modifiable by the caller. Pending() (map[common.Address]types.Transactions, error) // SubscribeNewTxsEvent should return an event subscription of // NewTxsEvent and send events to the given channel. SubscribeNewTxsEvent(chan<- core.NewTxsEvent) event.Subscription } // handlerConfig is the collection of initialization parameters to create a full // node network handler. type handlerConfig struct { Database ethdb.Database // Database for direct sync insertions Chain *core.BlockChain // Blockchain to serve data from TxPool txPool // Transaction pool to propagate from Network uint64 // Network identifier to adfvertise Sync downloader.SyncMode // Whether to fast or full sync BloomCache uint64 // Megabytes to alloc for fast sync bloom EventMux *event.TypeMux // Legacy event mux, deprecate for `feed` Checkpoint *params.TrustedCheckpoint // Hard coded checkpoint for sync challenges Whitelist map[uint64]common.Hash // Hard coded whitelist for sync challenged } type handler struct { networkID uint64 forkFilter forkid.Filter // Fork ID filter, constant across the lifetime of the node fastSync uint32 // Flag whether fast sync is enabled (gets disabled if we already have blocks) snapSync uint32 // Flag whether fast sync should operate on top of the snap protocol acceptTxs uint32 // Flag whether we're considered synchronised (enables transaction processing) checkpointNumber uint64 // Block number for the sync progress validator to cross reference checkpointHash common.Hash // Block hash for the sync progress validator to cross reference database ethdb.Database txpool txPool chain *core.BlockChain maxPeers int downloader *downloader.Downloader stateBloom *trie.SyncBloom blockFetcher *fetcher.BlockFetcher txFetcher *fetcher.TxFetcher peers *peerSet eventMux *event.TypeMux txsCh chan core.NewTxsEvent txsSub event.Subscription minedBlockSub *event.TypeMuxSubscription whitelist map[uint64]common.Hash // channels for fetcher, syncer, txsyncLoop txsyncCh chan *txsync quitSync chan struct{} chainSync *chainSyncer wg sync.WaitGroup peerWG sync.WaitGroup } // newHandler returns a handler for all Ethereum chain management protocol. func newHandler(config *handlerConfig) (*handler, error) { // Create the protocol manager with the base fields if config.EventMux == nil { config.EventMux = new(event.TypeMux) // Nicety initialization for tests } h := &handler{ networkID: config.Network, forkFilter: forkid.NewFilter(config.Chain), eventMux: config.EventMux, database: config.Database, txpool: config.TxPool, chain: config.Chain, peers: newPeerSet(), whitelist: config.Whitelist, txsyncCh: make(chan *txsync), quitSync: make(chan struct{}), } if config.Sync == downloader.FullSync { // The database seems empty as the current block is the genesis. Yet the fast // block is ahead, so fast sync was enabled for this node at a certain point. // The scenarios where this can happen is // * if the user manually (or via a bad block) rolled back a fast sync node // below the sync point. // * the last fast sync is not finished while user specifies a full sync this // time. But we don't have any recent state for full sync. // In these cases however it's safe to reenable fast sync. fullBlock, fastBlock := h.chain.CurrentBlock(), h.chain.CurrentFastBlock() if fullBlock.NumberU64() == 0 && fastBlock.NumberU64() > 0 { h.fastSync = uint32(1) log.Warn("Switch sync mode from full sync to fast sync") } } else { if h.chain.CurrentBlock().NumberU64() > 0 { // Print warning log if database is not empty to run fast sync. log.Warn("Switch sync mode from fast sync to full sync") } else { // If fast sync was requested and our database is empty, grant it h.fastSync = uint32(1) if config.Sync == downloader.SnapSync { h.snapSync = uint32(1) } } } // If we have trusted checkpoints, enforce them on the chain if config.Checkpoint != nil { h.checkpointNumber = (config.Checkpoint.SectionIndex+1)*params.CHTFrequency - 1 h.checkpointHash = config.Checkpoint.SectionHead } // Construct the downloader (long sync) and its backing state bloom if fast // sync is requested. The downloader is responsible for deallocating the state // bloom when it's done. if atomic.LoadUint32(&h.fastSync) == 1 { h.stateBloom = trie.NewSyncBloom(config.BloomCache, config.Database) } h.downloader = downloader.New(h.checkpointNumber, config.Database, h.stateBloom, h.eventMux, h.chain, nil, h.removePeer) // Construct the fetcher (short sync) validator := func(header *types.Header) error { return h.chain.Engine().VerifyHeader(h.chain, header, true) } heighter := func() uint64 { return h.chain.CurrentBlock().NumberU64() } inserter := func(blocks types.Blocks) (int, error) { // If sync hasn't reached the checkpoint yet, deny importing weird blocks. // // Ideally we would also compare the head block's timestamp and similarly reject // the propagated block if the head is too old. Unfortunately there is a corner // case when starting new networks, where the genesis might be ancient (0 unix) // which would prevent full nodes from accepting it. if h.chain.CurrentBlock().NumberU64() < h.checkpointNumber { log.Warn("Unsynced yet, discarded propagated block", "number", blocks[0].Number(), "hash", blocks[0].Hash()) return 0, nil } // If fast sync is running, deny importing weird blocks. This is a problematic // clause when starting up a new network, because fast-syncing miners might not // accept each others' blocks until a restart. Unfortunately we haven't figured // out a way yet where nodes can decide unilaterally whether the network is new // or not. This should be fixed if we figure out a solution. if atomic.LoadUint32(&h.fastSync) == 1 { log.Warn("Fast syncing, discarded propagated block", "number", blocks[0].Number(), "hash", blocks[0].Hash()) return 0, nil } n, err := h.chain.InsertChain(blocks) if err == nil { atomic.StoreUint32(&h.acceptTxs, 1) // Mark initial sync done on any fetcher import } return n, err } h.blockFetcher = fetcher.NewBlockFetcher(false, nil, h.chain.GetBlockByHash, validator, h.BroadcastBlock, heighter, nil, inserter, h.removePeer) fetchTx := func(peer string, hashes []common.Hash) error { p := h.peers.peer(peer) if p == nil { return errors.New("unknown peer") } return p.RequestTxs(hashes) } h.txFetcher = fetcher.NewTxFetcher(h.txpool.Has, h.txpool.AddRemotes, fetchTx) h.chainSync = newChainSyncer(h) return h, nil } // runEthPeer registers an eth peer into the joint eth/snap peerset, adds it to // various subsistems and starts handling messages. func (h *handler) runEthPeer(peer *eth.Peer, handler eth.Handler) error { // If the peer has a `snap` extension, wait for it to connect so we can have // a uniform initialization/teardown mechanism snap, err := h.peers.waitSnapExtension(peer) if err != nil { peer.Log().Error("Snapshot extension barrier failed", "err", err) return err } // TODO(karalabe): Not sure why this is needed if !h.chainSync.handlePeerEvent(peer) { return p2p.DiscQuitting } h.peerWG.Add(1) defer h.peerWG.Done() // Execute the Ethereum handshake var ( genesis = h.chain.Genesis() head = h.chain.CurrentHeader() hash = head.Hash() number = head.Number.Uint64() td = h.chain.GetTd(hash, number) ) forkID := forkid.NewID(h.chain.Config(), h.chain.Genesis().Hash(), h.chain.CurrentHeader().Number.Uint64()) if err := peer.Handshake(h.networkID, td, hash, genesis.Hash(), forkID, h.forkFilter); err != nil { peer.Log().Debug("Ethereum handshake failed", "err", err) return err } reject := false // reserved peer slots if atomic.LoadUint32(&h.snapSync) == 1 { if snap == nil { // If we are running snap-sync, we want to reserve roughly half the peer // slots for peers supporting the snap protocol. // The logic here is; we only allow up to 5 more non-snap peers than snap-peers. if all, snp := h.peers.len(), h.peers.snapLen(); all-snp > snp+5 { reject = true } } } // Ignore maxPeers if this is a trusted peer if !peer.Peer.Info().Network.Trusted { if reject || h.peers.len() >= h.maxPeers { return p2p.DiscTooManyPeers } } peer.Log().Debug("Ethereum peer connected", "name", peer.Name()) // Register the peer locally if err := h.peers.registerPeer(peer, snap); err != nil { peer.Log().Error("Ethereum peer registration failed", "err", err) return err } defer h.removePeer(peer.ID()) p := h.peers.peer(peer.ID()) if p == nil { return errors.New("peer dropped during handling") } // Register the peer in the downloader. If the downloader considers it banned, we disconnect if err := h.downloader.RegisterPeer(peer.ID(), peer.Version(), peer); err != nil { peer.Log().Error("Failed to register peer in eth syncer", "err", err) return err } if snap != nil { if err := h.downloader.SnapSyncer.Register(snap); err != nil { peer.Log().Error("Failed to register peer in snap syncer", "err", err) return err } } h.chainSync.handlePeerEvent(peer) // Propagate existing transactions. new transactions appearing // after this will be sent via broadcasts. h.syncTransactions(peer) // If we have a trusted CHT, reject all peers below that (avoid fast sync eclipse) if h.checkpointHash != (common.Hash{}) { // Request the peer's checkpoint header for chain height/weight validation if err := peer.RequestHeadersByNumber(h.checkpointNumber, 1, 0, false); err != nil { return err } // Start a timer to disconnect if the peer doesn't reply in time p.syncDrop = time.AfterFunc(syncChallengeTimeout, func() { peer.Log().Warn("Checkpoint challenge timed out, dropping", "addr", peer.RemoteAddr(), "type", peer.Name()) h.removePeer(peer.ID()) }) // Make sure it's cleaned up if the peer dies off defer func() { if p.syncDrop != nil { p.syncDrop.Stop() p.syncDrop = nil } }() } // If we have any explicit whitelist block hashes, request them for number := range h.whitelist { if err := peer.RequestHeadersByNumber(number, 1, 0, false); err != nil { return err } } // Handle incoming messages until the connection is torn down return handler(peer) } // runSnapExtension registers a `snap` peer into the joint eth/snap peerset and // starts handling inbound messages. As `snap` is only a satellite protocol to // `eth`, all subsystem registrations and lifecycle management will be done by // the main `eth` handler to prevent strange races. func (h *handler) runSnapExtension(peer *snap.Peer, handler snap.Handler) error { h.peerWG.Add(1) defer h.peerWG.Done() if err := h.peers.registerSnapExtension(peer); err != nil { peer.Log().Error("Snapshot extension registration failed", "err", err) return err } return handler(peer) } // removePeer unregisters a peer from the downloader and fetchers, removes it from // the set of tracked peers and closes the network connection to it. func (h *handler) removePeer(id string) { // Create a custom logger to avoid printing the entire id var logger log.Logger if len(id) < 16 { // Tests use short IDs, don't choke on them logger = log.New("peer", id) } else { logger = log.New("peer", id[:8]) } // Abort if the peer does not exist peer := h.peers.peer(id) if peer == nil { logger.Error("Ethereum peer removal failed", "err", errPeerNotRegistered) return } // Remove the `eth` peer if it exists logger.Debug("Removing Ethereum peer", "snap", peer.snapExt != nil) // Remove the `snap` extension if it exists if peer.snapExt != nil { h.downloader.SnapSyncer.Unregister(id) } h.downloader.UnregisterPeer(id) h.txFetcher.Drop(id) if err := h.peers.unregisterPeer(id); err != nil { logger.Error("Ethereum peer removal failed", "err", err) } // Hard disconnect at the networking layer peer.Peer.Disconnect(p2p.DiscUselessPeer) } func (h *handler) Start(maxPeers int) { h.maxPeers = maxPeers // broadcast transactions h.wg.Add(1) h.txsCh = make(chan core.NewTxsEvent, txChanSize) h.txsSub = h.txpool.SubscribeNewTxsEvent(h.txsCh) go h.txBroadcastLoop() // broadcast mined blocks h.wg.Add(1) h.minedBlockSub = h.eventMux.Subscribe(core.NewMinedBlockEvent{}) go h.minedBroadcastLoop() // start