// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package ethapi import ( "context" "encoding/hex" "errors" "fmt" "math/big" "strings" "time" "github.com/davecgh/go-spew/spew" "github.com/ethereum/go-ethereum/accounts" "github.com/ethereum/go-ethereum/accounts/abi" "github.com/ethereum/go-ethereum/accounts/keystore" "github.com/ethereum/go-ethereum/accounts/scwallet" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/hexutil" "github.com/ethereum/go-ethereum/common/math" "github.com/ethereum/go-ethereum/consensus" "github.com/ethereum/go-ethereum/consensus/misc" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/eth/tracers/logger" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/p2p" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/rpc" "github.com/tyler-smith/go-bip39" ) // EthereumAPI provides an API to access Ethereum related information. type EthereumAPI struct { b Backend } // NewEthereumAPI creates a new Ethereum protocol API. func NewEthereumAPI(b Backend) *EthereumAPI { return &EthereumAPI{b} } // GasPrice returns a suggestion for a gas price for legacy transactions. func (s *EthereumAPI) GasPrice(ctx context.Context) (*hexutil.Big, error) { tipcap, err := s.b.SuggestGasTipCap(ctx) if err != nil { return nil, err } if head := s.b.CurrentHeader(); head.BaseFee != nil { tipcap.Add(tipcap, head.BaseFee) } return (*hexutil.Big)(tipcap), err } // MaxPriorityFeePerGas returns a suggestion for a gas tip cap for dynamic fee transactions. func (s *EthereumAPI) MaxPriorityFeePerGas(ctx context.Context) (*hexutil.Big, error) { tipcap, err := s.b.SuggestGasTipCap(ctx) if err != nil { return nil, err } return (*hexutil.Big)(tipcap), err } type feeHistoryResult struct { OldestBlock *hexutil.Big `json:"oldestBlock"` Reward [][]*hexutil.Big `json:"reward,omitempty"` BaseFee []*hexutil.Big `json:"baseFeePerGas,omitempty"` GasUsedRatio []float64 `json:"gasUsedRatio"` } // FeeHistory returns the fee market history. func (s *EthereumAPI) FeeHistory(ctx context.Context, blockCount math.HexOrDecimal64, lastBlock rpc.BlockNumber, rewardPercentiles []float64) (*feeHistoryResult, error) { oldest, reward, baseFee, gasUsed, err := s.b.FeeHistory(ctx, uint64(blockCount), lastBlock, rewardPercentiles) if err != nil { return nil, err } results := &feeHistoryResult{ OldestBlock: (*hexutil.Big)(oldest), GasUsedRatio: gasUsed, } if reward != nil { results.Reward = make([][]*hexutil.Big, len(reward)) for i, w := range reward { results.Reward[i] = make([]*hexutil.Big, len(w)) for j, v := range w { results.Reward[i][j] = (*hexutil.Big)(v) } } } if baseFee != nil { results.BaseFee = make([]*hexutil.Big, len(baseFee)) for i, v := range baseFee { results.BaseFee[i] = (*hexutil.Big)(v) } } return results, nil } // Syncing returns false in case the node is currently not syncing with the network. It can be up-to-date or has not // yet received the latest block headers from its pears. In case it is synchronizing: // - startingBlock: block number this node started to synchronize from // - currentBlock: block number this node is currently importing // - highestBlock: block number of the highest block header this node has received from peers // - pulledStates: number of state entries processed until now // - knownStates: number of known state entries that still need to be pulled func (s *EthereumAPI) Syncing() (interface{}, error) { progress := s.b.SyncProgress() // Return not syncing if the synchronisation already completed if progress.CurrentBlock >= progress.HighestBlock { return false, nil } // Otherwise gather the block sync stats return map[string]interface{}{ "startingBlock": hexutil.Uint64(progress.StartingBlock), "currentBlock": hexutil.Uint64(progress.CurrentBlock), "highestBlock": hexutil.Uint64(progress.HighestBlock), "syncedAccounts": hexutil.Uint64(progress.SyncedAccounts), "syncedAccountBytes": hexutil.Uint64(progress.SyncedAccountBytes), "syncedBytecodes": hexutil.Uint64(progress.SyncedBytecodes), "syncedBytecodeBytes": hexutil.Uint64(progress.SyncedBytecodeBytes), "syncedStorage": hexutil.Uint64(progress.SyncedStorage), "syncedStorageBytes": hexutil.Uint64(progress.SyncedStorageBytes), "healedTrienodes": hexutil.Uint64(progress.HealedTrienodes), "healedTrienodeBytes": hexutil.Uint64(progress.HealedTrienodeBytes), "healedBytecodes": hexutil.Uint64(progress.HealedBytecodes), "healedBytecodeBytes": hexutil.Uint64(progress.HealedBytecodeBytes), "healingTrienodes": hexutil.Uint64(progress.HealingTrienodes), "healingBytecode": hexutil.Uint64(progress.HealingBytecode), }, nil } // TxPoolAPI offers and API for the transaction pool. It only operates on data that is non-confidential. type TxPoolAPI struct { b Backend } // NewTxPoolAPI creates a new tx pool service that gives information about the transaction pool. func NewTxPoolAPI(b Backend) *TxPoolAPI { return &TxPoolAPI{b} } // Content returns the transactions contained within the transaction pool. func (s *TxPoolAPI) Content() map[string]map[string]map[string]*RPCTransaction { content := map[string]map[string]map[string]*RPCTransaction{ "pending": make(map[string]map[string]*RPCTransaction), "queued": make(map[string]map[string]*RPCTransaction), } pending, queue := s.b.TxPoolContent() curHeader := s.b.CurrentHeader() // Flatten the pending transactions for account, txs := range pending { dump := make(map[string]*RPCTransaction) for _, tx := range txs { dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig()) } content["pending"][account.Hex()] = dump } // Flatten the queued transactions for account, txs := range queue { dump := make(map[string]*RPCTransaction) for _, tx := range txs { dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig()) } content["queued"][account.Hex()] = dump } return content } // ContentFrom returns the transactions contained within the transaction pool. func (s *TxPoolAPI) ContentFrom(addr common.Address) map[string]map[string]*RPCTransaction { content := make(map[string]map[string]*RPCTransaction, 2) pending, queue := s.b.TxPoolContentFrom(addr) curHeader := s.b.CurrentHeader() // Build the pending transactions dump := make(map[string]*RPCTransaction, len(pending)) for _, tx := range pending { dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig()) } content["pending"] = dump // Build the queued transactions dump = make(map[string]*RPCTransaction, len(queue)) for _, tx := range queue { dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig()) } content["queued"] = dump return content } // Status returns the number of pending and queued transaction in the pool. func (s *TxPoolAPI) Status() map[string]hexutil.Uint { pending, queue := s.b.Stats() return map[string]hexutil.Uint{ "pending": hexutil.Uint(pending), "queued": hexutil.Uint(queue), } } // Inspect retrieves the content of the transaction pool and flattens it into an // easily inspectable list. func (s *TxPoolAPI) Inspect() map[string]map[string]map[string]string { content := map[string]map[string]map[string]string{ "pending": make(map[string]map[string]string), "queued": make(map[string]map[string]string), } pending, queue := s.b.TxPoolContent() // Define a formatter to flatten a transaction into a string var format = func(tx *types.Transaction) string { if to := tx.To(); to != nil { return fmt.Sprintf("%s: %v wei + %v gas × %v wei", tx.To().Hex(), tx.Value(), tx.Gas(), tx.GasPrice()) } return fmt.Sprintf("contract creation: %v wei + %v gas × %v wei", tx.Value(), tx.Gas(), tx.GasPrice()) } // Flatten the pending transactions for account, txs := range pending { dump := make(map[string]string) for _, tx := range txs { dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx) } content["pending"][account.Hex()] = dump } // Flatten the queued transactions for account, txs := range queue { dump := make(map[string]string) for _, tx := range txs { dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx) } content["queued"][account.Hex()] = dump } return content } // EthereumAccountAPI provides an API to access accounts managed by this node. // It offers only methods that can retrieve accounts. type EthereumAccountAPI struct { am *accounts.Manager } // NewEthereumAccountAPI creates a new EthereumAccountAPI. func NewEthereumAccountAPI(am *accounts.Manager) *EthereumAccountAPI { return &EthereumAccountAPI{am: am} } // Accounts returns the collection of accounts this node manages. func (s *EthereumAccountAPI) Accounts() []common.Address { return s.am.Accounts() } // PersonalAccountAPI provides an API to access accounts managed by this node. // It offers methods to create, (un)lock en list accounts. Some methods accept // passwords and are therefore considered private by default. type PersonalAccountAPI struct { am *accounts.Manager nonceLock *AddrLocker b Backend } // NewPersonalAccountAPI create a new PersonalAccountAPI. func NewPersonalAccountAPI(b