// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package state import ( "bytes" "fmt" "io" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/tracing" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie/trienode" "github.com/holiman/uint256" ) type Code []byte func (c Code) String() string { return string(c) //strings.Join(Disassemble(c), " ") } type Storage map[common.Hash]common.Hash func (s Storage) String() (str string) { for key, value := range s { str += fmt.Sprintf("%X : %X\n", key, value) } return } func (s Storage) Copy() Storage { cpy := make(Storage, len(s)) for key, value := range s { cpy[key] = value } return cpy } // stateObject represents an Ethereum account which is being modified. // // The usage pattern is as follows: // - First you need to obtain a state object. // - Account values as well as storages can be accessed and modified through the object. // - Finally, call commit to return the changes of storage trie and update account data. type stateObject struct { db *StateDB address common.Address // address of ethereum account addrHash common.Hash // hash of ethereum address of the account origin *types.StateAccount // Account original data without any change applied, nil means it was not existent data types.StateAccount // Account data with all mutations applied in the scope of block // Write caches. trie Trie // storage trie, which becomes non-nil on first access code Code // contract bytecode, which gets set when code is loaded originStorage Storage // Storage cache of original entries to dedup rewrites pendingStorage Storage // Storage entries that need to be flushed to disk, at the end of an entire block dirtyStorage Storage // Storage entries that have been modified in the current transaction execution, reset for every transaction // Cache flags. dirtyCode bool // true if the code was updated // Flag whether the account was marked as self-destructed. The self-destructed account // is still accessible in the scope of same transaction. selfDestructed bool // Flag whether the account was marked as deleted. A self-destructed account // or an account that is considered as empty will be marked as deleted at // the end of transaction and no longer accessible anymore. deleted bool // Flag whether the object was created in the current transaction created bool } // empty returns whether the account is considered empty. func (s *stateObject) empty() bool { return s.data.Nonce == 0 && s.data.Balance.IsZero() && bytes.Equal(s.data.CodeHash, types.EmptyCodeHash.Bytes()) } // newObject creates a state object. func newObject(db *StateDB, address common.Address, acct *types.StateAccount) *stateObject { var ( origin = acct created = acct == nil // true if the account was not existent ) if acct == nil { acct = types.NewEmptyStateAccount() } return &stateObject{ db: db, address: address, addrHash: crypto.Keccak256Hash(address[:]), origin: origin, data: *acct, originStorage: make(Storage), pendingStorage: make(Storage), dirtyStorage: make(Storage), created: created, } } // EncodeRLP implements rlp.Encoder. func (s *stateObject) EncodeRLP(w io.Writer) error { return rlp.Encode(w, &s.data) } func (s *stateObject) markSelfdestructed() { s.selfDestructed = true } func (s *stateObject) touch() { s.db.journal.append(touchChange{ account: &s.address, }) if s.address == ripemd { // Explicitly put it in the dirty-cache, which is otherwise generated from // flattened journals. s.db.journal.dirty(s.address) } } // getTrie returns the associated storage trie. The trie will be opened // if it's not loaded previously. An error will be returned if trie can't // be loaded. func (s *stateObject) getTrie() (Trie, error) { if s.trie == nil { // Try fetching from prefetcher first if s.data.Root != types.EmptyRootHash && s.db.prefetcher != nil { // When the miner is creating the pending state, there is no prefetcher s.trie = s.db.prefetcher.trie(s.addrHash, s.data.Root) } if s.trie == nil { tr, err := s.db.db.OpenStorageTrie(s.db.originalRoot, s.address, s.data.Root, s.db.trie) if err != nil { return nil, err } s.trie = tr } } return s.trie, nil } // GetState retrieves a value from the account storage trie. func (s *stateObject) GetState(key common.Hash) common.Hash { // If we have a dirty value for this state entry, return it value, dirty := s.dirtyStorage[key] if dirty { return value } // Otherwise return the entry's original value return s.GetCommittedState(key) } // GetCommittedState retrieves a value from the committed account storage trie. func (s *stateObject) GetCommittedState(key common.Hash) common.Hash { // If we have a pending write or clean cached, return that if value, pending := s.pendingStorage[key]; pending { return value } if value, cached := s.originStorage[key]; cached { return value } // If the object was destructed in *this* block (and potentially resurrected), // the storage has been cleared out, and we should *not* consult the previous // database about any storage values. The only possible alternatives are: // 1) resurrect happened, and new slot values were set -- those should // have been handles via pendingStorage above. // 2) we don't have new values, and can deliver empty response back if _, destructed := s.db.stateObjectsDestruct[s.address]; destructed { return common.Hash{} } // If no live objects are available, attempt to use snapshots var ( enc []byte err error value common.Hash ) if s.db.snap != nil { start := time.Now() enc, err = s.db.snap.Storage(s.addrHash, crypto.Keccak256Hash(key.Bytes())) s.db.SnapshotStorageReads += time.Since(start) if len(enc) > 0 { _, content, _, err := rlp.Split(enc) if err != nil { s.db.setError(err) } value.SetBytes(content) } } // If the snapshot is unavailable or reading from it fails, load from the database. if s.db.snap == nil || err != nil { start := time.Now() tr, err := s.getTrie() if err != nil { s.db.setError(err) return common.Hash{} } val, err := tr.GetStorage(s.address, key.Bytes()) s.db.StorageReads += time.Since(start) if err != nil { s.db.setError(err) return common.Hash{} } value.SetBytes(val) } s.originStorage[key] = value return value } // SetState updates a value in account storage. func (s *stateObject) SetState(key, value common.Hash) { // If the new value is the same as old, don't set prev := s.GetState(key) if prev == value { return } // New value is different, update and journal the change s.db.journal.append(storageChange{ account: &s.address, key: key, prevalue: prev, }) if s.db.logger != nil && s.db.logger.OnStorageChange != nil { s.db.logger.OnStorageChange(s.address, key, prev, value) } s.setState(key, value) } func (s *stateObject) setState(key, value common.Hash) { s.dirtyStorage[key] = value } // finalise moves all dirty storage slots into the pending area to be hashed or // committed later. It is invoked at the end of every transaction. func (s *stateObject) finalise(prefetch bool) { slotsToPrefetch := make([][]byte, 0, len(s.dirtyStorage)) for key, value := range s.dirtyStorage { s.pendingStorage[key] = value if value != s.originStorage[key] { slotsToPrefetch = append(slotsToPrefetch, common.CopyBytes(key[:])) // Copy needed for closure } } if s.db.prefetcher != nil && prefetch && len(slotsToPrefetch) > 0 && s.data.Root != types.EmptyRootHash { s.db.prefetcher.prefetch(s.addrHash, s.data.Root, s.address, slotsToPrefetch) } if len(s.dirtyStorage) > 0 { s.dirtyStorage = make(Storage) } } // updateTrie is responsible for persisting cached storage changes into the // object's storage trie. In case the storage trie is not yet loaded, this // function will load the trie automatically. If any issues arise during the // loading or updating of the trie, an error will be returned. Furthermore, // this function will return the mutated storage trie, or nil if there is no // storage change at all. func (s *stateObject) updateTrie() (Trie, error) { // Make sure all dirty slots are finalized into the pending storage area s.finalise(false) // Short circuit if nothing changed, don't bother with hashing anything if len(s.pendingStorage) == 0 { return s.trie, nil } // Track the amount of time wasted on updating the storage trie defer func(start time.Time) { s.db.StorageUpdates += time.Since(start) }(time.Now()) // The