sync handlers h.wg.Add(2) go h.chainSync.loop() go h.txsyncLoop64() // TODO(karalabe): Legacy initial tx echange, drop with eth/64. } func (h *handler) Stop() { h.txsSub.Unsubscribe() // quits txBroadcastLoop h.minedBlockSub.Unsubscribe() // quits blockBroadcastLoop // Quit chainSync and txsync64. // After this is done, no new peers will be accepted. close(h.quitSync) h.wg.Wait() // Disconnect existing sessions. // This also closes the gate for any new registrations on the peer set. // sessions which are already established but not added to h.peers yet // will exit when they try to register. h.peers.close() h.peerWG.Wait() log.Info("Ethereum protocol stopped") } // BroadcastBlock will either propagate a block to a subset of its peers, or // will only announce its availability (depending what's requested). func (h *handler) BroadcastBlock(block *types.Block, propagate bool) { hash := block.Hash() peers := h.peers.peersWithoutBlock(hash) // If propagation is requested, send to a subset of the peer if propagate { // Calculate the TD of the block (it's not imported yet, so block.Td is not valid) var td *big.Int if parent := h.chain.GetBlock(block.ParentHash(), block.NumberU64()-1); parent != nil { td = new(big.Int).Add(block.Difficulty(), h.chain.GetTd(block.ParentHash(), block.NumberU64()-1)) } else { log.Error("Propagating dangling block", "number", block.Number(), "hash", hash) return } // Send the block to a subset of our peers transfer := peers[:int(math.Sqrt(float64(len(peers))))] for _, peer := range transfer { peer.AsyncSendNewBlock(block, td) } log.Trace("Propagated block", "hash", hash, "recipients", len(transfer), "duration", common.PrettyDuration(time.Since(block.ReceivedAt))) return } // Otherwise if the block is indeed in out own chain, announce it if h.chain.HasBlock(hash, block.NumberU64()) { for _, peer := range peers { peer.AsyncSendNewBlockHash(block) } log.Trace("Announced block", "hash", hash, "recipients", len(peers), "duration", common.PrettyDuration(time.Since(block.ReceivedAt))) } } // BroadcastTransactions will propagate a batch of transactions to all peers which are not known to // already have the given transaction. func (h *handler) BroadcastTransactions(txs types.Transactions, propagate bool) { var ( txset = make(map[*ethPeer][]common.Hash) annos = make(map[*ethPeer][]common.Hash) ) // Broadcast transactions to a batch of peers not knowing about it if propagate { for _, tx := range txs { peers := h.peers.peersWithoutTransaction(tx.Hash()) // Send the block to a subset of our peers transfer := peers[:int(math.Sqrt(float64(len(peers))))] for _, peer := range transfer { txset[peer] = append(txset[peer], tx.Hash()) } log.Trace("Broadcast transaction", "hash", tx.Hash(), "recipients", len(transfer)) } for peer, hashes := range txset { peer.AsyncSendTransactions(hashes) } return } // Otherwise only broadcast the announcement to peers for _, tx := range txs { peers := h.peers.peersWithoutTransaction(tx.Hash()) for _, peer := range peers { annos[peer] = append(annos[peer], tx.Hash()) } } for peer, hashes := range annos { if peer.Version() >= eth.ETH65 { peer.AsyncSendPooledTransactionHashes(hashes) } else { peer.AsyncSendTransactions(hashes) } } } // minedBroadcastLoop sends mined blocks to connected peers. func (h *handler) minedBroadcastLoop() { defer h.wg.Done() for obj := range h.minedBlockSub.Chan() { if ev, ok := obj.Data.(core.NewMinedBlockEvent); ok { h.BroadcastBlock(ev.Block, true) // First propagate block to peers h.BroadcastBlock(ev.Block, false) // Only then announce to the rest } } } // txBroadcastLoop announces new transactions to connected peers. func (h *handler) txBroadcastLoop() { defer h.wg.Done() for { select { case event := <-h.txsCh: h.BroadcastTransactions(event.Txs, true) // First propagate transactions to peers h.BroadcastTransactions(event.Txs, false) // Only then announce to the rest case <-h.txsSub.Err(): return } } }