Backend, nonceLock *AddrLocker) *PersonalAccountAPI { return &PersonalAccountAPI{ am: b.AccountManager(), nonceLock: nonceLock, b: b, } } // ListAccounts will return a list of addresses for accounts this node manages. func (s *PersonalAccountAPI) ListAccounts() []common.Address { return s.am.Accounts() } // rawWallet is a JSON representation of an accounts.Wallet interface, with its // data contents extracted into plain fields. type rawWallet struct { URL string `json:"url"` Status string `json:"status"` Failure string `json:"failure,omitempty"` Accounts []accounts.Account `json:"accounts,omitempty"` } // ListWallets will return a list of wallets this node manages. func (s *PersonalAccountAPI) ListWallets() []rawWallet { wallets := make([]rawWallet, 0) // return [] instead of nil if empty for _, wallet := range s.am.Wallets() { status, failure := wallet.Status() raw := rawWallet{ URL: wallet.URL().String(), Status: status, Accounts: wallet.Accounts(), } if failure != nil { raw.Failure = failure.Error() } wallets = append(wallets, raw) } return wallets } // OpenWallet initiates a hardware wallet opening procedure, establishing a USB // connection and attempting to authenticate via the provided passphrase. Note, // the method may return an extra challenge requiring a second open (e.g. the // Trezor PIN matrix challenge). func (s *PersonalAccountAPI) OpenWallet(url string, passphrase *string) error { wallet, err := s.am.Wallet(url) if err != nil { return err } pass := "" if passphrase != nil { pass = *passphrase } return wallet.Open(pass) } // DeriveAccount requests an HD wallet to derive a new account, optionally pinning // it for later reuse. func (s *PersonalAccountAPI) DeriveAccount(url string, path string, pin *bool) (accounts.Account, error) { wallet, err := s.am.Wallet(url) if err != nil { return accounts.Account{}, err } derivPath, err := accounts.ParseDerivationPath(path) if err != nil { return accounts.Account{}, err } if pin == nil { pin = new(bool) } return wallet.Derive(derivPath, *pin) } // NewAccount will create a new account and returns the address for the new account. func (s *PersonalAccountAPI) NewAccount(password string) (common.Address, error) { ks, err := fetchKeystore(s.am) if err != nil { return common.Address{}, err } acc, err := ks.NewAccount(password) if err == nil { log.Info("Your new key was generated", "address", acc.Address) log.Warn("Please backup your key file!", "path", acc.URL.Path) log.Warn("Please remember your password!") return acc.Address, nil } return common.Address{}, err } // fetchKeystore retrieves the encrypted keystore from the account manager. func fetchKeystore(am *accounts.Manager) (*keystore.KeyStore, error) { if ks := am.Backends(keystore.KeyStoreType); len(ks) > 0 { return ks[0].(*keystore.KeyStore), nil } return nil, errors.New("local keystore not used") } // ImportRawKey stores the given hex encoded ECDSA key into the key directory, // encrypting it with the passphrase. func (s *PersonalAccountAPI) ImportRawKey(privkey string, password string) (common.Address, error) { key, err := crypto.HexToECDSA(privkey) if err != nil { return common.Address{}, err } ks, err := fetchKeystore(s.am) if err != nil { return common.Address{}, err } acc, err := ks.ImportECDSA(key, password) return acc.Address, err } // UnlockAccount will unlock the account associated with the given address with // the given password for duration seconds. If duration is nil it will use a // default of 300 seconds. It returns an indication if the account was unlocked. func (s *PersonalAccountAPI) UnlockAccount(ctx context.Context, addr common.Address, password string, duration *uint64) (bool, error) { // When the API is exposed by external RPC(http, ws etc), unless the user // explicitly specifies to allow the insecure account unlocking, otherwise // it is disabled. if s.b.ExtRPCEnabled() && !s.b.AccountManager().Config().InsecureUnlockAllowed { return false, errors.New("account unlock with HTTP access is forbidden") } const max = uint64(time.Duration(math.MaxInt64) / time.Second) var d time.Duration if duration == nil { d = 300 * time.Second } else if *duration > max { return false, errors.New("unlock duration too large") } else { d = time.Duration(*duration) * time.Second } ks, err := fetchKeystore(s.am) if err != nil { return false, err } err = ks.TimedUnlock(accounts.Account{Address: addr}, password, d) if err != nil { log.Warn("Failed account unlock attempt", "address", addr, "err", err) } return err == nil, err } // LockAccount will lock the account associated with the given address when it's unlocked. func (s *PersonalAccountAPI) LockAccount(addr common.Address) bool { if ks, err := fetchKeystore(s.am); err == nil { return ks.Lock(addr) == nil } return false } // signTransaction sets defaults and signs the given transaction // NOTE: the caller needs to ensure that the nonceLock is held, if applicable, // and release it after the transaction has been submitted to the tx pool func (s *PersonalAccountAPI) signTransaction(ctx context.Context, args *TransactionArgs, passwd string) (*types.Transaction, error) { // Look up the wallet containing the requested signer account := accounts.Account{Address: args.from()} wallet, err := s.am.Find(account) if err != nil { return nil, err } // Set some sanity defaults and terminate on failure if err := args.setDefaults(ctx, s.b); err != nil { return nil, err } // Assemble the transaction and sign with the wallet tx := args.toTransaction() return wallet.SignTxWithPassphrase(account, passwd, tx, s.b.ChainConfig().ChainID) } // SendTransaction will create a transaction from the given arguments and // tries to sign it with the key associated with args.From. If the given // passwd isn't able to decrypt the key it fails. func (s *PersonalAccountAPI) SendTransaction(ctx context.Context, args TransactionArgs, passwd string) (common.Hash, error) { if args.Nonce == nil { // Hold the mutex around signing to prevent concurrent assignment of // the same nonce to multiple accounts. s.nonceLock.LockAddr(args.from()) defer s.nonceLock.UnlockAddr(args.from()) } signed, err := s.signTransaction(ctx, &args, passwd) if err != nil { log.Warn("Failed transaction send attempt", "from", args.from(), "to", args.To, "value", args.Value.ToInt(), "err", err) return common.Hash{}, err } return SubmitTransaction(ctx, s.b, signed) } // SignTransaction will create a transaction from the given arguments and // tries to sign it with the key associated with args.From. If the given passwd isn't // able to decrypt the key it fails. The transaction is returned in RLP-form, not broadcast // to other nodes func (s *PersonalAccountAPI) SignTransaction(ctx context.Context, args TransactionArgs, passwd string) (*SignTransactionResult, error) { // No need to obtain the noncelock mutex, since we won't be sending this // tx into the transaction pool, but right back to the user if args.From == nil { return nil, fmt.Errorf("sender not specified") } if args.Gas == nil { return nil, fmt.Errorf("gas not specified") } if args.GasPrice == nil && (args.MaxFeePerGas == nil || args.MaxPriorityFeePerGas == nil) { return nil, fmt.Errorf("missing gasPrice or maxFeePerGas/maxPriorityFeePerGas") } if args.Nonce == nil { return nil, fmt.Errorf("nonce not specified") } // Before actually signing the transaction, ensure the transaction fee is reasonable. tx := args.toTransaction() if err := checkTxFee(tx.GasPrice(), tx.Gas(), s.b.RPCTxFeeCap()); err != nil { return nil, err } signed, err := s.signTransaction(ctx, &args, passwd) if err != nil { log.Warn("Failed transaction sign attempt", "from", args.from(), "to", args.To, "value", args.Value.ToInt(), "err", err) return nil, err } data, err := signed.MarshalBinary() if err != nil { return nil, err } return &SignTransactionResult{data, signed}, nil } // Sign calculates an Ethereum ECDSA signature for: // keccak256("\x19Ethereum Signed Message:\n" + len(message) + message)) // // Note, the produced signature conforms to the secp256k1 curve R, S and V values, // where the V value will be 27 or 28 for legacy reasons. // // The key used to calculate the signature is decrypted with the given password. // // https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_sign func (s *PersonalAccountAPI) Sign(ctx context.Context, data hexutil.Bytes, addr common.Address, passwd string) (hexutil.Bytes, error) { // Look up the wallet containing the requested signer account := accounts.Account{Address: addr} wallet, err := s.b.AccountManager().Find(account) if err != nil { return nil, err } // Assemble sign the data with the wallet signature, err := wallet.SignTextWithPassphrase(account, passwd, data) if err != nil { log.Warn("Failed data sign attempt", "address", addr, "err", err) return nil, err } signature[crypto.RecoveryIDOffset] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper return signature, nil } // EcRecover returns the address for the account that was used to create the signature. // Note, this function is compatible with eth_sign and personal_sign. As such it recovers // the address of: // hash = keccak256("\x19Ethereum Signed Message:\n"${message length}${message}) // addr = ecrecover(hash, signature) // // Note, the signature must conform to the secp256k1 curve R, S and V values, where // the V value must be 27 or 28 for legacy reasons. // // https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_ecRecover func (s *PersonalAccountAPI) EcRecover(ctx context.Context, data, sig hexutil.Bytes) (common.Address, error) { if len(sig) != crypto.SignatureLength { return common.Address{}, fmt.Errorf("signature must be %d bytes long", crypto.SignatureLength) } if sig[crypto.RecoveryIDOffset] != 27 && sig[crypto.RecoveryIDOffset] != 28 { return common.Address{}, fmt.Errorf("invalid Ethereum signature (V is not 27 or 28)") } sig[crypto.RecoveryIDOffset] -= 27 // Transform yellow paper V from 27/28 to 0/1 rpk, err := crypto.SigToPub(accounts.TextHash(data), sig) if err != nil { return common.Address{}, err } return crypto.PubkeyToAddress(*rpk), nil } // InitializeWallet initializes a new wallet at the provided URL, by generating and returning a new private key. func (s *PersonalAccountAPI) InitializeWallet(ctx context.Context, url string) (string, error) { wallet, err := s.am.Wallet(url) if err != nil { return "", err } entropy, err := bip39.NewEntropy(256) if err != nil { return "", err } mnemonic, err := bip39.NewMnemonic(entropy) if err != nil { return "", err } seed := bip39.NewSeed(mnemonic, "") switch wallet := wallet.(type) { case *scwallet.Wallet: return mnemonic, wallet.Initialize(seed) default: return "", fmt.Errorf("specified wallet does not support initialization") } } // Unpair deletes a pairing between wallet and geth. func (s *PersonalAccountAPI) Unpair(ctx context.Context, url string, pin string) error { wallet, err := s.am.Wallet(url) if err != nil { return err } switch wallet := wallet.(type) { case *scwallet.Wallet: return wallet.Unpair([]byte(pin)) default: return fmt.Errorf("specified wallet does not support pairing") } } // BlockChainAPI provides an API to access Ethereum blockchain data. type BlockChainAPI struct { b Backend } // NewBlockChainAPI creates a new Ethereum blockchain API. func NewBlockChainAPI(b Backend) *BlockChainAPI { return &BlockChainAPI{b} } // ChainId is the EIP-155 replay-protection chain id for the current Ethereum chain config. // // Note, this method does not conform to EIP-695 because the configured chain ID is always // returned, regardless of the current head block. We used to return an error when the chain // wasn't synced up to a block where EIP-155 is enabled, but this behavior caused issues // in CL clients. func (api *BlockChainAPI) ChainId() *hexutil.Big { return (*hexutil.Big)(api.b.ChainConfig().ChainID) } // BlockNumber returns the block number of the chain head. func (s *BlockChainAPI) BlockNumber() hexutil.Uint64 { header, _ := s.b.HeaderByNumber(context.Background(), rpc.LatestBlockNumber) // latest header should always be available return hexutil.Uint64(header.Number.Uint64()) } // GetBalance returns the amount of wei for the given address in the state of the // given block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta // block numbers are also allowed. func (s *BlockChainAPI) GetBalance(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Big, error) { state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) if state == nil || err != nil { return nil, err } return (*hexutil.Big)(state.GetBalance(address)), state.Error() } // Result structs for GetProof type AccountResult struct { Address common.Address `json:"address"` AccountProof []string `json:"accountProof"` Balance *hexutil.Big `json:"balance"` CodeHash common.Hash `json:"codeHash"` Nonce hexutil.Uint64 `json:"nonce"` StorageHash common.Hash `json:"storageHash"` StorageProof []StorageResult `json:"storageProof"` } type StorageResult struct { Key string `json:"key"` Value *hexutil.Big `json:"value"` Proof []string `json:"proof"` } // GetProof returns the Merkle-proof for a given account and optionally some storage keys. func (s *BlockChainAPI) GetProof(ctx context.Context, address common.Address, storageKeys []string, blockNrOrHash rpc.BlockNumberOrHash) (*AccountResult, error) { state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) if state == nil || err != nil { return nil, err } storageTrie, err := state.StorageTrie(address) if err != nil { return nil, err } storageHash := types.EmptyRootHash codeHash := state.GetCodeHash(address) storageProof := make([]StorageResult, len(storageKeys)) // if we have a storageTrie, (which means the account exists), we can update the storagehash if storageTrie != nil { storageHash = storageTrie.Hash() } else { // no storageTrie means the account does not exist, so the codeHash is the hash of an empty bytearray. codeHash = crypto.Keccak256Hash(nil) } // create the proof for the storageKeys for i, hexKey := range storageKeys { key, err := decodeHash(hexKey) if err != nil { return nil, err } if storageTrie != nil { proof, storageError := state.GetStorageProof(address, key) if storageError != nil { return nil, storageError } storageProof[i] = StorageResult{hexKey, (*hexutil.Big)(state.GetState(address, key).Big()), toHexSlice(proof)} } else { storageProof[i] = StorageResult{hexKey, &hexutil.Big{}, []string{}} } } // create the accountProof accountProof, proofErr := state.GetProof(address) if proofErr != nil { return nil, proofErr } return &AccountResult{ Address: address, AccountProof: toHexSlice(accountProof), Balance: (*hexutil.Big)(state.GetBalance(address)), CodeHash: codeHash, Nonce: hexutil.Uint64(state.GetNonce(address)), StorageHash: storageHash, StorageProof: storageProof, }, state.Error() } // decodeHash parses a hex-encoded 32-byte hash. The input may optionally // be prefixed by 0x and can have a byte length up to 32. func decodeHash(s string) (common.Hash, error) { if strings.HasPrefix(s, "0x") || strings.HasPrefix(s, "0X") { s = s[2:] } if (len(s) & 1) > 0 { s = "0" + s } b, err := hex.DecodeString(s) if err != nil { return common.Hash{}, fmt.Errorf("hex string invalid") } if len(b) > 32 { return common.Hash{}, fmt.Errorf("hex string too long, want at most 32 bytes") } return common.BytesToHash(b), nil } // GetHeaderByNumber returns the requested canonical block header. // * When blockNr is -1 the chain head is returned. // * When blockNr is -2 the pending chain head is returned. func (s *BlockChainAPI) GetHeaderByNumber(ctx context.Context, number rpc.BlockNumber) (map[string]interface{}, error) { header, err := s.b.HeaderByNumber(ctx, number) if header != nil && err == nil { response := s.rpcMarshalHeader(ctx, header) if number == rpc.PendingBlockNumber { // Pending header need to nil out a few fields for _, field := range []string{"hash", "nonce", "miner"} { response[field] = nil } } return response, err } return nil, err } // GetHeaderByHash returns the requested header by hash. func (s *BlockChainAPI) GetHeaderByHash(ctx context.Context, hash common.Hash) map[string]interface{} { header, _ := s.b.HeaderByHash(ctx, hash) if header != nil { return s.rpcMarshalHeader(ctx, header) } return nil } // GetBlockByNumber returns the requested canonical block. // - When blockNr is -1 the chain head is returned. // - When blockNr is -2 the pending chain head is returned. // - When fullTx is true all transactions in the block are returned, otherwise // only the transaction hash is returned. func (s *BlockChainAPI) GetBlockByNumber(ctx context.Context, number rpc.BlockNumber, fullTx bool) (map[string]interface{}, error) { block, err := s.b.BlockByNumber(ctx, number) if block != nil && err == nil { response, err := s.rpcMarshalBlock(ctx, block, true, fullTx) if err == nil && number == rpc.PendingBlockNumber { // Pending blocks need to nil out a few fields for _, field := range []string{"hash", "nonce", "miner"} { response[field] = nil } } return response, err } return nil, err } // GetBlockByHash returns the requested block. When fullTx is true all transactions in the block are returned in full // detail, otherwise only the transaction hash is returned. func (s *BlockChainAPI) GetBlockByHash(ctx context.Context, hash common.Hash, fullTx bool) (map[string]interface{}, error) { block, err := s.b.BlockByHash(ctx, hash) if block != nil { return s.rpcMarshalBlock(ctx, block, true, fullTx) } return nil, err } // GetUncleByBlockNumberAndIndex returns the uncle block for the given block hash and index. func (s *BlockChainAPI) GetUncleByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) (map[string]interface{}, error) { block, err := s.b.BlockByNumber(ctx, blockNr) if