snapshot storage map for the object var ( storage map[common.Hash][]byte origin map[common.Hash][]byte ) tr, err := s.getTrie() if err != nil { s.db.setError(err) return nil, err } // Insert all the pending storage updates into the trie usedStorage := make([][]byte, 0, len(s.pendingStorage)) // Perform trie updates before deletions. This prevents resolution of unnecessary trie nodes // in circumstances similar to the following: // // Consider nodes `A` and `B` who share the same full node parent `P` and have no other siblings. // During the execution of a block: // - `A` is deleted, // - `C` is created, and also shares the parent `P`. // If the deletion is handled first, then `P` would be left with only one child, thus collapsed // into a shortnode. This requires `B` to be resolved from disk. // Whereas if the created node is handled first, then the collapse is avoided, and `B` is not resolved. var deletions []common.Hash for key, value := range s.pendingStorage { // Skip noop changes, persist actual changes if value == s.originStorage[key] { continue } prev := s.originStorage[key] s.originStorage[key] = value var encoded []byte // rlp-encoded value to be used by the snapshot if (value != common.Hash{}) { // Encoding []byte cannot fail, ok to ignore the error. trimmed := common.TrimLeftZeroes(value[:]) encoded, _ = rlp.EncodeToBytes(trimmed) if err := tr.UpdateStorage(s.address, key[:], trimmed); err != nil { s.db.setError(err) return nil, err } s.db.StorageUpdated += 1 } else { deletions = append(deletions, key) } // Cache the mutated storage slots until commit if storage == nil { if storage = s.db.storages[s.addrHash]; storage == nil { storage = make(map[common.Hash][]byte) s.db.storages[s.addrHash] = storage } } khash := crypto.HashData(s.db.hasher, key[:]) storage[khash] = encoded // encoded will be nil if it's deleted // Cache the original value of mutated storage slots if origin == nil { if origin = s.db.storagesOrigin[s.address]; origin == nil { origin = make(map[common.Hash][]byte) s.db.storagesOrigin[s.address] = origin } } // Track the original value of slot only if it's mutated first time if _, ok := origin[khash]; !ok { if prev == (common.Hash{}) { origin[khash] = nil // nil if it was not present previously } else { // Encoding []byte cannot fail, ok to ignore the error. b, _ := rlp.EncodeToBytes(common.TrimLeftZeroes(prev[:])) origin[khash] = b } } // Cache the items for preloading usedStorage = append(usedStorage, common.CopyBytes(key[:])) // Copy needed for closure } for _, key := range deletions { if err := tr.DeleteStorage(s.address, key[:]); err != nil { s.db.setError(err) return nil, err } s.db.StorageDeleted += 1 } if s.db.prefetcher != nil { s.db.prefetcher.used(s.addrHash, s.data.Root, usedStorage) } s.pendingStorage = make(Storage) // reset pending map return tr, nil } // updateRoot flushes all cached storage mutations to trie, recalculating the // new storage trie root. func (s *stateObject) updateRoot() { // Flush cached storage mutations into trie, short circuit if any error // is occurred or there is not change in the trie. tr, err := s.updateTrie() if err != nil || tr == nil { return } // Track the amount of time wasted on hashing the storage trie defer func(start time.Time) { s.db.StorageHashes += time.Since(start) }(time.Now()) s.data.Root = tr.Hash() } // commit obtains a set of dirty storage trie nodes and updates the account data. // The returned set can be nil if nothing to commit. This function assumes all // storage mutations have already been flushed into trie by updateRoot. func (s *stateObject) commit() (*trienode.NodeSet, error) { // Short circuit if trie is not even loaded, don't bother with committing anything if s.trie == nil { s.origin = s.data.Copy() return nil, nil } // Track the amount of time wasted on committing the storage trie defer func(start time.Time) { s.db.StorageCommits += time.Since(start) }(time.Now()) // The trie is currently in an open state and could potentially contain // cached mutations. Call commit to acquire a set of nodes that have been // modified, the