// Copyright 2020 The go-ethereum Authors // This file is part of go-ethereum. // // go-ethereum is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // go-ethereum is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with go-ethereum. If not, see . package ethtest import ( "errors" "fmt" "math/big" "strings" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/internal/utesting" "github.com/ethereum/go-ethereum/params" ) // var faucetAddr = common.HexToAddress("0x71562b71999873DB5b286dF957af199Ec94617F7") var faucetKey, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") func (s *Suite) sendSuccessfulTxs(t *utesting.T) error { tests := []*types.Transaction{ getNextTxFromChain(s), unknownTx(s), } for i, tx := range tests { if tx == nil { return errors.New("could not find tx to send") } t.Logf("Testing tx propagation %d: sending tx %v %v %v\n", i, tx.Hash().String(), tx.GasPrice(), tx.Gas()) // get previous tx if exists for reference in case of old tx propagation var prevTx *types.Transaction if i != 0 { prevTx = tests[i-1] } // write tx to connection if err := sendSuccessfulTx(s, tx, prevTx); err != nil { return fmt.Errorf("send successful tx test failed: %v", err) } } return nil } func sendSuccessfulTx(s *Suite, tx *types.Transaction, prevTx *types.Transaction) error { sendConn, recvConn, err := s.createSendAndRecvConns() if err != nil { return err } defer sendConn.Close() defer recvConn.Close() if err = sendConn.peer(s.chain, nil); err != nil { return fmt.Errorf("peering failed: %v", err) } // Send the transaction if err = sendConn.Write(&Transactions{tx}); err != nil { return fmt.Errorf("failed to write to connection: %v", err) } // peer receiving connection to node if err = recvConn.peer(s.chain, nil); err != nil { return fmt.Errorf("peering failed: %v", err) } // update last nonce seen nonce = tx.Nonce() // Wait for the transaction announcement for { switch msg := recvConn.readAndServe(s.chain, timeout).(type) { case *Transactions: recTxs := *msg // if you receive an old tx propagation, read from connection again if len(recTxs) == 1 && prevTx != nil { if recTxs[0] == prevTx { continue } } for _, gotTx := range recTxs { if gotTx.Hash() == tx.Hash() { // Ok return nil } } return fmt.Errorf("missing transaction: got %v missing %v", recTxs, tx.Hash()) case *NewPooledTransactionHashes66: txHashes := *msg // if you receive an old tx propagation, read from connection again if len(txHashes) == 1 && prevTx != nil { if txHashes[0] == prevTx.Hash() { continue } } for _, gotHash := range txHashes { if gotHash == tx.Hash() { // Ok return nil } } return fmt.Errorf("missing transaction announcement: got %v missing %v", txHashes, tx.Hash()) case *NewPooledTransactionHashes: txHashes := msg.Hashes if len(txHashes) != len(msg.Sizes) { return fmt.Errorf("invalid msg size lengths: hashes: %v sizes: %v", len(txHashes), len(msg.Sizes)) } if len(txHashes) != len(msg.Types) { return fmt.Errorf("invalid msg type lengths: hashes: %v types: %v", len(txHashes), len(msg.Types)) } // if you receive an old tx propagation, read from connection again if len(txHashes) == 1 && prevTx != nil { if txHashes[0] == prevTx.Hash() { continue } } for index, gotHash := range txHashes { if gotHash == tx.Hash() { if msg.Sizes[index] != uint32(tx.Size()) { return fmt.Errorf("invalid tx size: got %v want %v", msg.Sizes[index], tx.Size()) } if msg.Types[index] != tx.Type() { return fmt.Errorf("invalid tx type: got %v want %v", msg.Types[index], tx.Type()) } // Ok return nil } } return fmt.Errorf("missing transaction announcement: got %v missing %v", txHashes, tx.Hash()) default: return fmt.Errorf("unexpected message in sendSuccessfulTx: %s", pretty.Sdump(msg)) } } } func (s *Suite) sendMaliciousTxs(t *utesting.T) error { badTxs := []*types.Transaction{ getOldTxFromChain(s), invalidNonceTx(s), hugeAmount(s), hugeGasPrice(s), hugeData(s), } // setup receiving connection before sending malicious txs recvConn, err := s.dial() if err != nil { return fmt.Errorf("dial failed: %v", err) } defer recvConn.Close() if err = recvConn.peer(s.chain, nil); err != nil { return fmt.Errorf("peering failed: %v", err) } for i, tx := range badTxs { t.Logf("Testing malicious tx propagation: %v\n", i) if err = sendMaliciousTx(s, tx); err != nil { return fmt.Errorf("malicious tx test failed:\ntx: %v\nerror: %v", tx, err) } } // check to make sure bad txs aren't propagated return checkMaliciousTxPropagation(s, badTxs, recvConn) } func sendMaliciousTx(s *Suite, tx *types.Transaction) error { conn, err := s.dial() if err != nil { return fmt.Errorf("dial failed: %v", err) } defer conn.Close() if err = conn.peer(s.chain, nil); err != nil { return fmt.Errorf("peering failed: %v", err) } // write malicious tx if err = conn.Write(&Transactions{tx}); err != nil { return fmt.Errorf("failed to write to connection: %v", err) } return nil } var nonce = uint64(99) // sendMultipleSuccessfulTxs sends the given transactions to the node and // expects the node to accept and propagate them. func sendMultipleSuccessfulTxs(t *utesting.T, s *Suite, txs []*types.Transaction) error { txMsg := Transactions(txs) t.Logf("sending %d txs\n", len(txs)) sendConn, recvConn, err := s.createSendAndRecvConns() if err != nil { return err } defer sendConn.Close() defer recvConn.Close() if err = sendConn.peer(s.chain, nil); err != nil { return fmt.Errorf("peering failed: %v", err) } if err = recvConn.peer(s.chain, nil); err != nil { return fmt.Errorf("peering failed: %v", err) } // Send the transactions if err = sendConn.Write(&txMsg); err != nil { return fmt.Errorf("failed to write message to connection: %v", err) } // update nonce nonce = txs[len(txs)-1].Nonce() // Wait for the transaction announcement(s) and make sure all sent txs are being propagated. // all txs should be announced within a couple announcements. recvHashes := make([]common.Hash, 0) for i := 0; i < 20; i++ { switch msg := recvConn.readAndServe(s.chain, timeout).(type) { case *Transactions: for _, tx := range *msg { recvHashes = append(recvHashes, tx.Hash()) } case *NewPooledTransactionHashes66: recvHashes = append(recvHashes, *msg...) case *NewPooledTransactionHashes: recvHashes = append(recvHashes, msg.Hashes...) default: if !strings.Contains(pretty.Sdump(msg), "i/o timeout") { return fmt.Errorf("unexpected message while waiting to receive txs: %s", pretty.Sdump(msg)) } } // break once all 2000 txs have been received if len(recvHashes) == 2000 { break } if len(recvHashes) > 0 { _, missingTxs := compareReceivedTxs(recvHashes, txs) if len(missingTxs) > 0 { continue } else { t.Logf("successfully received all %d txs", len(txs)) return nil } } } _, missingTxs := compareReceivedTxs(recvHashes, txs) if len(missingTxs) > 0 { for _, missing := range missingTxs { t.Logf("missing tx: %v", missing.Hash()) } return fmt.Errorf("missing %d txs", len(missingTxs)) } return nil } // checkMaliciousTxPropagation checks whether the given malicious transactions were // propagated by the node. func checkMaliciousTxPropagation(s *Suite, txs []*types.Transaction, conn *Conn) error { switch msg := conn.readAndServe(s.chain, time.Second*8).(type) { case *Transactions: // check to see if any of the failing txs were in the announcement recvTxs := make([]common.Hash, len(*msg)) for i, recvTx := range *msg { recvTxs[i] = recvTx.Hash() } badTxs, _ := compareReceivedTxs(recvTxs, txs) if len(badTxs) > 0 { return fmt.Errorf("received %d bad txs: \n%v", len(badTxs), badTxs) } case *NewPooledTransactionHashes66: badTxs, _ := compareReceivedTxs(*msg, txs) if len(badTxs) > 0 { return fmt.Errorf("received %d bad txs: \n%v", len(badTxs), badTxs) } case *NewPooledTransactionHashes: badTxs, _ := compareReceivedTxs(msg.Hashes, txs) if len(badTxs) > 0 { return fmt.Errorf("received %d bad txs: \n%v", len(badTxs), badTxs) } case *Error: // Transaction should not be announced -> wait for timeout return nil default: return fmt.Errorf("unexpected message in sendFailingTx: %s", pretty.Sdump(msg)) } return nil } // compareReceivedTxs compares the received set of txs against the given set of txs, // returning both the set received txs that were present within the given txs, and // the set of txs that were missing from the set of received txs func compareReceivedTxs(recvTxs []common.Hash, txs []*types.Transaction) (present []*types.Transaction, missing []*types.Transaction) { // create a map of the hashes received from node recvHashes := make(map[common.Hash]common.Hash) for _, hash := range recvTxs { recvHashes[hash] = hash } // collect present txs and missing txs separately present = make([]*types.Transaction, 0) missing = make([]*types.Transaction, 0) for _, tx := range txs { if _, exists := recvHashes[tx.Hash()]; exists { present = append(present, tx) } else { missing = append(missing, tx) } } return present, missing } func unknownTx(s *Suite) *types.Transaction { tx := getNextTxFromChain(s) if tx == nil { return nil } var to common.Address if tx.To() != nil { to = *tx.To() } txNew := types.NewTransaction(tx.Nonce()+1, to, tx.Value(), tx.Gas(), tx.GasPrice(), tx.Data()) return signWithFaucet(s.chain.chainConfig, txNew) } func getNextTxFromChain(s *Suite) *types.Transaction { // Get a new transaction for _, blocks := range s.fullChain.blocks[s.chain.Len():] { txs := blocks.Transactions() if txs.Len() != 0 { return txs[0] } } return nil } func generateTxs(s *Suite, numTxs int) (map[common.Hash]common.Hash, []*types.Transaction, error) { txHashMap := make(map[common.Hash]common.Hash, numTxs) txs := make([]*types.Transaction, numTxs) nextTx := getNextTxFromChain(s) if nextTx == nil { return nil, nil, errors.New("failed to get the next transaction") } gas := nextTx.Gas() nonce = nonce + 1 // generate txs for i := 0; i < numTxs; i++ { tx := generateTx(s.chain.chainConfig, nonce, gas) if tx == nil { return nil, nil, errors.New("failed to get the next transaction") } txHashMap[tx.Hash()] = tx.Hash() txs[i] = tx nonce = nonce + 1 } return txHashMap, txs, nil } func generateTx(chainConfig *params.ChainConfig, nonce uint64, gas uint64) *types.Transaction { var to common.Address tx := types.NewTransaction(nonce, to, big.NewInt(1), gas, big.NewInt(1), []byte{}) return signWithFaucet(chainConfig, tx) } func getOldTxFromChain(s *Suite) *types.Transaction { for _, blocks := range s.fullChain.blocks[:s.chain.Len()-1] { txs := blocks.Transactions() if txs.Len() != 0 { return txs[0] } } return nil } func invalidNonceTx(s *Suite) *types.Transaction { tx := getNextTxFromChain(s) if tx == nil { return nil } var to common.Address if tx.To() != nil { to = *tx.To() } txNew := types.NewTransaction(tx.Nonce()-2, to, tx.Value(), tx.Gas(), tx.GasPrice(), tx.Data()) return signWithFaucet(s.chain.chainConfig, txNew) } func hugeAmount(s *Suite) *types.Transaction { tx := getNextTxFromChain(s) if tx == nil { return nil } amount := largeNumber(2) var to common.Address if tx.To() != nil { to = *tx.To() } txNew := types.NewTransaction(tx.Nonce(), to, amount, tx.Gas(), tx.GasPrice(), tx.Data()) return signWithFaucet(s.chain.chainConfig, txNew) } func hugeGasPrice(s *Suite) *types.Transaction { tx := getNextTxFromChain(s) if tx == nil { return nil } gasPrice := largeNumber(2) var to common.Address if tx.To() != nil { to = *tx.To() } txNew := types.NewTransaction(tx.Nonce(), to, tx.Value(), tx.Gas(), gasPrice, tx.Data()) return signWithFaucet(s.chain.chainConfig, txNew) } func hugeData(s *Suite) *types.Transaction { tx := getNextTxFromChain(s) if tx == nil { return nil } var to common.Address if tx.To() != nil { to = *tx.To() } txNew := types.NewTransaction(tx.Nonce(), to, tx.Value(), tx.Gas(), tx.GasPrice(), largeBuffer(2)) return signWithFaucet(s.chain.chainConfig, txNew) } func signWithFaucet(chainConfig *params.ChainConfig, tx *types.Transaction) *types.Transaction { signer := types.LatestSigner(chainConfig) signedTx, err := types.SignTx(tx, signer, faucetKey) if err != nil { return nil } return signedTx }