block != nil { uncles := block.Uncles() if index >= hexutil.Uint(len(uncles)) { log.Debug("Requested uncle not found", "number", blockNr, "hash", block.Hash(), "index", index) return nil, nil } block = types.NewBlockWithHeader(uncles[index]) return s.rpcMarshalBlock(ctx, block, false, false) } return nil, err } // GetUncleByBlockHashAndIndex returns the uncle block for the given block hash and index. func (s *BlockChainAPI) GetUncleByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) (map[string]interface{}, error) { block, err := s.b.BlockByHash(ctx, blockHash) if block != nil { uncles := block.Uncles() if index >= hexutil.Uint(len(uncles)) { log.Debug("Requested uncle not found", "number", block.Number(), "hash", blockHash, "index", index) return nil, nil } block = types.NewBlockWithHeader(uncles[index]) return s.rpcMarshalBlock(ctx, block, false, false) } return nil, err } // GetUncleCountByBlockNumber returns number of uncles in the block for the given block number func (s *BlockChainAPI) GetUncleCountByBlockNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint { if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil { n := hexutil.Uint(len(block.Uncles())) return &n } return nil } // GetUncleCountByBlockHash returns number of uncles in the block for the given block hash func (s *BlockChainAPI) GetUncleCountByBlockHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint { if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil { n := hexutil.Uint(len(block.Uncles())) return &n } return nil } // GetCode returns the code stored at the given address in the state for the given block number. func (s *BlockChainAPI) GetCode(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) { state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) if state == nil || err != nil { return nil, err } code := state.GetCode(address) return code, state.Error() } // GetStorageAt returns the storage from the state at the given address, key and // block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta block // numbers are also allowed. func (s *BlockChainAPI) GetStorageAt(ctx context.Context, address common.Address, hexKey string, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) { state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) if state == nil || err != nil { return nil, err } key, err := decodeHash(hexKey) if err != nil { return nil, fmt.Errorf("unable to decode storage key: %s", err) } res := state.GetState(address, key) return res[:], state.Error() } // OverrideAccount indicates the overriding fields of account during the execution // of a message call. // Note, state and stateDiff can't be specified at the same time. If state is // set, message execution will only use the data in the given state. Otherwise // if statDiff is set, all diff will be applied first and then execute the call // message. type OverrideAccount struct { Nonce *hexutil.Uint64 `json:"nonce"` Code *hexutil.Bytes `json:"code"` Balance **hexutil.Big `json:"balance"` State *map[common.Hash]common.Hash `json:"state"` StateDiff *map[common.Hash]common.Hash `json:"stateDiff"` } // StateOverride is the collection of overridden accounts. type StateOverride map[common.Address]OverrideAccount // Apply overrides the fields of specified accounts into the given state. func (diff *StateOverride) Apply(state *state.StateDB) error { if diff == nil { return nil } for addr, account := range *diff { // Override account nonce. if account.Nonce != nil { state.SetNonce(addr, uint64(*account.Nonce)) } // Override account(contract) code. if account.Code != nil { state.SetCode(addr, *account.Code) } // Override account balance. if account.Balance != nil { state.SetBalance(addr, (*big.Int)(*account.Balance)) } if account.State != nil && account.StateDiff != nil { return fmt.Errorf("account %s has both 'state' and 'stateDiff'", addr.Hex()) } // Replace entire state if caller requires. if account.State != nil { state.SetStorage(addr, *account.State) } // Apply state diff into specified accounts. if account.StateDiff != nil { for key, value := range *account.StateDiff { state.SetState(addr, key, value) } } } // Now finalize the changes. Finalize is normally performed between transactions. // By using finalize, the overrides are semantically behaving as // if they were created in a transaction just before the tracing occur. state.Finalise(false) return nil } // BlockOverrides is a set of header fields to override. type BlockOverrides struct { Number *hexutil.Big Difficulty *hexutil.Big Time *hexutil.Uint64 GasLimit *hexutil.Uint64 Coinbase *common.Address Random *common.Hash BaseFee *hexutil.Big } // Apply overrides the given header fields into the given block context. func (diff *BlockOverrides) Apply(blockCtx *vm.BlockContext) { if diff == nil { return } if diff.Number != nil { blockCtx.BlockNumber = diff.Number.ToInt() } if diff.Difficulty != nil { blockCtx.Difficulty = diff.Difficulty.ToInt() } if diff.Time != nil { blockCtx.Time = uint64(*diff.Time) } if diff.GasLimit != nil { blockCtx.GasLimit = uint64(*diff.GasLimit) } if diff.Coinbase != nil { blockCtx.Coinbase = *diff.Coinbase } if diff.Random != nil { blockCtx.Random = diff.Random } if diff.BaseFee != nil { blockCtx.BaseFee = diff.BaseFee.ToInt() } } // ChainContextBackend provides methods required to implement ChainContext. type ChainContextBackend interface { Engine() consensus.Engine HeaderByNumber(context.Context, rpc.BlockNumber) (*types.Header, error) } // ChainContext is an implementation of core.ChainContext. It's main use-case // is instantiating a vm.BlockContext without having access to the BlockChain object. type ChainContext struct { b ChainContextBackend ctx context.Context } // NewChainContext creates a new ChainContext object. func NewChainContext(ctx context.Context, backend ChainContextBackend) *ChainContext { return &ChainContext{ctx: ctx, b: backend} } func (context *ChainContext) Engine() consensus.Engine { return context.b.Engine() } func (context *ChainContext) GetHeader(hash common.Hash, number uint64) *types.Header { // This method is called to get the hash for a block number when executing the BLOCKHASH // opcode. Hence no need to search for non-canonical blocks. header, err := context.b.HeaderByNumber(context.ctx, rpc.BlockNumber(number)) if err != nil || header.Hash() != hash { return nil } return header } func DoCall(ctx context.Context, b Backend, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride, blockOverrides *BlockOverrides, timeout time.Duration, globalGasCap uint64) (*core.ExecutionResult, error) { defer func(start time.Time) { log.Debug("Executing EVM call finished", "runtime", time.Since(start)) }(time.Now()) state, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) if state == nil || err != nil { return nil, err } if err := overrides.Apply(state); err != nil { return nil, err } // Setup context so it may be cancelled the call has completed // or, in case of unmetered gas, setup a context with a timeout. var cancel context.CancelFunc if timeout > 0 { ctx, cancel = context.WithTimeout(ctx, timeout) } else { ctx, cancel = context.WithCancel(ctx) } // Make sure the context is cancelled when the call has completed // this makes sure resources are cleaned up. defer cancel() // Get a new instance of the EVM. msg, err := args.ToMessage(globalGasCap, header.BaseFee) if err != nil { return nil, err } blockCtx := core.NewEVMBlockContext(header, NewChainContext(ctx, b), nil) if blockOverrides != nil { blockOverrides.Apply(&blockCtx) } evm, vmError := b.GetEVM(ctx, msg, state, header, &vm.Config{NoBaseFee: true}, &blockCtx) // Wait for the context to be done and cancel the evm. Even if the // EVM has finished, cancelling may be done (repeatedly) go func() { <-ctx.Done() evm.Cancel() }() // Execute the message. gp := new(core.GasPool).AddGas(math.MaxUint64) result, err := core.ApplyMessage(evm, msg, gp) if err := vmError(); err != nil { return nil, err } // If the timer caused an abort, return an appropriate error message if evm.Cancelled() { return nil, fmt.Errorf("execution aborted (timeout = %v)", timeout) } if err != nil { return result, fmt.Errorf("err: %w (supplied gas %d)", err, msg.GasLimit) } return result, nil } func newRevertError(result *core.ExecutionResult) *revertError { reason, errUnpack := abi.UnpackRevert(result.Revert()) err := errors.New("execution reverted") if errUnpack == nil { err = fmt.Errorf("execution reverted: %v", reason) } return &revertError{ error: err, reason: hexutil.Encode(result.Revert()), } } // revertError is an API error that encompasses an EVM revertal with JSON error // code and a binary data blob. type revertError struct { error reason string // revert reason hex encoded } // ErrorCode returns the JSON error code for a revertal. // See: https://github.com/ethereum/wiki/wiki/JSON-RPC-Error-Codes-Improvement-Proposal