set can be nil if nothing to commit. root, nodes, err := s.trie.Commit(false) if err != nil { return nil, err } s.data.Root = root // Update original account data after commit s.origin = s.data.Copy() return nodes, nil } // AddBalance adds amount to s's balance. // It is used to add funds to the destination account of a transfer. func (s *stateObject) AddBalance(amount *uint256.Int, reason tracing.BalanceChangeReason) { // EIP161: We must check emptiness for the objects such that the account // clearing (0,0,0 objects) can take effect. if amount.IsZero() { if s.empty() { s.touch() } return } s.SetBalance(new(uint256.Int).Add(s.Balance(), amount), reason) } // SubBalance removes amount from s's balance. // It is used to remove funds from the origin account of a transfer. func (s *stateObject) SubBalance(amount *uint256.Int, reason tracing.BalanceChangeReason) { if amount.IsZero() { return } s.SetBalance(new(uint256.Int).Sub(s.Balance(), amount), reason) } func (s *stateObject) SetBalance(amount *uint256.Int, reason tracing.BalanceChangeReason) { s.db.journal.append(balanceChange{ account: &s.address, prev: new(uint256.Int).Set(s.data.Balance), }) if s.db.logger != nil && s.db.logger.OnBalanceChange != nil { s.db.logger.OnBalanceChange(s.address, s.Balance().ToBig(), amount.ToBig(), reason) } s.setBalance(amount) } func (s *stateObject) setBalance(amount *uint256.Int) { s.data.Balance = amount } func (s *stateObject) deepCopy(db *StateDB) *stateObject { obj := &stateObject{ db: db, address: s.address, addrHash: s.addrHash, origin: s.origin, data: s.data, } if s.trie != nil { obj.trie = db.db.CopyTrie(s.trie) } obj.code = s.code obj.dirtyStorage = s.dirtyStorage.Copy() obj.originStorage = s.originStorage.Copy() obj.pendingStorage = s.pendingStorage.Copy() obj.selfDestructed = s.selfDestructed obj.dirtyCode = s.dirtyCode obj.deleted = s.deleted return obj } // // Attribute accessors // // Address returns the address of the contract/account func (s *stateObject) Address() common.Address { return s.address } // Code returns the contract code associated with this object, if any. func (s *stateObject) Code() []byte { if s.code != nil { return s.code } if bytes.Equal(s.CodeHash(), types.EmptyCodeHash.Bytes()) { return nil } code, err := s.db.db.ContractCode(s.address, common.BytesToHash(s.CodeHash())) if err != nil { s.db.setError(fmt.Errorf("can't load code hash %x: %v", s.CodeHash(), err)) } s.code = code return code } // CodeSize returns the size of the contract code associated with this object, // or zero if none. This method is an almost mirror of Code, but uses a cache // inside the database to avoid loading codes seen recently. func (s *stateObject) CodeSize() int { if s.code != nil { return len(s.code) } if bytes.Equal(s.CodeHash(), types.EmptyCodeHash.Bytes()) { return 0 } size, err := s.db.db.ContractCodeSize(s.address, common.BytesToHash(s.CodeHash())) if err != nil { s.db.setError(fmt.Errorf("can't load code size %x: %v", s.CodeHash(), err)) } return size } func (s *stateObject) SetCode(codeHash common.Hash, code []byte) { prevcode := s.Code() s.db.journal.append(codeChange{ account: &s.address, prevhash: s.CodeHash(), prevcode: prevcode, }) if s.db.logger != nil && s.db.logger.OnCodeChange != nil { s.db.logger.OnCodeChange(s.address, common.BytesToHash(s.CodeHash()), prevcode, codeHash, code) } s.setCode(codeHash, code) } func (s *stateObject) setCode(codeHash common.Hash, code []byte) { s.code = code s.data.CodeHash = codeHash[:] s.dirtyCode = true } func (s *stateObject) SetNonce(nonce uint64) { s.db.journal.append(nonceChange{ account: &s.address, prev: s.data.Nonce, }) if s.db.logger != nil && s.db.logger.OnNonceChange != nil { s.db.logger.OnNonceChange(s.address, s.data.Nonce, nonce) } s.setNonce(nonce) } func (s *stateObject) setNonce(nonce uint64) { s.data.Nonce = nonce } func (s *stateObject) CodeHash() []byte { return s.data.CodeHash } func (s *stateObject) Balance() *uint256.Int { return s.data.Balance } func (s *stateObject) Nonce() uint64 { return s.data.Nonce } func (s *stateObject) Root() common.Hash { return s.data.Root }