// Copyright (c) 2013 Kyle Isom // Copyright (c) 2012 The Go Authors. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. package ecies import ( "bytes" "crypto/elliptic" "crypto/rand" "crypto/sha256" "flag" "fmt" "io/ioutil" "testing" ) var dumpEnc bool func init() { flDump := flag.Bool("dump", false, "write encrypted test message to file") flag.Parse() dumpEnc = *flDump } // Ensure the KDF generates appropriately sized keys. func TestKDF(t *testing.T) { msg := []byte("Hello, world") h := sha256.New() k, err := concatKDF(h, msg, nil, 64) if err != nil { fmt.Println(err.Error()) t.FailNow() } if len(k) != 64 { fmt.Printf("KDF: generated key is the wrong size (%d instead of 64\n", len(k)) t.FailNow() } } var skLen int var ErrBadSharedKeys = fmt.Errorf("ecies: shared keys don't match") // cmpParams compares a set of ECIES parameters. We assume, as per the // docs, that AES is the only supported symmetric encryption algorithm. func cmpParams(p1, p2 *ECIESParams) bool { if p1.hashAlgo != p2.hashAlgo { return false } else if p1.KeyLen != p2.KeyLen { return false } else if p1.BlockSize != p2.BlockSize { return false } return true } // cmpPublic returns true if the two public keys represent the same pojnt. func cmpPublic(pub1, pub2 PublicKey) bool { if pub1.X == nil || pub1.Y == nil { fmt.Println(ErrInvalidPublicKey.Error()) return false } if pub2.X == nil || pub2.Y == nil { fmt.Println(ErrInvalidPublicKey.Error()) return false } pub1Out := elliptic.Marshal(pub1.Curve, pub1.X, pub1.Y) pub2Out := elliptic.Marshal(pub2.Curve, pub2.X, pub2.Y) return bytes.Equal(pub1Out, pub2Out) } // cmpPrivate returns true if the two private keys are the same. func cmpPrivate(prv1, prv2 *PrivateKey) bool { if prv1 == nil || prv1.D == nil { return false } else if prv2 == nil || prv2.D == nil { return false } else if prv1.D.Cmp(prv2.D) != 0 { return false } else { return cmpPublic(prv1.PublicKey, prv2.PublicKey) } } // Validate the ECDH component. func TestSharedKey(t *testing.T) { prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { fmt.Println(err.Error()) t.FailNow() } skLen = MaxSharedKeyLength(&prv1.PublicKey) / 2 prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { fmt.Println(err.Error()) t.FailNow() } sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen) if err != nil { fmt.Println(err.Error()) t.FailNow() } sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen) if err != nil { fmt.Println(err.Error()) t.FailNow() } if !bytes.Equal(sk1, sk2) { fmt.Println(ErrBadSharedKeys.Error()) t.FailNow() } } // Verify that the key generation code fails when too much key data is // requested. func TestTooBigSharedKey(t *testing.T) { prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { fmt.Println(err.Error()) t.FailNow() } prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { fmt.Println(err.Error()) t.FailNow() } _, err = prv1.GenerateShared(&prv2.PublicKey, skLen*2, skLen*2) if err != ErrSharedKeyTooBig { fmt.Println("ecdh: shared key should be too large for curve") t.FailNow() } _, err = prv2.GenerateShared(&prv1.PublicKey, skLen*2, skLen*2) if err != ErrSharedKeyTooBig { fmt.Println("ecdh: shared key should be too large for curve") t.FailNow() } } // Ensure a public key can be successfully marshalled and unmarshalled, and // that the decoded key is the same as the original. func TestMarshalPublic(t *testing.T) { prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { fmt.Println(err.Error()) t.FailNow() } out, err := MarshalPublic(&prv.PublicKey) if err != nil { fmt.Println(err.Error()) t.FailNow() } pub, err := UnmarshalPublic(out) if err != nil { fmt.Println(err.Error()) t.FailNow() } if !cmpPublic(prv.PublicKey, *pub) { fmt.Println("ecies: failed to unmarshal public key") t.FailNow() } } // Ensure that a private key can be encoded into DER format, and that // the resulting key is properly parsed back into a public key. func TestMarshalPrivate(t *testing.T) { prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { fmt.Println(err.Error()) t.FailNow() } out, err := MarshalPrivate(prv) if err != nil { fmt.Println(err.Error()) t.FailNow() } if dumpEnc { ioutil.WriteFile("test.out", out, 0644) } prv2, err := UnmarshalPrivate(out) if err != nil { fmt.Println(err.Error()) t.FailNow() } if !cmpPrivate(prv, prv2) { fmt.Println("ecdh: private key import failed") t.FailNow() } } // Ensure that a private key can be successfully encoded to PEM format, and // the resulting key is properly parsed back in. func TestPrivatePEM(t *testing.T) { prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { fmt.Println(err.Error()) t.FailNow() } out, err := ExportPrivatePEM(prv) if err != nil { fmt.Println(err.Error()) t.FailNow() } if dumpEnc { ioutil.WriteFile("test.key", out, 0644) } prv2, err := ImportPrivatePEM(out) if err != nil { fmt.Println(err.Error()) t.FailNow() } else if !cmpPrivate(prv, prv2) { fmt.Println("ecdh: import from PEM failed") t.FailNow() } } // Ensure that a public key can be successfully encoded to PEM format, and // the resulting key is properly parsed back in. func TestPublicPEM(t *testing.T) { prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { fmt.Println(err.Error()) t.FailNow() } out, err := ExportPublicPEM(&prv.PublicKey) if err != nil { fmt.Println(err.Error()) t.FailNow() } if dumpEnc { ioutil.WriteFile("test.pem", out, 0644) } pub2, err := ImportPublicPEM(out) if err != nil { fmt.Println(err.Error()) t.FailNow() } else if !cmpPublic(prv.PublicKey, *pub2) { fmt.Println("ecdh: import from PEM failed") t.FailNow() } } // Benchmark the generation of P256 keys. func BenchmarkGenerateKeyP256(b *testing.B) { for i := 0; i < b.N; i++ { if _, err := GenerateKey(rand.Reader, elliptic.P256(), nil); err != nil { fmt.Println(err.Error()) b.FailNow() } } } // Benchmark the generation of P256 shared keys. func BenchmarkGenSharedKeyP256(b *testing.B) { prv, err := GenerateKey(rand.Reader, elliptic.P256(), nil) if err != nil { fmt.Println(err.Error()) b.FailNow() } for i := 0; i < b.N; i++ { _, err := prv.GenerateShared(&prv.PublicKey, skLen, skLen) if err != nil { fmt.Println(err.Error()) b.FailNow() } } } // Verify that an encrypted message can be successfully decrypted. func TestEncryptDecrypt(t *testing.T) { prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { fmt.Println(err.Error()) t.FailNow() } prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { fmt.Println(err.Error()) t.FailNow() } message := []byte("Hello, world.") ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil) if err != nil { fmt.Println(err.Error()) t.FailNow() } pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil) if err != nil { fmt.Println(err.Error()) t.FailNow() } if !bytes.Equal(pt, message) { fmt.Println("ecies: plaintext doesn't match message") t.FailNow() } _, err = prv1.Decrypt(rand.Reader, ct, nil, nil) if err == nil { fmt.Println("ecies: encryption should not have succeeded") t.FailNow() } } func TestDecryptShared2(t *testing.T) { prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { t.Fatal(err) } message := []byte("Hello, world.") shared2 := []byte("shared data 2") ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, shared2) if err != nil { t.Fatal(err) } // Check that decrypting with correct shared data works. pt, err := prv.Decrypt(rand.Reader, ct, nil, shared2) if err != nil { t.Fatal(err) } if !bytes.Equal(pt, message) { t.Fatal("ecies: plaintext doesn't match message") } // Decrypting without shared data or incorrect shared data fails. if _, err = prv.Decrypt(rand.Reader, ct, nil, nil); err == nil { t.Fatal("ecies: decrypting without shared data didn't fail") } if _, err = prv.Decrypt(rand.Reader, ct, nil, []byte("garbage")); err == nil { t.Fatal("ecies: decrypting with incorrect shared data didn't fail") } } // TestMarshalEncryption validates the encode/decode produces a valid // ECIES encryption key. func TestMarshalEncryption(t *testing.T) { prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { fmt.Println(err.Error()) t.FailNow() } out, err := MarshalPrivate(prv1) if err != nil { fmt.Println(err.Error()) t.FailNow() } prv2, err := UnmarshalPrivate(out) if err != nil { fmt.Println(err.Error()) t.FailNow() } message := []byte("Hello, world.") ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil) if err != nil { fmt.Println(err.Error()) t.FailNow() } pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil) if err != nil { fmt.Println(err.Error()) t.FailNow() } if !bytes.Equal(pt, message) { fmt.Println("ecies: plaintext doesn't match message") t.FailNow() } _, err = prv1.Decrypt(rand.Reader, ct, nil, nil) if err != nil { fmt.Println(err.Error()) t.FailNow() } } type testCase struct { Curve elliptic.Curve Name string Expected bool } var testCases = []testCase{ testCase{ Curve: elliptic.P256(), Name: "P256", Expected: true, }, testCase{ Curve: elliptic.P384(), Name: "P384", Expected: true, }, testCase{ Curve: elliptic.P521(), Name: "P521", Expected: true, }, } // Test parameter selection for each curve, and that P224 fails automatic // parameter selection (see README for a discussion of P224). Ensures that // selecting a set of parameters automatically for the given curve works. func TestParamSelection(t *testing.T) { for _, c := range testCases { testParamSelection(t, c) } } func testParamSelection(t *testing.T, c testCase) { params := ParamsFromCurve(c.Curve) if params == nil && c.Expected { fmt.Printf("%s (%s)\n", ErrInvalidParams.Error(), c.Name) t.FailNow() } else if params != nil && !c.Expected { fmt.Printf("ecies: parameters should be invalid (%s)\n", c.Name) t.FailNow() } prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { fmt.Printf("%s (%s)\n", err.Error(), c.Name) t.FailNow() } prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { fmt.Printf("%s (%s)\n", err.Error(), c.Name) t.FailNow() } message := []byte("Hello, world.") ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil) if err != nil { fmt.Printf("%s (%s)\n", err.Error(), c.Name) t.FailNow() } pt, err := prv2.Decrypt(rand.Reader, ct, nil, nil) if err != nil { fmt.Printf("%s (%s)\n", err.Error(), c.Name) t.FailNow() } if !bytes.Equal(pt, message) { fmt.Printf("ecies: plaintext doesn't match message (%s)\n", c.Name) t.FailNow() } _, err = prv1.Decrypt(rand.Reader, ct, nil, nil) if err == nil { fmt.Printf("ecies: encryption should not have succeeded (%s)\n", c.Name) t.FailNow() } } // Ensure that the basic public key validation in the decryption operation // works. func TestBasicKeyValidation(t *testing.T) { badBytes := []byte{0, 1, 5, 6, 7, 8, 9} prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) if err != nil { fmt.Println(err.Error()) t.FailNow() } message := []byte("Hello, world.") ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, nil) if err != nil { fmt.Println(err.Error()) t.FailNow() } for _, b := range badBytes { ct[0] = b _, err := prv.Decrypt(rand.Reader, ct, nil, nil) if err != ErrInvalidPublicKey { fmt.Println("ecies: validated an invalid key") t.FailNow() } } }