func (e *revertError) ErrorCode() int { return 3 } // ErrorData returns the hex encoded revert reason. func (e *revertError) ErrorData() interface{} { return e.reason } // Call executes the given transaction on the state for the given block number. // // Additionally, the caller can specify a batch of contract for fields overriding. // // Note, this function doesn't make and changes in the state/blockchain and is // useful to execute and retrieve values. func (s *BlockChainAPI) Call(ctx context.Context, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride, blockOverrides *BlockOverrides) (hexutil.Bytes, error) { result, err := DoCall(ctx, s.b, args, blockNrOrHash, overrides, blockOverrides, s.b.RPCEVMTimeout(), s.b.RPCGasCap()) if err != nil { return nil, err } // If the result contains a revert reason, try to unpack and return it. if len(result.Revert()) > 0 { return nil, newRevertError(result) } return result.Return(), result.Err } func DoEstimateGas(ctx context.Context, b Backend, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, gasCap uint64) (hexutil.Uint64, error) { // Binary search the gas requirement, as it may be higher than the amount used var ( lo uint64 = params.TxGas - 1 hi uint64 cap uint64 ) // Use zero address if sender unspecified. if args.From == nil { args.From = new(common.Address) } // Determine the highest gas limit can be used during the estimation. if args.Gas != nil && uint64(*args.Gas) >= params.TxGas { hi = uint64(*args.Gas) } else { // Retrieve the block to act as the gas ceiling block, err := b.BlockByNumberOrHash(ctx, blockNrOrHash) if err != nil { return 0, err } if block == nil { return 0, errors.New("block not found") } hi = block.GasLimit() } // Normalize the max fee per gas the call is willing to spend. var feeCap *big.Int if args.GasPrice != nil && (args.MaxFeePerGas != nil || args.MaxPriorityFeePerGas != nil) { return 0, errors.New("both gasPrice and (maxFeePerGas or maxPriorityFeePerGas) specified") } else if args.GasPrice != nil { feeCap = args.GasPrice.ToInt() } else if args.MaxFeePerGas != nil { feeCap = args.MaxFeePerGas.ToInt() } else { feeCap = common.Big0 } // Recap the highest gas limit with account's available balance. if feeCap.BitLen() != 0 { state, _, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) if err != nil { return 0, err } balance := state.GetBalance(*args.From) // from can't be nil available := new(big.Int).Set(balance) if args.Value != nil { if args.Value.ToInt().Cmp(available) >= 0 { return 0, core.ErrInsufficientFundsForTransfer } available.Sub(available, args.Value.ToInt()) } allowance := new(big.Int).Div(available, feeCap) // If the allowance is larger than maximum uint64, skip checking if allowance.IsUint64() && hi > allowance.Uint64() { transfer := args.Value if transfer == nil { transfer = new(hexutil.Big) } log.Warn("Gas estimation capped by limited funds", "original", hi, "balance", balance, "sent", transfer.ToInt(), "maxFeePerGas", feeCap, "fundable", allowance) hi = allowance.Uint64() } } // Recap the highest gas allowance with specified gascap. if gasCap != 0 && hi > gasCap { log.Warn("Caller gas above allowance, capping", "requested", hi, "cap", gasCap) hi = gasCap } cap = hi // Create a helper to check if a gas allowance results in an executable transaction executable := func(gas uint64) (bool, *core.ExecutionResult, error) { args.Gas = (*hexutil.Uint64)(&gas) result, err := DoCall(ctx, b, args, blockNrOrHash, nil, nil, 0, gasCap) if err != nil { if errors.Is(err, core.ErrIntrinsicGas) { return true, nil, nil // Special case, raise gas limit } return true, nil, err // Bail out } return result.Failed(), result, nil } // Execute the binary search and hone in on an executable gas limit for lo+1 < hi { mid := (hi + lo) / 2 failed, _, err := executable(mid) // If the error is not nil(consensus error), it means the provided message // call or transaction will never be accepted no matter how much gas it is // assigned. Return the error directly, don't struggle any more. if err != nil { return 0, err } if failed { lo = mid } else { hi = mid } } // Reject the transaction as invalid if it still fails at the highest allowance if hi == cap { failed, result, err := executable(hi) if err != nil { return 0, err } if failed { if result != nil && result.Err != vm.ErrOutOfGas { if len(result.Revert()) > 0 { return 0, newRevertError(result) } return 0, result.Err } // Otherwise, the specified gas cap is too low return 0, fmt.Errorf("gas required exceeds allowance (%d)", cap) } } return hexutil.Uint64(hi), nil } // EstimateGas returns an estimate of the amount of gas needed to execute the // given transaction against the current pending block. func (s *BlockChainAPI) EstimateGas(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash) (hexutil.Uint64, error) { bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.LatestBlockNumber) if blockNrOrHash != nil { bNrOrHash = *blockNrOrHash } return DoEstimateGas(ctx, s.b, args, bNrOrHash, s.b.RPCGasCap()) } // RPCMarshalHeader converts the given header to the RPC output . func RPCMarshalHeader(head *types.Header) map[string]interface{} { result := map[string]interface{}{ "number": (*hexutil.Big)(head.Number), "hash": head.Hash(), "parentHash": head.ParentHash, "nonce": head.Nonce, "mixHash": head.MixDigest, "sha3Uncles": head.UncleHash, "logsBloom": head.Bloom, "stateRoot": head.Root, "miner": head.Coinbase, "difficulty": (*hexutil.Big)(head.Difficulty), "extraData": hexutil.Bytes(head.Extra), "size": hexutil.Uint64(head.Size()), "gasLimit": hexutil.Uint64(head.GasLimit), "gasUsed": hexutil.Uint64(head.GasUsed), "timestamp": hexutil.Uint64(head.Time), "transactionsRoot": head.TxHash, "receiptsRoot": head.ReceiptHash, } if head.BaseFee != nil { result["baseFeePerGas"] = (*hexutil.Big)(head.BaseFee) } if head.WithdrawalsHash != nil { result["withdrawalsRoot"] = head.WithdrawalsHash } return result } // RPCMarshalBlock converts the given block to the RPC output which depends on fullTx. If inclTx is true transactions are // returned. When fullTx is true the returned block contains full transaction details, otherwise it will only contain // transaction hashes. func RPCMarshalBlock(block *types.Block, inclTx bool, fullTx bool, config *params.ChainConfig) (map[string]interface{}, error) { fields := RPCMarshalHeader(block.Header()) fields["size"] = hexutil.Uint64(block.Size()) if inclTx { formatTx := func(idx int, tx *types.Transaction) interface{} { return tx.Hash() } if fullTx { formatTx = func(idx int, tx *types.Transaction) interface{} { return newRPCTransactionFromBlockIndex(block, uint64(idx), config) } } txs := block.Transactions() transactions := make([]interface{}, len(txs)) for i, tx := range txs { transactions[i] = formatTx(i, tx) } fields["transactions"] = transactions } uncles := block.Uncles() uncleHashes := make([]common.Hash, len(uncles)) for i, uncle := range uncles { uncleHashes[i] = uncle.Hash() } fields["uncles"] = uncleHashes if block.Header().WithdrawalsHash != nil { fields["withdrawals"] = block.Withdrawals() } return fields, nil } // rpcMarshalHeader uses the generalized output filler, then adds the total difficulty field, which requires // a `BlockchainAPI`. func (s *BlockChainAPI) rpcMarshalHeader(ctx context.Context, header *types.Header) map[string]interface{} { fields := RPCMarshalHeader(header) fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, header.Hash())) return fields } // rpcMarshalBlock uses the generalized output filler, then adds the total difficulty field, which requires // a `BlockchainAPI`. func (s *BlockChainAPI) rpcMarshalBlock(ctx context.Context, b *types.Block, inclTx bool, fullTx bool) (map[string]interface{}, error) { fields, err := RPCMarshalBlock(b, inclTx, fullTx, s.b.ChainConfig()) if err != nil { return nil, err } if inclTx { fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, b.Hash())) } return fields, err } // RPCTransaction represents a transaction that will serialize to the RPC representation of a transaction type RPCTransaction struct { BlockHash *common.Hash `json:"blockHash"` BlockNumber *hexutil.Big `json:"blockNumber"` From common.Address `json:"from"` Gas hexutil.Uint64 `json:"gas"` GasPrice *hexutil.Big `json:"gasPrice"` GasFeeCap *hexutil.Big `json:"maxFeePerGas,omitempty"` GasTipCap *hexutil.Big `json:"maxPriorityFeePerGas,omitempty"` Hash common.Hash `json:"hash"` Input hexutil.Bytes `json:"input"` Nonce hexutil.Uint64 `json:"nonce"` To *common.Address `json:"to"` TransactionIndex *hexutil.Uint64 `json:"transactionIndex"` Value *hexutil.Big `json:"value"` Type hexutil.Uint64 `json:"type"` Accesses *types.AccessList `json:"accessList,omitempty"` ChainID *hexutil.Big `json:"chainId,omitempty"` V *hexutil.Big `json:"v"` R *hexutil.Big `json:"r"` S *hexutil.Big `json:"s"` } // newRPCTransaction returns a transaction that will serialize to the RPC // representation, with the given location metadata set (if available). func newRPCTransaction(tx *types.Transaction, blockHash common.Hash, blockNumber uint64, blockTime uint64, index uint64, baseFee *big.Int, config *params.ChainConfig) *RPCTransaction { signer := types.MakeSigner(config, new(big.Int).SetUint64(blockNumber), blockTime) from, _ := types.Sender(signer, tx) v, r, s := tx.RawSignatureValues() result := &RPCTransaction{ Type: hexutil.Uint64(tx.Type()), From: from, Gas: hexutil.Uint64(tx.Gas()), GasPrice: (*hexutil.Big)(tx.GasPrice()), Hash: tx.Hash(), Input: hexutil.Bytes(tx.Data()), Nonce: hexutil.Uint64(tx.Nonce()), To: tx.To(), Value: (*hexutil.Big)(tx.Value()), V: (*hexutil.Big)(v), R: (*hexutil.Big)(r), S: (*hexutil.Big)(s), } if blockHash != (common.Hash{}) { result.BlockHash = &blockHash result.BlockNumber = (*hexutil.Big)(new(big.Int).SetUint64(blockNumber)) result.TransactionIndex = (*hexutil.Uint64)(&index) } switch tx.Type() { case types.LegacyTxType: // if a legacy transaction has an EIP-155 chain id, include it explicitly if id := tx.ChainId(); id.Sign() != 0 { result.ChainID = (*hexutil.Big)(id) } case types.AccessListTxType: al := tx.AccessList() result.Accesses = &al result.ChainID = (*hexutil.Big)(tx.ChainId()) case types.DynamicFeeTxType: al := tx.AccessList() result.Accesses = &al result.ChainID = (*hexutil.Big)(tx.ChainId()) result.GasFeeCap = (*hexutil.Big)(tx.GasFeeCap()) result.GasTipCap = (*hexutil.Big)(tx.GasTipCap()) // if the transaction has been mined, compute the effective gas price if baseFee != nil && blockHash != (common.Hash{}) { // price = min(tip, gasFeeCap - baseFee) + baseFee price := math.BigMin(new(big.Int).Add(tx.GasTipCap(), baseFee), tx.GasFeeCap()) result.GasPrice = (*hexutil.Big)(price) } else { result.GasPrice = (*hexutil.Big)(tx.GasFeeCap()) } } return result } // NewRPCPendingTransaction returns a pending transaction that will serialize to the RPC representation func NewRPCPendingTransaction(tx *types.Transaction, current *types.Header, config *params.ChainConfig) *RPCTransaction { var ( baseFee *big.Int blockNumber = uint64(0) blockTime = uint64(0) ) if current != nil { baseFee = misc.CalcBaseFee(config, current) blockNumber = current.Number.Uint64() blockTime = current.Time } return newRPCTransaction(tx, common.Hash{}, blockNumber, blockTime, 0, baseFee, config) } // newRPCTransactionFromBlockIndex returns a transaction that will serialize to the RPC representation. func newRPCTransactionFromBlockIndex(b *types.Block, index uint64, config *params.ChainConfig) *RPCTransaction { txs := b.Transactions() if index >= uint64(len(txs)) { return nil } return newRPCTransaction(txs[index], b.Hash(), b.NumberU64(), b.Time(), index, b.BaseFee(), config) } // newRPCRawTransactionFromBlockIndex returns the bytes of a transaction given a block and a transaction index. func newRPCRawTransactionFromBlockIndex(b *types.Block, index uint64) hexutil.Bytes { txs := b.Transactions() if index >= uint64(len(txs)) { return nil } blob, _ := txs[index].MarshalBinary() return blob } // accessListResult returns an optional accesslist // It's the result of the `debug_createAccessList` RPC call. // It contains an error if the transaction itself failed. type accessListResult struct { Accesslist *types.AccessList `json:"accessList"` Error string `json:"error,omitempty"` GasUsed hexutil.Uint64 `json:"gasUsed"` } // CreateAccessList creates an EIP-2930 type AccessList for the given transaction. // Reexec and BlockNrOrHash can be specified to create the accessList on top of a certain state. func (s *BlockChainAPI) CreateAccessList(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash) (*accessListResult, error) { bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.PendingBlockNumber) if blockNrOrHash != nil { bNrOrHash = *blockNrOrHash } acl, gasUsed, vmerr, err := AccessList(ctx, s.b, bNrOrHash, args) if err != nil { return nil, err } result := &accessListResult{Accesslist: &acl, GasUsed: hexutil.Uint64(gasUsed)} if vmerr != nil { result.Error = vmerr.Error() } return result, nil } // AccessList creates an access list for the given transaction. // If the accesslist creation fails an error is returned. // If the transaction itself fails, an vmErr is returned. func AccessList(ctx context.Context, b Backend, blockNrOrHash rpc.BlockNumberOrHash, args TransactionArgs) (acl types.AccessList, gasUsed uint64, vmErr error, err error) { // Retrieve the execution context db, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) if db == nil || err != nil { return nil, 0, nil, err } // If the gas amount is not set, default to RPC gas cap. if args.Gas == nil { tmp := hexutil.Uint64(b.RPCGasCap()) args.Gas = &tmp } // Ensure any missing fields are filled, extract the recipient and input data if err := args.setDefaults(ctx, b); err != nil { return nil, 0, nil, err } var to common.Address if args.To != nil { to = *args.To } else { to = crypto.CreateAddress(args.from(), uint64(*args.Nonce)) } isPostMerge := header.Difficulty.Cmp(common.Big0) == 0 // Retrieve the precompiles since they don't need to be added to the access list precompiles := vm.ActivePrecompiles(b.ChainConfig().Rules(header.Number, isPostMerge, header.Time)) // Create an initial tracer prevTracer := logger.NewAccessListTracer(nil, args.from(), to, precompiles) if args.AccessList != nil { prevTracer = logger.NewAccessListTracer(*args.AccessList, args.from(), to, precompiles) } for { // Retrieve the current access list to expand accessList := prevTracer.AccessList() log.Trace("Creating access list", "input", accessList) // Copy the original db so we don't modify it statedb := db.Copy() // Set the accesslist to the last al args.AccessList = &accessList msg, err := args.ToMessage(b.RPCGasCap(), header.BaseFee) if err != nil { return nil, 0, nil, err } // Apply the transaction with the access list tracer tracer := logger.NewAccessListTracer(accessList, args.from(), to, precompiles) config := vm.Config{Tracer: tracer, NoBaseFee: true} vmenv, _ := b.GetEVM(ctx, msg, statedb, header, &config, nil) res, err := core.ApplyMessage(vmenv, msg, new(core.GasPool).AddGas(msg.GasLimit)) if err != nil { return nil, 0, nil, fmt.Errorf("failed to apply transaction: %v err: %v", args.toTransaction().Hash(), err) } if tracer.Equal(prevTracer) { return accessList, res.UsedGas, res.Err, nil } prevTracer = tracer } } // TransactionAPI exposes methods for reading and creating transaction data. type TransactionAPI struct { b Backend nonceLock *AddrLocker signer types.Signer } // NewTransactionAPI creates a new RPC service with methods for interacting with transactions. func NewTransactionAPI(b Backend, nonceLock *AddrLocker) *TransactionAPI { // The signer used by the API should always be the 'latest' known one because we expect // signers to be backwards-compatible with old transactions. signer := types.LatestSigner(b.ChainConfig()) return &TransactionAPI{b, nonceLock, signer} } // GetBlockTransactionCountByNumber returns the number of transactions in the block with the given block number. func (s *TransactionAPI) GetBlockTransactionCountByNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint { if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil { n := hexutil.Uint(len(block.Transactions())) return &n } return nil } // GetBlockTransactionCountByHash returns the number of transactions in the block with the given hash. func (s *TransactionAPI) GetBlockTransactionCountByHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint { if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil { n := hexutil.Uint(len(block.Transactions())) return &n } return nil } // GetTransactionByBlockNumberAndIndex returns the transaction for the given block number and index. func (s *TransactionAPI) GetTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) *RPCTransaction { if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil { return newRPCTransactionFromBlockIndex(block, uint64(index), s.b.ChainConfig()) } return nil } // GetTransactionByBlockHashAndIndex returns the transaction for the given block hash and index. func (s *TransactionAPI) GetTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) *RPCTransaction { if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil { return newRPCTransactionFromBlockIndex(block, uint64(index), s.b.ChainConfig()) } return nil } // GetRawTransactionByBlockNumberAndIndex returns the bytes of the transaction for the given block number and index. func (s *TransactionAPI) GetRawTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) hexutil.Bytes { if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil { return newRPCRawTransactionFromBlockIndex(block, uint64(index)) } return nil } // GetRawTransactionByBlockHashAndIndex returns the bytes of the transaction for the given block hash and index. func (s *TransactionAPI) GetRawTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) hexutil.Bytes { if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil { return newRPCRawTransactionFromBlockIndex(block, uint64(index)) } return nil } // GetTransactionCount returns the number of transactions the given address has sent for the given block number func (s *TransactionAPI) GetTransactionCount(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Uint64, error) { // Ask transaction pool for the nonce which includes pending transactions if blockNr, ok := blockNrOrHash.Number(); ok && blockNr == rpc.PendingBlockNumber { nonce, err := s.b.GetPoolNonce(ctx, address) if err != nil { return nil, err } return (*hexutil.Uint64)(&nonce), nil } // Resolve block number and use its state to ask for the nonce state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) if state == nil || err != nil { return nil, err } nonce := state.GetNonce(address) return (*hexutil.Uint64)(&nonce), state.Error() } // GetTransactionByHash returns the transaction for the given hash func (s *TransactionAPI) GetTransactionByHash(ctx context.Context, hash common.Hash) (*RPCTransaction, error) { // Try to return an already finalized transaction tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash) if err != nil { return nil, err } if tx != nil { header, err := s.b.HeaderByHash(ctx, blockHash) if err != nil { return nil, err } return newRPCTransaction(tx, blockHash, blockNumber, header.Time, index, header.BaseFee, s.b.ChainConfig()), nil } // No finalized transaction, try to retrieve it from the pool if tx := s.b.GetPoolTransaction(hash); tx != nil { return NewRPCPendingTransaction(tx, s.b.CurrentHeader(), s.b.ChainConfig()), nil } // Transaction unknown, return as such return nil, nil } // GetRawTransactionByHash returns the bytes of the transaction for the given hash. func (s *TransactionAPI) GetRawTransactionByHash(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) { // Retrieve a finalized transaction, or a pooled otherwise tx, _, _, _, err := s.b.GetTransaction(ctx, hash) if err != nil { return nil, err } if tx == nil { if tx = s.b.GetPoolTransaction(hash); tx == nil { // Transaction not found anywhere, abort return nil, nil } } // Serialize to RLP and return return tx.MarshalBinary() } // GetTransactionReceipt returns the transaction receipt for the given transaction hash. func (s *TransactionAPI) GetTransactionReceipt(ctx context.Context, hash common.Hash) (map[string]interface{}, error) { tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash) if err != nil { // When the transaction doesn't exist, the RPC method should return JSON null // as per specification. return nil, nil } header, err := s.b.HeaderByHash(ctx, blockHash) if err != nil { return nil, err } receipts, err := s.b.GetReceipts(ctx, blockHash) if err != nil { return nil, err } if uint64(len(receipts)) <= index { return nil, nil } receipt := receipts[index] // Derive the sender. signer := types.MakeSigner(s.b.ChainConfig(), header.Number, header.Time) from, _ := types.Sender(signer, tx) fields := map[string]interface{}{ "blockHash": blockHash, "blockNumber": hexutil.Uint64(blockNumber), "transactionHash": hash, "transactionIndex": hexutil.Uint64(index), "from": from, "to": tx.To(), "gasUsed": hexutil.Uint64(receipt.GasUsed), "cumulativeGasUsed": hexutil.Uint64(receipt.CumulativeGasUsed), "contractAddress": nil, "logs": receipt.Logs, "logsBloom": receipt.Bloom, "type": hexutil.Uint(tx.Type()), "effectiveGasPrice": (*hexutil.Big)(receipt.EffectiveGasPrice), } // Assign receipt status or post state. if len(receipt.PostState) > 0 { fields["root"] = hexutil.Bytes(receipt.PostState) } else { fields["status"] = hexutil.Uint(receipt.Status) } if receipt.Logs == nil { fields["logs"] = []*types.Log{} } // If the ContractAddress is 20 0x0 bytes, assume it is not a contract creation if receipt.ContractAddress != (common.Address{}) { fields["contractAddress"] = receipt.ContractAddress } return fields, nil } // sign is a helper function that signs a transaction with the private key of the given address. func (s *TransactionAPI) sign(addr common.Address, tx *types.Transaction) (*types.Transaction, error) { // Look up the wallet containing the requested signer account := accounts.Account{Address: addr} wallet, err := s.b.AccountManager().Find(account) if err != nil { return nil, err } // Request the wallet to sign the transaction return wallet.SignTx(account, tx, s.b.ChainConfig().ChainID) } // SubmitTransaction is a helper function that submits tx to txPool and logs a message. func SubmitTransaction(ctx context.Context, b Backend, tx *types.Transaction) (common.Hash, error) { // If the transaction fee cap is already specified, ensure the // fee of the given transaction is _reasonable_. if err := checkTxFee(tx.GasPrice(), tx.Gas(), b.RPCTxFeeCap()); err != nil { return common.Hash{}, err } if !b.UnprotectedAllowed() && !tx.Protected() { // Ensure only eip155 signed transactions are submitted if EIP155Required is set. return common.Hash{}, errors.New("only replay-protected (EIP-155) transactions allowed over RPC") } if err := b.SendTx(ctx, tx); err != nil { return common.Hash{}, err } // Print a log with full tx details for manual investigations and interventions head := b.CurrentBlock() signer := types.MakeSigner(b.ChainConfig(), head.Number, head.Time) from, err := types.Sender(signer, tx) if err != nil { return common.Hash{}, err } if tx.To() == nil { addr := crypto.CreateAddress(from, tx.Nonce()) log.Info("Submitted contract creation", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "contract", addr.Hex(), "value", tx.Value()) } else { log.Info("Submitted transaction", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "recipient", tx.To(), "value", tx.Value()) } return tx.Hash(), nil } // SendTransaction creates a transaction for the given argument, sign it and submit it to the // transaction pool. func (s *TransactionAPI) SendTransaction(ctx context.Context, args TransactionArgs) (common.Hash, error) { // Look up the wallet containing the requested signer account := accounts.Account{Address: args.from()} wallet, err := s.b.AccountManager().Find(account) if err != nil { return common.Hash{}, err } if args.Nonce == nil { // Hold the mutex around signing to prevent concurrent assignment of // the same nonce to multiple accounts. s.nonceLock.LockAddr(args.from()) defer s.nonceLock.UnlockAddr(args.from()) } // Set some sanity defaults and terminate on failure if err := args.setDefaults(ctx, s.b); err != nil { return common.Hash{}, err } // Assemble the transaction and sign with the wallet tx := args.toTransaction() signed, err := wallet.SignTx(account, tx, s.b.ChainConfig().ChainID) if err != nil { return common.Hash{}, err } return SubmitTransaction(ctx, s.b, signed) } // FillTransaction fills the defaults (nonce, gas, gasPrice or 1559 fields) // on a given unsigned transaction, and returns it to the caller for further // processing (signing + broadcast). func (s *TransactionAPI) FillTransaction(ctx context.Context, args TransactionArgs) (*SignTransactionResult, error) { // Set some sanity defaults and terminate on failure if err := args.setDefaults(ctx, s.b); err != nil { return nil, err } // Assemble the transaction and obtain rlp tx := args.toTransaction() data, err := tx.MarshalBinary() if err != nil { return nil, err } return &SignTransactionResult{data, tx}, nil } // SendRawTransaction will add the signed transaction to the transaction pool. // The sender is responsible for signing the transaction and using the correct nonce. func (s *TransactionAPI) SendRawTransaction(ctx context.Context, input hexutil.Bytes) (common.Hash, error) { tx := new(types.Transaction) if err := tx.UnmarshalBinary(input); err != nil { return common.Hash{}, err } return SubmitTransaction(ctx, s.b, tx) } // Sign calculates an ECDSA signature for: // keccak256("\x19Ethereum Signed Message:\n" + len(message) + message). // // Note, the produced signature conforms to the secp256k1 curve R, S and V values, // where the V value will be 27 or 28 for legacy reasons. // // The account associated with addr must be unlocked. // // https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign func (s *TransactionAPI) Sign(addr common.Address, data hexutil.Bytes) (hexutil.Bytes, error) { // Look up the wallet containing the requested signer account := accounts.Account{Address: addr} wallet, err := s.b.AccountManager().Find(account) if err != nil { return nil, err } // Sign the requested hash with the wallet signature, err := wallet.SignText(account, data) if err == nil { signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper } return signature, err } // SignTransactionResult represents a RLP encoded signed transaction. type SignTransactionResult struct { Raw hexutil.Bytes `json:"raw"` Tx *types.Transaction `json:"tx"` } // SignTransaction will sign the given transaction with the from account. // The node needs to have the private key of the account corresponding with // the given from address and it needs to be unlocked. func (s *TransactionAPI) SignTransaction(ctx context.Context, args TransactionArgs) (*SignTransactionResult, error) { if args.Gas == nil { return nil, fmt.Errorf("gas not specified") } if args.GasPrice == nil && (args.MaxPriorityFeePerGas == nil || args.MaxFeePerGas == nil) { return nil, fmt.Errorf("missing gasPrice or maxFeePerGas/maxPriorityFeePerGas") } if args.Nonce == nil { return nil, fmt.Errorf("nonce not specified") } if err := args.setDefaults(ctx, s.b); err != nil { return nil, err } // Before actually sign the transaction, ensure the transaction fee is reasonable. tx := args.toTransaction() if err := checkTxFee(tx.GasPrice(), tx.Gas(), s.b.RPCTxFeeCap()); err != nil { return nil, err } signed, err := s.sign(args.from(), tx) if err != nil { return nil, err } data, err := signed.MarshalBinary() if err != nil { return nil, err } return &SignTransactionResult{data, signed}, nil } // PendingTransactions returns the transactions that are in the transaction pool // and have a from address that is one of the accounts this node manages. func (s *TransactionAPI) PendingTransactions() ([]*RPCTransaction, error) { pending, err := s.b.GetPoolTransactions() if err != nil { return nil, err } accounts := make(map[common.Address]struct{}) for _, wallet := range s.b.AccountManager().Wallets() { for _, account := range wallet.Accounts() { accounts[account.Address] = struct{}{} } } curHeader := s.b.CurrentHeader() transactions := make([]*RPCTransaction, 0, len(pending)) for _, tx := range pending { from, _ := types.Sender(s.signer, tx) if _, exists := accounts[from]; exists { transactions = append(transactions, NewRPCPendingTransaction(tx, curHeader, s.b.ChainConfig())) } } return transactions, nil } // Resend accepts an existing transaction and a new gas price and limit. It will remove // the given transaction from the pool and reinsert it with the new gas price and limit. func (s *TransactionAPI) Resend(ctx context.Context, sendArgs TransactionArgs, gasPrice *hexutil.Big, gasLimit *hexutil.Uint64) (common.Hash, error) { if sendArgs.Nonce == nil { return common.Hash{}, fmt.Errorf("missing transaction nonce in transaction spec") } if err := sendArgs.setDefaults(ctx, s.b); err != nil { return common.Hash{}, err } matchTx := sendArgs.toTransaction() // Before replacing the old transaction, ensure the _new_ transaction fee is reasonable. var price = matchTx.GasPrice() if gasPrice != nil { price = gasPrice.ToInt() } var gas = matchTx.Gas() if gasLimit != nil { gas = uint64(*gasLimit) } if err := checkTxFee(price, gas, s.b.RPCTxFeeCap()); err != nil { return common.Hash{}, err } // Iterate the pending list for replacement pending, err := s.b.GetPoolTransactions() if err != nil { return common.Hash{}, err } for _, p := range pending { wantSigHash := s.signer.Hash(matchTx) pFrom, err := types.Sender(s.signer, p) if err == nil && pFrom == sendArgs.from() && s.signer.Hash(p) == wantSigHash { // Match. Re-sign and send the transaction. if gasPrice != nil && (*big.Int)(gasPrice).Sign() != 0 { sendArgs.GasPrice = gasPrice } if gasLimit != nil && *gasLimit != 0 { sendArgs.Gas = gasLimit } signedTx, err := s.sign(sendArgs.from(), sendArgs.toTransaction()) if err != nil { return common.Hash{}, err } if err = s.b.SendTx(ctx, signedTx); err != nil { return common.Hash{}, err } return signedTx.Hash(), nil } } return common.Hash{}, fmt.Errorf("transaction %#x not found", matchTx.Hash()) } // DebugAPI is the collection of Ethereum APIs exposed over the debugging // namespace. type DebugAPI struct { b Backend } // NewDebugAPI creates a new instance of DebugAPI. func NewDebugAPI(b Backend) *DebugAPI { return &DebugAPI{b: b} } // GetRawHeader retrieves the RLP encoding for a single header. func (api *DebugAPI) GetRawHeader(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) { var hash common.Hash if h, ok := blockNrOrHash.Hash(); ok { hash = h } else { block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash) if err != nil { return nil, err } hash = block.Hash() } header, _ := api.b.HeaderByHash(ctx, hash) if header == nil { return nil, fmt.Errorf("header #%d not found", hash) } return rlp.EncodeToBytes(header) } // GetRawBlock retrieves the RLP encoded for a single block. func (api *DebugAPI) GetRawBlock(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) { var hash common.Hash if h, ok := blockNrOrHash.Hash(); ok { hash = h } else { block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash) if err != nil { return nil, err } hash = block.Hash() } block, _ := api.b.BlockByHash(ctx, hash) if block == nil { return nil, fmt.Errorf("block #%d not found", hash) } return rlp.EncodeToBytes(block) } // GetRawReceipts retrieves the binary-encoded receipts of a single block. func (api *DebugAPI) GetRawReceipts(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) ([]hexutil.Bytes, error) { var hash common.Hash if h, ok := blockNrOrHash.Hash(); ok { hash = h } else { block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash) if err != nil { return nil, err } hash = block.Hash() } receipts, err := api.b.GetReceipts(ctx, hash) if err != nil { return nil, err } result := make([]hexutil.Bytes, len(receipts)) for i, receipt := range receipts { b, err := receipt.MarshalBinary() if err != nil { return nil, err } result[i] = b } return result, nil } // GetRawTransaction returns the bytes of the transaction for the given hash. func (s *DebugAPI) GetRawTransaction(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) { // Retrieve a finalized transaction, or a pooled otherwise tx, _, _, _, err := s.b.GetTransaction(ctx, hash) if err != nil { return nil, err } if tx == nil { if tx = s.b.GetPoolTransaction(hash); tx == nil { // Transaction not found anywhere, abort return nil, nil } } return tx.MarshalBinary() } // PrintBlock retrieves a block and returns its pretty printed form. func (api *DebugAPI) PrintBlock(ctx context.Context, number uint64) (string, error) { block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number)) if block == nil { return "", fmt.Errorf("block #%d not found", number) } return spew.Sdump(block), nil } // ChaindbProperty returns leveldb properties of the key-value database. func (api *DebugAPI) ChaindbProperty(property string) (string, error) { if property == "" { property = "leveldb.stats" } else if !strings.HasPrefix(property, "leveldb.") { property = "leveldb." + property } return api.b.ChainDb().Stat(property) } // ChaindbCompact flattens the entire key-value database into a single level, // removing all unused slots and merging all keys. func (api *DebugAPI) ChaindbCompact() error { for b := byte(0); b < 255; b++ { log.Info("Compacting chain database", "range", fmt.Sprintf("0x%0.2X-0x%0.2X", b, b+1)) if err := api.b.ChainDb().Compact([]byte{b}, []byte{b + 1}); err != nil { log.Error("Database compaction failed", "err", err) return err } } return nil } // SetHead rewinds the head of the blockchain to a previous block. func (api *DebugAPI) SetHead(number hexutil.Uint64) { api.b.SetHead(uint64(number)) } // NetAPI offers network related RPC methods type NetAPI struct { net *p2p.Server networkVersion uint64 } // NewNetAPI creates a new net API instance. func NewNetAPI(net *p2p.Server, networkVersion uint64) *NetAPI { return &NetAPI{net, networkVersion} } // Listening returns an indication if the node is listening for network connections. func (s *NetAPI) Listening() bool { return true // always listening } // PeerCount returns the number of connected peers func (s *NetAPI) PeerCount() hexutil.Uint { return hexutil.Uint(s.net.PeerCount()) } // Version returns the current ethereum protocol version. func (s *NetAPI) Version() string { return fmt.Sprintf("%d", s.networkVersion) } // checkTxFee is an internal function used to check whether the fee of // the given transaction is _reasonable_(under the cap). func checkTxFee(gasPrice *big.Int, gas uint64, cap float64) error { // Short circuit if there is no cap for transaction fee at all. if cap == 0 { return nil } feeEth := new(big.Float).Quo(new(big.Float).SetInt(new(big.Int).Mul(gasPrice, new(big.Int).SetUint64(gas))), new(big.Float).SetInt(big.NewInt(params.Ether))) feeFloat, _ := feeEth.Float64() if feeFloat > cap { return fmt.Errorf("tx fee (%.2f ether) exceeds the configured cap (%.2f ether)", feeFloat, cap) } return nil } // toHexSlice creates a slice of hex-strings based on []byte. func toHexSlice(b [][]byte) []string { r := make([]string, len(b)) for i := range b { r[i] = hexutil.Encode(b[i]) } return r }